Obligation |
: |
Elective |
Prerequisite courses |
: |
- |
Concurrent courses |
: |
- |
Delivery modes |
: |
Face-to-Face |
Learning and teaching strategies |
: |
Lecture, Question and Answer, Problem Solving |
Course objective |
: |
- Understand the introductory concepts of the current computational electromagnetics methods. - Be able to formulate electromagnetic problems and to suggest a solution method. - Be able to use current electromagnetics softwares efficiently. - Have foundation to work on further aspects of the computational electromagnetics. |
Learning outcomes |
: |
To understand the introductory concepts of the current computational electromagnetics methods. To be able to reduce encountered engineering problems to electromagnetic equations and to suggest a solution method. To develop skills and understanding to be able to use current EM softwares efficiently. To have foundation to work on special aspects of the computational electromagnetics. |
Course content |
: |
· Introduction· Classification of EM problems· Quick review of linear algebra concepts· Method of Moments · Theory · Applications to electrostatics · Two dimensional scattering problems · Radiation and scattering form wire structures · Current research topics· Time Domain Integral Equation Methods · Wire Structures · Two and three dimensional problems· Finite Difference Method · Theory · Treatment of Boundaries · Analysis of TEM structures · Finite Difference Time Domain Method · Current research topics· Finite Elements Method · Theory, Elements and shape functions · Applications |
References |
: |
1 )M.N.O. Sadiku, Numerical Techniques in Electromagnetics, CRC Press, 1992.; 2) Computational Methods for Electromagnetics, A.F. Peterson, S.L. Scott, R. Mittra, IEEE Press, 1998.; 3) R.F. Harrington, Field Computation by Moment Methods, MacMillan, 1968.; 4) S.M. Rao, Time Domain Electromagnetics, Academic Press, 1999. ; 5) P.Zhou, Numerical Analysis of Electromagnetic Fields, Fall/ Springer-Verlag, 1993. |
Course Outline Weekly
Weeks |
Topics |
1 |
Introduction. |
2 |
Classification of EM problems |
3 |
Method of Moments: Theory |
4 |
Method of Moments. Applications to electrostatics |
5 |
Method of Moments:Two dimensional scattering problemsRadiation and scattering form wire structures |
6 |
Method of Moments:Radiation and scattering form wire structures.Current research topics. |
7 |
Time Domain Integral Equation Methods:Wire Structures |
8 |
Time Domain Integral Equation Methods:Wire Structures. Two and three dimensional problems |
9 |
Midterm Exam |
10 |
Finite Difference Method: Theory |
11 |
Finite Difference Method: Treatment of Boundaries Analysis of TEM structures |
12 |
Finite Difference Time Domain Method |
13 |
Finite Elements Method: Theory, Elements and shape functions |
14 |
Finite Elements Method: Applications |
15 |
Final Exam |
16 |
Final Exam |
Matrix Of The Course Learning Outcomes Versus Program Outcomes
Key learning outcomes |
Contribution level |
1 |
2 |
3 |
4 |
5 |
1. |
Has general and detailed knowledge in certain areas of Electrical and Electronics Engineering in addition to the required fundamental knowledge. | | | | | |
2. |
Solves complex engineering problems which require high level of analysis and synthesis skills using theoretical and experimental knowledge in mathematics, sciences and Electrical and Electronics Engineering. | | | | | |
3. |
Follows and interprets scientific literature and uses them efficiently for the solution of engineering problems. | | | | | |
4. |
Designs and runs research projects, analyzes and interprets the results. | | | | | |
5. |
Designs, plans, and manages high level research projects; leads multidiciplinary projects. | | | | | |
6. |
Produces novel solutions for problems. | | | | | |
7. |
Can analyze and interpret complex or missing data and use this skill in multidiciplinary projects. | | | | | |
8. |
Follows technological developments, improves him/herself , easily adapts to new conditions. | | | | | |
9. |
Is aware of ethical, social and environmental impacts of his/her work. | | | | | |
10. |
Can present his/her ideas and works in written and oral form effectively; uses English effectively. | | | | | |