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ABSTRACT

Anomaly detection refers to detecting the deviations from
the normal background behavior without any prior informa-
tion about the target or the background. For hyperspectral
image analysis, Reed-Xiaoli (RX) algorithm is arguably the
most popular anomaly detector. It models the background as
a multidimensional Gaussian distribution and computes how
much a test vector is deviating from the background model.
Over the years, many versions of RX have been developed
and compared on VNIR or SWIR data, but longwave-infrared
(LWIR) data comparisons are very few. In this paper, a com-
prehensive comparison of six different anomaly detectors,
namely the global RX, local RX, dual window RX, subspace
RX, kernel RX and the global RX combined with a uniform
target detector, have been presented. The comparisons have
been made on real LWIR hyperspectral data and synthetic
data with varying noise levels and target sizes. Several fac-
tors to consider such as parameter selection, resilience to
noise, effect of window size, computational complexity have
been discussed and the detection performance have been
presented on receiver operating characteristic curves.

Index Terms— Anomaly detection, hyperspectral, LWIR.

1. INTRODUCTION

Due to the vast sizes of data but little targets of interest,
anomaly detection holds an important part in hyperspectral
image processing. The goal of anomaly detection is to detect
the pixels in the scene whose spectra differ from their sur-
roundings. Most anomaly detection algorithms in literature
[1] are based on the family of Gaussian distributions, and the
most commonly used anomaly detector, Reed-Xiaoli (RX)
[2], can be considered as a benchmark.

The anomaly detection problem can be braken down into
two sub-problems: how to characterize the background and
how to measure the anomaly score. RX detector assumes that
the background is homogeneous and models it with a multi-
variate Gaussian distribution. However, this hypothesis may
not always be adequate. Therefore, several extensions to RX
were developed that address the two sub-problems [1, 3]. In
the rest of the paper, we compare six variations of RX in
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terms of speed and accuracy on synthetic and real hyperspec-
tral (LWIR) datasets and discuss parameter selection.

2. ANOMALY DETECTION METHODS

In this section, we provide the basics of anomaly detectors
from the implementation point of view under a unified syntax.

2.1. Global Reed-Xiaoli Detector (GRX)

GRX [4], also called the Mahalanobis distance detector, mod-
els the background of the complete scene with a multivariate
Gaussian distribution with mean [i;, and covariance f]b. It
computes the Mahalanobis distance between a test pixel r and
the mean of the background vector as follows:

Darx (r) = (r — i) 2, (r = fiy). (1)

The test pixel is called an anomaly if this distance D is bigger
than a defined threshold.

2.2. Local Reed-Xiaoli Detector (LRX)

LRX [2] is basically a spatially adaptive version of the GRX
statistic that replaces the global background model with a lo-
cal normal model [4]. To detect anomalies, a double concen-
tric window is slided over every pixel in the image as illus-
trated in Fig.1. The size of inner window that is called guard
band is assumed to be the size of target in the image. For the
local RX detector, Eq.(1) is modified as follows:

DLRX (I‘) = (I’ - ﬂlocal)TSl;ial(r - ,&local)- (2)

where r is the test pixel, fijocq; 1S the mean vector and ﬁ)local
is the covariance matrix of the local background, respectively.

2.3. Reed-Xiaoli and Uniform Target Detector (UTD)

In [5], it has been suggested that removal of the background
and also noise has improved the performance of RX detector.
A new type of anomaly detector was developed by incorpo-
rating the UTD into RX [3]. By subtracting the UTD from the
RX, the equation is obtained as follows:

Drxp-vrp(r) = (r — 1dx1)T§3;1(1‘ — ). 3

where 14x1 = (1,1,...,1)T is the d dimensional unity vector
where d is the number of spectral bands in the data.
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Fig. 1. Double concentric window surrounding the test pixel.

2.4. Dual Window Reed-Xiaoli Detector (DWRX)

In LRX, guard band is used to prevent the target pixels from
penetrating into the calculation of background statistics. Un-
like the LRX, DWRX [6] uses this guard band information.
Instead of using the spectra of the test pixel under test, it uses
the mean of the spectral pixels falling into the guard band.
DWRX distance is computed as follows:

Dpwrx (v) = (faifs(r) S toy (flaiss (r). @)

/:Ldiff (I‘) = ﬂinner (I‘) - ﬂouter(r)- (5)
where [i;nner 1S the mean of the spectralA pixels in the inner

window, f[ioyter 1S the mean vector and 3, is the covari-
ance matrix of the local background region, respectively.

