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In the aftermath of the recent terrorist attacks, there has been an increasing need for automated, high-speed
detection technologies that can detect trace amounts of explosives without human intervention. Our group at
the University of Florida has developed di�erential re�ection spectroscopy which can detect explosive residue on
surfaces such as parcel, cargo and luggage. In this di�erential re�ection device, explosives show spectral �nger-
prints at speci�c wavelengths, for example, the spectrum of 2,4,6, trinitrotoluene shows an absorption edge at 420
nm. Additionally, we have developed a support vector machine based computer software to classify the explosives
and non-explosive materials. In this study we will (i) describe this system and give an insight into the operation
of our prototype, (ii) demonstrate our software for the detection of the spectral �nger-prints, and (iii) discuss the
normalization of the data which signi�cantly increases classi�cation rates and decreases the number of parameters.
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1. Introduction

In the aftermath of 9/11 and the attempted shoe
bombing of the American Airlines Flight in December
2001, there has been a dramatic increase in the explosive
detection research to decrease the threats at the airports,
parcel screening checkpoints, as well as at parks, road-
sides and public transports. In an e�ort to �nd the char-
acteristic signatures of explosives, the physics of explo-
sive materials have been investigated [1�3] and a number
of methods have been developed that can be categorized
into two main groups:
• Bulk versus trace detection: Bulk detection refers to
�nding large amount of explosives. Some of the well-
-known bulk detection techniques include X-ray and elec-
tromagnetic imaging such as the millimeter wave imaging
and terahertz spectroscopy. On the other hand, trace de-
tection refers to �nding trace amounts of explosives that
can be either in the form of particles or in gas phase.
Some common examples include ion mobility spectrome-
try (IMS) and light detection and ranging (LIDAR).
• Contact versus non-contact: Contact methods require
to swipe the surface of the material or to vaporize the
material for analysis. IMS and thermal vaporization are
two of the contact methods that are currently being used
at the airports. On the other hand, in non-contact stand-
-o� techniques, the decision is made at a distance to the
sample. This is generally achieved by probing the sample
with a beam of particles and observing the characteristic
emission. Some of the common stand-o� techniques in-
clude laser induced breakdown spectroscopy (LIBS), Ra-
man spectroscopy, LIDAR, and hyperspectral imaging.

The advantages and disadvantages of these methods
have been discussed in detail in the reviews [4�6]. Among
these techniques, particular emphasis in the last few years
has been on stand-o� trace explosives detection [7�9].
With stand-o� techniques contact requirements such as
swiping are eliminated, and it becomes possible to scan
more samples at screening points, making the screening
process safer and faster.

Fig. 1. Current functioning prototype equipment on
the left and the observed TNT spectrum on the right.
The optical apparatus is at the top part of the equip-
ment. Broad band UV�visible light source is shone onto
a conveyor belt, and the re�ected light is collected with
a spectrometer and recorded with a CCD camera. On
the right, spectrum of TNT is shown when measured
with DR. TNT spectrum shows a signi�cant drop at
420 nm, which is more de�ned for larger masses of the
explosive, and gets harder to detect as the amount of
explosive decreases.

At the University of Florida, we have developed a
stand-o� trace explosive detection method called the dif-
ferential re�ectometer (DR) [10�16]. The currently func-
tioning prototype equipment that has been designed in
our lab to implement the above schematic is displayed in
Fig. 1. In this system, a broad band ultra violet (UV)�
visible light source is shone onto a conveyor belt, and
the re�ected light is collected with a spectrometer and
recorded with a CCD camera. The spectrometer sepa-
rates the broad band light into the wavelengths between
200 nm and 500 nm, and the spectra collected from each
pixel of the probed surface is the re�ectivity at that pixel,
denoted by R. As the luggage moves on the conveyor
belt, two consecutive measurements are recorded denoted
by R1 and R2 and DR is computed as

∆R/R̄ = 2(R2 −R1)/(R1 + R2),

where R̄ is the mean re�ectance and ∆R is the di�erence
in re�ectance. When TNT is measured with this system,
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the spectrum obtained is shown in Fig. 1. The signature
characteristic of TNT is a drop at 420 nm which is more
de�ned for larger masses.

2. Software

For classi�cation of each spectrum into TNT vs. non-
-TNT classes, each spectrum was �ltered with a low-pass
�lter normalized to be between zero and one, and cropped
to be between the wavelengths of 350�450 nm. To further
reduce the dimensionality of the data, principal compo-
nent analysis (PCA) was applied, and each spectrum was
projected onto the most important 5 eigenvectors. This
new (projected) data will be denoted as x. Then, support
vector machine (SVM) [17] classi�ers were trained that
maximize the margin among the two classes [18]. For a
feature-space transformation ϕ(xn) that is related to a
Mercer kernel, SVM �nds a hyper-plane wTϕ(x) + b = 0
in the kernel space, that has the largest distance to the
nearest training data points of any class as shown in
Fig. 2a. More details on PCA and SVMs were given
in [14, 16].

Fig. 2. SVM classi�ers on the left, and the resulting
ROC on the right. With SVM, data is projected onto a
higher-dimensional space in which it might be separable.
The expectation from ROC is to have lower false alarm
rates and high true positive rates.

TNT was placed on 10 di�erent clothes and its spec-
trum was measured. Five of these clothes were used in
training, and the other 5 were used in testing. There were
about 2500 TNT and 2500 non-TNT spectra in train-
ing, and about 1000 TNT and 2500 non-TNT spectra in
testing. The receiver operating characteristics (ROC) is
shown in Fig. 2b. At a true positive rate of 90%, a false
alarm rate of 8% was achieved. This is a signi�cant im-
provement over our previous software [16] which had 3
di�erent models for the three di�erent magnitudes of
TNT spectrum: low medium and high. The di�erence
has been in the normalization. By normalizing the data
before classi�cation, the spectrum from various amounts
of TNT were scaled to similar range of amplitudes, which
allowed us to train a single classi�er instead of three.
This means lower false alarm rates, less parameters to
work with and therefore faster scanning times.

3. Conclusion

In this study we have described the DR system for ex-
plosive detection, and developed a software for automatic

detection. As an improvement to our previous work, we
have introduced normalization as a preprocessing step
and trained a single SVM classi�er instead of three SVMs
for di�erent amplitudes of TNT. Our future work is on
employing end-member detection techniques to further
eliminate the false alarms.
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