
v The project aims to develop an advanced driver assistance system,
focusing on enhancing driving safety and efficiency through the
integration of multiple key features.

v These include collision warning, fatigue detection, lane detection,
and sign classification modules. The system leverages deep
learning models for object detection and classification, ensuring
robust performance in real time driving scenarios.

Supervisor
Dr. Gürhan Bulu

Electrical and Electronics Engineering, Hacettepe University

Ali İrşad Yılmaz, Mustafa Azırak, Selim Efe Cive, Tunahan Candemir

vDriver-Assistance Systems represent a growing range of
technologies designed to improve safety and comfort behind the
wheel. These systems utilize a combination of sensors, cameras,
and software algorithms to monitor the vehicle's surroundings,
driver behavior, and road conditions.

vBy providing real-time feedback and even taking corrective actions
in some cases, DAS can significantly reduce the risk of accidents
and make driving a more effortless experience. Some key
application areas within DAS include collision warning systems that
detect potential hazards, fatigue detection systems that monitor
driver alertness, and lane detection systems that prevent
unintentional lane departures. These systems work together to
create a safer and more enjoyable driving experience for everyone
on the road.

Application Areas

v The system is built around the NVIDIA Jetson Nano, selected for
its GPU acceleration, affordability, and support from the developer
community.

v The hardware setup includes dual cameras—one facing inward to
monitor the driver and one outward for environmental detection.
Additional sensors like the TFmini micro-LIDAR module provide
depth data for accurate distance measurement.

v The software stack comprises various Python libraries, including
OpenCV, dlib, and TensorRT, to handle tasks such as object
detection, depth estimation, fatigue monitoring, and lane detection.
The system also features a user interface for configuration and
control.

Specifications and Design Requirements

v Collision Warning System: Utilizes SSD-Mobilenet-v2 and
DashCamNet models. Detects objects in real-time and generates
alerts if they pose a collision risk. Configurable drivable area based
on speed and lane curvature.

v Fatigue Detection: Employs the Eye Aspect Ratio (EAR) technique.
Uses dlib to detect facial landmarks and calculate EAR. Issues
visual and audio alerts upon detecting signs of fatigue.

v Lane Detection: Implements edge detection and lane model
solving techniques. Uses Kalman filtering for improved accuracy.
Adapts to various driving conditions, including low light and
complex traffic.

Solution Methodology v “DashCamNet | NVIDIA NGC,” NVIDIA NGC Catalog.
v A. Alami, “Aeidle/EAR-Fatigue-Detection,” GitHub, Mar. 01, 2024.

https://github.com/Aeidle/EAR-Fatigue-Detection
v D. Franklin, “Deploying Deep Learning,” GitHub, Jun. 12, 2022.

https://github.com/dusty-nv/jetson-inference

References

vThis project was completed within the context of ELE401-401
Graduation Project courses in Hacettepe University, Faculty of
Engineering, Department of Electrical and Electronics Engineering.

vWe thank Efe Vural for his invaluable contributions to our project.

Acknowledgements

vCollision Warning Performance:The SSD-Mobilenet-v2 model
achieves 25 fps with nearly 100% GPU usage, indicating real-time
detection. NVIDIA benchmarks show it can reach 39 fps on a Jetson
Nano with a specific dataset, suggesting potential for higher
performance with optimized training. The DashCamNet model
delivers 17 fps with 80% accuracy, also at full GPU capacity. SSD-
Mobilenet-v2 appears to offer better detection performance and
higher fps compared to DashCamNet.

vFatigue Detection Performance: Successfully detects driver fatigue
using the EAR technique. Real-world testing needed to optimize
threshold values and validate effectiveness.

vLane Detection Performance: We tried several algorithms, but they
did not work properley in real life scenario.

Results and Discussion

Introduction

Camera

Obj

Distance, D

∅1

∅2 Image Plane

Lanes

Frame

Drivable Area
�4�3

�1 �2

bbox

��� =
 �2 − �6 + �3 − �5

2 �1 − �4
��� = 0