2.5. Subspace Reed-Xiaoli Detector (SSRX)

SSRX [7] assumes that target pixels and background statistics
can be expressed in different subspaces. The background sub-
space is projected onto a subspace that provides suppression
of the background statistics. SSRX is computed as follows:

Dssrx(r) = (v — )" (I = WWH)(r = ). (6)

where I is the identity matrix, fi; is the mean of the back-
ground samples, W is a matrix consisting of eigenvectors
corresponding to large eigenvalues of background covariance
matrix and W denotes the pseudo-inverse of W. The product
WWT is the projection operator.

2.6. Kernel Reed-Xiaoli Detector (KRX)

RX assumes that the background is homogeneously dis-
tributed. However, there may be a non-linear relationship
between the spectral bands. KRX [8] has been developed for
the case that the samples need more complex decision bound-
aries. KRX uses non-linear models and maps the input space
to a high dimensional feature space using kernel functions. A
possible kernel function is the Gaussian RBF, given as

k(xi, ) = exp((— |xi = x;1%)/(e))

With the kernel function defined, the KRX value for the
test pixel r can be computed as follows:

Drrx(x) = (K" —Kpp ) 'K (K" = Kpy ). (D)

where Kb is the Gram (kernel) matrix of the M background
pixels, obtained as follows:

kJ(Xl,X1> k’(XhXM)
. k(x2,%1) k(x2,%x)
K, = K(Xp,Xp) = .

k(xar,x1) k(xar, %ar)

The Gram matrix is also denoted by K; = K(Xp, Xp)
where X;, = [x(1),x(2),...,x(M)] is the background ma-
trix whose columns are the spectral pixels of d dimensions.
In Eq.7, K, is a vector and equals the kernel map of the test
pixel r as follows:

K.” =k(X;,r)" — L Zk(x(z’), r). (8)

where the first term in Eq.8 is given as:
k(Xp,r) = [ k(x(1),r) k(x(M),r) |

and second term in Eq.8 is the scalar mean of k(X,,r). Fi-
nally, KﬁbT in Eq.7 equals:

1 M 1 M M
Kz = 57 2 KXKnox(D) = 375 >, > kx(D). x(7).

©))
The first term in Eq.9 is a row vector, containing the mean
of each column of the Gram matrix. The second term is the
scalar mean of the Gram matrix. This section provides the
sufficient details to implement KRX. Detailed derivations to
arrive at these equations can be found in [8].

3. EXPERIMENTAL RESULTS

SYNTHETIC DATA: Two synthetic datasets were generated
with different noise levels and various target sizes. The first
dataset is a datacube of size 75x75x10 and has two anomaly
regions of size 5x5x10. The anomaly regions were generated
from a normal distribution with mean 1.5 and variance 0.1;
and the background were sampled from a normal distribution
with mean 1 and variance 0.1. The detection results for this
dataset is given in Fig.2. The second dataset had background
mean 1, variance 0.2; and anomaly mean 1.2 with variance
0.2. Therefore, anomalies and the background were barely
distinguishable as shown in Fig 2(a). In this second dataset,
targets were of size 5x5, 7x7 and 9x9 from left to right to
investigate the relations between the window and target size.
On the first dataset, window-based anomaly detectors
were run with a 5x5 inner window and 9x9 outer window.
For KRX, using the Gaussian RBF kernel, ¢ was set to 40.
Fig.2 shows the results of the detection without thresholding.
For SSRX, the number of eigenvectors were selected as the
principal components that account for about fifty percent of



the variances. For KRX, the size of outer window determines
the dimension of Gram matrix and is a very critical param-
eter in terms of computational complexity. Table 1 shows
the elapse time of detectors on both synthetic data and real
data. The second dataset presents a much harder problem
as the targets and the background have very similar distribu-
tions. Therefore, the detections decreased significantly and it
became more important to select the best window parameters.

