
VHDL Cheat-Sheet
Copyright: 2007 Bryan J. Mealy

Concurrent Statements Sequential Statements
Concurrent Signal Assignment

(dataflow model) ⇔ Signal Assignment

target <= expression; target <= expression;

A <= B AND C;
DAT <= (D AND E) OR (F AND G);

A <= B AND C;
DAT <= (D AND E) OR (F AND G);

Conditional Signal Assignment
(dataflow model) ⇔ if statements

target <= expressn when condition else
 expressn when condition else
 expressn;

if (condition) then
 { sequence of statements }
elsif (condition) then
 { sequence of statements }
else --(the else is optional)
 { sequence of statements }
end if;

F3 <= ‘1’ when (L=‘0’ AND M=‘0’) else
 ‘1’ when (L=‘1’ AND M=‘1’) else
 ‘0’;

if (SEL = “111”) then F_CTRL <= D(7);
elsif (SEL = “110”) then F_CTRL <= D(6);
elsif (SEL = “101”) then F_CTRL <= D(1);
elsif (SEL = “000”) then F_CTRL <= D(0);
else F_CTRL <= ‘0’;
end if;

Selective Signal Assignment
(dataflow model) ⇔ case statements

with chooser_expression select
 target <= expression when choices,
 expression when choices;

case (expression) is
 when choices =>
 {sequential statements}
 when choices =>
 {sequential statements}
 when others => -- (optional)
 {sequential statements}
end case;

with SEL select
MX_OUT <= D3 when “11”,
 D2 when “10”,
 D1 when “01”,
 D0 when “00”,
 ‘0’ when others;

case ABC is
 when “100” => F_OUT <= ‘1’;
 when “011” => F_OUT <= ‘1’;
 when “111” => F_OUT <= ‘1’;
 when others => F_OUT <= ‘0’;
end case;

Process
(behavioral model)

opt_label: process(sensitivity_list)
begin
 {sequential_statements}
end process opt_label;
proc1: process(A,B,C)
begin
 if (A = ‘1’ and B = ‘0’) then
 F_OUT <= ‘1’;
 elsif (B = ‘1’ and C = ‘1’) then
 F_OUT <= ‘1’;
 else
 F_OUT <= ‘0’;
 end if;
end process proc1;

