
Automatic Detection of Renal Rejection after Kidney
Transplantation

Seniha E. Yuksel1, Ayman El-Baz1, Aly A. Farag1

Mohamed E. Abo El-Ghar2, Tarek A. Eldiasty2, Mohamed A. Ghoneim2
1Computer Vision and Image Processing Lab, University of Louisville, Louisville, KY 40292, USA.

{ esen, elbaz, farag}cvip.louisville.edu, www.cvip.uofl.edu
2Mansoura University, Urology and Nephrology Center, Mansoura, Egypt

Abstract

Acute rejection is the most important reason of graft failure after kidney transplantation, and early detection is crucial to
survive the kidney function. Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) is an imaging modality
where a contrast agent (such as Gd-DTPA) is introduced into the kidney and rapid and repeated images are taken, which allows
both the anatomic and functional information of the kidney to be monitored. Using these images, this paper introduces an
accurate method for the segmentation of the kidney from the surrounding structures by introducing a shape model of the kidney
into the external energy component of the deformable models. Secondly, registration algorithms are employed to account for
the motion of the kidney due to patient breathing and finally, the perfusion curves obtained from the cortex that show the
transportation of the contrast agent into the tissue are given for future classification of normal and acute rejection transplants.
Applications of the proposed algorithms yields promising results.
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1. INTRODUCTION

Kidney is the most important organ for urine formation, and during urine formation, it handles several functions
such as regulation of the pH, elimination of the metabolic wastes (urea, uric acid, creatinine, ammonia), conser-
vation of important products such as amino acids and secretion of renin enzyme - a major enzyme related to the
chemical reactions that control blood pressure [1].

The condition of 15% or less kidney function is called chronic kidney failure or end-stage renal disease (ESRD).
At the end-stage renal disease, both kidneys are almost stopped, so the body fills up with extra fluid and wastes
that would normally be filtered out. For the patients at this stage, renal transplantation has become a well-accepted
treatment method, and in the United States, approximately 12000 renal transplants are performed annually [2].
However, acute rejection - the immunological response of the human immune system to the foreign kidney - is the
most important cause of graft failure after renal transplantation [3], and the differential diagnosis of acute transplant
dysfunction remains a difficult clinical problem.



Currently, the diagnosis of rejection is done via biopsy, but biopsy has the downside effect of subjecting patients
to risks like bleeding and infections. Moreover, the relatively small needle biopsies may lead to over or underes-
timation of the extent of inflammation in the entire graft [4]. Therefore, a noninvasive and repeatable technique
is not only helpful but also needed in diagnosis of acute renal rejection. Previous studies have shown that as the
rejection develops, transplanted kidneys show a noticeable increase in size and develop abnormal flow patterns
that are not uniformly distributed throughout the whole kidney [5]. Quantification of these changes can be used to
detect rejections via image analysis, thus replacing risky biopsy procedures.

For this purpose, detection of acute renal rejection after kidney transplantations has become an ongoing collab-
oration between the University of Mansoura and the CVIP Lab at the University of Louisville. In this collaborative
research, 50 kidney transplant recipients, 19 women and 31 men (mean age 39 years; range 16-55ys) are being
evaluated using Ultrasound and Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) as well
as the other routine tests. After transplantation, the abdomen is imaged daily using Color and Power Doppler Ul-
trasonography, and two weeks after the transplantation, DCE-MRI is performed just before biopsy to be able to
measure the glomerular filtration rate (GFR) of each kidney separately. This paper mainly focuses on the DCE-MRI
findings of this collaboration.

2. PREVIOUS STUDIES

Making use of the very high blood flow property of the kidney, Scintigraphy (Nuclear Imaging), DCE-MRI,
Color and Power Doppler Ultrasonography modalities have been applied for renal imaging. Scintigraphy, the tradi-
tional method in renal imaging, does not give anatomical information of the kidney, i.e, the medulla and the cortex
structures of the kidney cannot be separated. Ultrasonography is limited with the operators’ skills, gives poor res-
olution for the small structures, it cannot accurately assess obese people and the examination of some structures
can be hindered by the bowel gas, but has the advantage of being portable, and gives accurate measurements of
size, volume and blood flow velocities [1]. On the other hand, DCE-MRI is a powerful imaging technique since
it provides both functional and anatomical information, and the FDA approved contrast agent Gd-DTPA is freely
filtered and not reabsorbed or secreted by the kidney [6].