(a) GRX (b) RXD-UTD (c) LRX

(d) DWRX

(e) SSRX (f) KRX

Fig. 2. Detection results for the first synthetic data. GRX gen-
erated the most false alarms, followed by RXD-UTD, KRX
and SSRX. The LRX and DWRX detected only the center of
anomalies due to the window size (5x5), but generated very
few false alarms.

For LRX and DWRX, targets could not be detected if the
inner window was smaller than 5x5. Thus, the size of inner
window should not be smaller than the size of the target. For
the outer window, results were enhanced with increasing outer
window size as long as the window did not include any other
targets. Therefore, an estimate about the distance between the
targets can be used to determine the size of the outer window.

The GRX and RXD-UTD have no parameters. However,
looking at Fig.3, it is clear that none of them are resilient to
noise. This is partly due to the target signatures effecting the
background model. However, local RX and SSRX also seems
to fail under noise, and the selection of window parameters
becomes a rather important issue. The only algorithm that
stayed resilient to noise was DWRX.

REAL DATA: Real hyperspectral data was acquired by
a LWIR (8-12 pm) imager and was calibrated with Telops
Reveal Air Calibrate software. The dataset contains 150x320
pixels and 81 spectral bands. In the scene, four targets com-
posed of different materials including a wooden crate (T1),
metallic bucket (T2), plastic jerrycan (T3), and glass jug (T4)
were laid on a surface covered with sparse grass. The 3rd

(a) Original Data (b) GRX (c) RXD-UTD

(d)LRX-7-15 (e) LRX-9-23 (f) SSRX-11-21

(h) KRX-7-9

(2) DWRX-7-21  (h) DWRX-7-15

Fig. 3. Detection results for the second synthetic data for
varying window sizes. LRX-7-15 means that a 7x7 inner win-
dow and a 15x15 outer window was used for local RX.

band image (898.48 em ') and its ground truth are shown in
Fig.4(a) and (b), respectively.
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Fig. 4. LWIR data with four targets. (a) A snaphot of the 3rd
spectral band (898.48 cm~!) image. (b) The ground truth.

In the scene, the wooden crate (T1) is too large to be an
anomaly. Therefore, for the LRX, DWRX and SSRX de-
tectors, the size of inner and outer windows was selected as
the size of plastic jerrycan (25x31 pixels) that is the second
largest target in the scene. The size of inner and outer win-
dow was set to 25x31 and 49x61 pixel areas, respectively.
Fig.5 shows the detection results of the compared anomaly
detectors on the LWIR data, without thresholding. LRX and
DWRX detected the targets (T2-T4) with a few false alarms,



while the GRX generated much more false alarms. The RXD-
UTD suppressed the background. The SSRX detected all tar-
gets including T1 with many false alarms. The performance
of detectors was compared using the receiver operating char-
acteristic (ROC) in Fig.6. Note that the DWRX is an out-
standing detector among five of them, similarly. KRX was
not used here as it takes about 2 seconds to compute and in-
vert the Gram matrix for every text pixel in the image for
windows of this size.

(a) GRX (b) RXD-UTD (c)LRX

(d)DWRX

(e)SSRX

Fig. 5. Detection results for LWIR data.

AD On Synt. Data (in sec.)  On Real Data (in sec.)
GRX 0.057361 0.443171
RXD-UTD 0.057646 0.480788
LRX 1.215343 303.109355
DWRX 3.963727 475.239997
SSRX 1.182056 256.108270
KRX 21.555117 —

Table 1. The elapse time of detectors on both synthetic and
real data for a fixed window size. Anomaly detectors were
run on a PC with Windows 8.1 core i7 2.4GHZ-16GB RAM.

4. CONCLUSIONS

We compared the performance of six RX-based anomaly de-
tectors comprehensively and pointed out the issues in parame-
ter selection. When we consider that it is not time-consuming
and generates less false alarms, DWRX is an outstanding
anomaly detector among six variations of the RX.

When the inner window size was small or equal to the
target, DWRX detected only center of anomaly regions as in
Fig.2. When window sizes were increased as in Fig.3; it found
the whole target. This is also a pretty interesting result since
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Fig. 6. ROC curves of the anomaly detectors on LWIR data.

in some applications, we are really interested in the center of
the target and not the whole target itself.
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