Introduction

This project aims to increase driver's safety and improve the driving experience through the integration of driver assistance technologies into existing vehicles with sensors and image processing technology.

Specifications and Design Requirements

- Optic sensor 1: Fatigue detection and steering wheel hand position monitoring.
- Optic sensor 2: Lane, traffic light, traffic sign, car and pedestrian detection.
- Audible warning and video recording system with User Interface. Data acquisition from CAN-BUS.

Driving Assistance System

ADAS-2 Baturay Aydemir, Edanur Potuk, Gözde Körpe, Yağız Baran Avşar

Supervisors

Dr. Gürhan Bulu (Hacettepe University) Oğuzhan Küçükşahin (Roketsan)

> The product can be installed into old vehicles that are nonautonomous and provide a level of driving assistance. LEVEL5 LEVEL3 automatior High utomatior Conditiona

automation Partial _EVEL1 LEVEL0 utomation **Requires** legal No issistance Figure 4: framework utomatior **Driver Assistance Autonomous Driving** The Automation Levels (ADAS) (AD)System performs most/all operation

roketsan

Application Areas

Full

Figure 1: Driving Assistance System Working Principle

Results and Discussion

- The system detects cars, pedestrians and other traffic elements (bicycles and motorbikes) with high and therefore reliable confidence to provide intel for possible accidents.
- The system effectively identifies driver fatigue by analyzing eye closure. Tests indicate high accuracy in detecting reduced alertness levels. Hands-on wheel detection works by checking whether hands are in the wheel area. Sometimes false positives occur because of the camera angle in the car.

Figure 5: Project Hardware Hierarchy

Figure 2: Lane Detection & Car-Pedestrian Detection The system can detect lanes and provide an alert when it detects that a lane has been changed. Challenging road conditions can sometimes lead to inaccurate lane detection.

The speed data of the vehicle is received from CAN-BUS in real time and used by the necessary models.

Figure 3: Hands and Eye Detection & Complete System For future improvements:

- The system can also be operated at night.
- The speed and efficiency of the codes can be increased.
- Crash algorithm can be improved by using additional sensors such as LIDAR.

Figure 6: Project Flowchart

Tools: Jetson Nano, CAN-BUS Shield, Arduino Uno, Detectnet, SSD-Mobilenet, TensorFlow, Numpy, OpenCV, Mediapipe, Yolov3, Darknet

Acknowledgements

This project was completed within the context of ELE401-402 Graduation Project courses in Hacettepe University, Faculty of Engineering, Department of Electrical and Electronics Engineering.

modules.

Special thanks to Gürhan Bulu, Oğuzhan Küçükşahin, Stèphane

Charette for their invaluable contributions to the project.