However, even with an imaging technique like DCE-MRI, there are several problems. In DCE-MRI, the abdomen
is scanned repeatedly and rapidly after the injection of the contrast agent; therefore, (i) the spatial resolution of the
dynamic MR images is low, (ii) the images suffer from the motion induced by the breathing patient which ne-
cessitates advanced registration techniques, (iii) the intensity of the kidney changes non-uniformly as the contrast
agent perfuse into the cortex which complicates the segmentation procedures. To the best of our knowledge, there
has been limited work on the dynamic MRI to overcome the problems of registration and segmentation. For the
registration problem, Giele et al. [7] introduced a phase difference movement detection method to correct kidney
displacements, Yim et al. [8] introduced a semi-automatic contour registration method and Gerig et al. [9] pro-
posed an image processing system using model-based segmentation. These three studies require building a mask
manually by drawing the kidney contours on a 2D dMRI image, followed by the registration of the time frames
to this mask. The multi-step registration approach introduced by Sun et al. [10] used local gradient and region
information, which also required the user to crop a rectangular region of interest containing the kidney. In another
approach presented by Sun et al. [11], subpixel registration is considered where the problem is handled by en-
ergy minimization methods. In this energy minimization method, a subpixel motion model is used with temporal
smoothness constraints.

For the segmentation problem, Yang et al. [4] divided the kidney into three regions of interest from the cortex and
the outer medulla as2× 2 pixels manually and proposed a signal intensity analysis approach using autoregressive
modelling. Sun et al. [12] suggested a level set and region growing based energy minimization approach to segment
the cortex, medulla and pelvis structures.

At the final step of almost all the previous studies, either by manual pixel selection or by automatic segmentation,
a particular location is selected from the cortex or the medulla, and the change of its gray level is tracked in time,
resulting in a perfusion curve which will be explained in more details in sec. 3.3. This perfusion curve is the key
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indicator of whether the kidney is performing its function or not as it shows the uptake and excretion of the contrast
agent. However, as stated before, tracing the gray level changes at particular locations in the kidney is not a simple
task due to the kidney motion and the low contrast of the typical dMRI sequences; thus, accurate segmentation and
registration algorithms are required.

3. METHODS

In this paper we introduced a novel and automated technique (i) to segment the kidney and (ii) to correct for the
motion artifacts caused by breathing and patient motion using Dynamic Contrast-Enhanced Magnetic Resonance
Imaging. Our image analysis consists of three major steps, details of which will be given in the following sections:
• Segmentation of the kidney from dMRI scans using active contours. The external energy function of active
contours has been modified to handle both shape models and gray level distributions.
• Motion compensation using an enhanced mutual information registration algorithm, and
• Evaluation of the kidney functionality via the perfusion curves.

3.1. Step I. Segmentation

Accurate segmentation of the kidney from dMRI is a challenge since the gray level distribution of the kidney and
surrounding organs is not highly distinguishable, thus we employ statistical deformable models in the segmentation
process. Our deformable model takes into account not only the gray level distribution but also a shape model of the
kidney that depends on a sign distance map.

In conventional deformable models, surfaces move in the direction that minimizes an energy function that is
composed of internal and external energy components as explained in [13]. This energy component is given as

E = Eint + Eext =
∫

τ∈T

(
ξint

(
φ(τ)

)
+ ξext

(
φ(τ)

))
dτ (1)

whereξint

(
φ(τ)

)
andξext

(
φ(τ)

)
denote the internal and external forces, respectively. Here the internal energy is

ξint

(
φ(τ)

)
= α|φ′(τ)|2 + β|φ′′(τ)|2 (2)

where weightsα andβ control the curve’s tension and rigidity, respectively, andφ′(τ) andφ′′(τ) are the first
and second derivatives of the deformable surfaceφ(τ) with respect to the index of a contour pointτ (see [13] for
details). In this energy formulation, we have modified the external energy component, and we have formulated an
energy function using the density estimations of two distributions: the sign distance map from shape models and
the gray level distribution.

3.1.1. Empirical Estimation of the Gray Level Density:
For the estimation of the gray level density of the images, we assume that the empirical density comes from two

classes: the kidney and the other tissues. The density of these two classes is estimated using our novel modified
EM algorithm [14], and Levy distance is calculated between the estimated density and the empirical density as a
measure of convergence to the correct density.

3.1.2. Empirical Estimation of the Sign Distance Map Density:
In order to obtain a shape model that describes the kidney, we used the dMRI data sets from the patients enrolled

in this study. Our algorithm for extracting the 3D shape model of the kidney is as follows:
(i) Align the collected data sets together using 3D rigid registration.
(ii) Manually segment the kidney from the dMRI.

(iii) Calculate the 3D edgeV that describes the boundary of the kidney for each time sequence of dMRI.
(iv) Calculate the average 3D surface shapeVm of the kidney, for N number of dMRI sequences by

Vm = 1
N

∑N
i=1 V i
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(v) Given a shape surface, define a function that describes the distribution of sign distance map inside and outside
the shape as follows:

S(i, j) =





0 (i, j) ∈ V

d((i, j), V ) (i, j) ∈ RV

−d((i, j), V ) Otherwise

(3)

whereRv is the region which lies inside the shape andd((i, j), V )is the minimum Euclidean distance be-
tween the image location(i, j) and the curveV .

(vi) Estimate the density of this average shape of the kidney using our modified EM approach [14]

3.1.3. External Energy Component for Deformable Models:
The last step in the sign distance map density estimation gives the gives theps(S|k) component of our external

force, whereas the density estimation of the gray level gives thep(q|k) component, wherek = 1, 2 is the class
label. Combining these two components, the deformable model is completely specified as:

ξext

(
φ(τ)

)
=




−p(q|k)ps(S|k)p(k) if k = k∗

p(q|k)ps(S|k)p(k) if k 6= k∗

So the curve (snake)φ(τ) as described in [13] moves through the spatial image domain to minimize the total
energy and finds the image contours accurately. The segmentation results using this approach is given in the figure
below.

Fig. 1. Segmentation Results

3.2. Step II. Mutual Information Registration

In DCE-MRI sequences, the registration problem arises because of the patient & breathing movements and
the continuously but non-uniformly changing gray level values throughout the kidney. To overcome this prob-
lem, Mutual Information (MI) is a natural choice as it can align images from different modalities accurately and
robustly [15]. Our registration approach is based on a modified version of the rigid registration using MI where
we incorporate our segmentation results into the registration function as we explained in [16]. In this registration
scheme, the binary segmentation results are used as label information, then the mutual information is calculated
between two pixels only if their label information is equal as described in [16]. The registration results have been
tested visually using checkerboard methods as given in Figure 3, and the smooth continuity on the boundaries has
proven the accuracy of our approach. Using registration, we align all the dMRI sequences of a patient with the first
sequence of images of the same patient, which enables us to track a given pixel’s temporal change of gray level.
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Fig. 2. Registration Results

3.3. Step III. Evaluation of the Kidney Function by DCE-MRI

The perfusion curve is a plot of the temporal gray level variation within the cortex of the kidney in the dMRI
sequences. From the segmented and registered kidneys, we are selecting a window from the cortex manually and
plotting the gray level at these points in the cortex as a function of the scanning sequence. As shown in Figure 4,
in the perfusion curves, the intensity is low at the beginning, and as the bolus is washed out, the signal intensity
starts to increase back to its original values. This property of the temporal signals is very important to detect the
acute rejection. As it can be seen from the perfusion curves, the rejected kidney shows a delayed perfusion pattern
compared with the accepted kidney because of the graft enlargement, and the intensity cannot reach the same level
of the accepted kidney indicating that the bolus is not washed out totally.
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Fig. 3. Perfusion curve of a patient with biopsy proven acute rejection compared to an accepted kidney

4. RESULTS

In this study, gradient echo T1 imaging is employed by a Signa Horizon GE 1.5T scanner and the contrast agent
Gadolinium DTPA is introduced via a wide bore veno-catheter placed at antecubital vein at a rate of 3-4 ml/sec
with a dose of 0.2 ml/kg.BW. Images are taken at 5mm thickness with no interslice gap, repetition time (TR) 34
msec, field of view (FOV) 42x42 cm and the matrix is 256x160.

For each patient, 12 temporal sequences of coronal scans are taken, each sequence consisting of 6 images. The
first image is taken at pre contrast, second image is at 0 second of injection and then the imaging is repeated every
30 sec for 10 times with the last image acquired 15 minutes after the start of injection.

In this paper, we introduced a new approach for the segmentation and registration of the kidney. The segmen-
tation step used a model shape for the kidneys, and the density estimation of the sign distance map of this model
shape as well as an estimate of the gray level distribution of the kidney is used to segment the kidney from the sur-
rounding structures. The accuracy of our density estimation approach is calculated to be 0.008 using Levy distance
method. Once the kidney is segmented in all the images, all sequences of a patient is registered onto the first time
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sequence using rigid registration by the application of mutual information and global optimization algorithms. At
the last step, a perfusion curve is plotted by tracing the points from the cortex of the kidney. The corresponding
points in each sequence were obtained by maximizing the normalized cross correlation, which further reduced the
effects of motion artifacts.

5. CONCLUSIONS

Kidney transplantation is a widely used method for the end-stage renal diseases, however, acute rejection still
remains a problem and the early detection of the rejection using non-invasive techniques is a valuable approach.
This paper introduced new methods in segmentation and registration for the detection of kidney rejection by means
of Contrast Enhanced Dynamic Magnetic Resonance Imaging. Our proposed algorithm has been tested on several
patients and it showed promising results compared to the manual segmentation of expert physicians.

However, because of the non-uniform behavior of the kidney in the contrast agent uptake, plots of the perfusion
curves depend highly on the manual window selection and therefore discriminating the accepted and rejected
kidneys has been left as an open question. Although the perfusion curves of accepted and rejected kidneys of two
patients in Figure 3 are easily distinguishable, we haven’t been able to come to a general solution in detecting acute
rejection especially considering the fact that there are other diseases such as acute tubular necrosis or polyoma
virus infection which look rejection. Therefore, our future work will include the evaluations of more patients to
obtain a general pattern for the acute rejection via feature extraction from the signal curves and the training of
Bayesian classifiers to automatically detect the successfully transplanted and rejected kidneys.
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