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Abstract by attracting the level set function to the likely shapes from a
training set specified by principal component analysis (PCA).
A novel and robust 3-D segmentation approach is proposedRecently, the approach c8][was extended in11, [12] and
using level sets based on shape constraints. The approach dd-3]. In [11], shapes are represented with a linear combina-
pends on both the gray level and shape information. A partial tion of 2D distance maps where the weight estimates maxi-
differential equation (PDE) is developed to control the evolu- mize the distance between the mean gray values inside and
tion of the level sets. The PDE does not include weighting co-outside the shape. IiilP], the idea is to use a determinis-
efficients to be tuned, overcoming the disadvantages of othetic model to represent the desired shape as a linear combina-
PDE approaches. The shape information is gathered from ation of the weighted signed 2D distance maps, the weights be-
set of the signed distance maps representing the training datang estimated by minimizing a mutual information based cost
as a histogram of the occurrences of the points inside and outfunction. However, as noted ifli], the space of distance
side the object. We use a novel statistical approach to get amaps is not closed with respect to linear operations, so that
probability density function (pdf) for the signed distance map the distance map for zero level shape of a linear combination
of the points inside and outside and also the distribution of of the maps does not necessarily coincide with the latter com-
gray level inside and outside the object. The proposed sta-bination. As a result, the model may produce an unpredictable
tistical approach is based on modelling the empirical density shape.
function (normalized histogram of occurrence) for either the  The training shapes are represented with the like linear
gray level distribution or signed distance map with a linear combination of the training signed 2D distance maps also
combination of Gaussians (LCG) with positive and negative in the papers of a second research gral@).[ Here, all the
components. We modify an Expectation-Maximization (EM)shapes are described with a multidimensional Gaussian prob-
algorithm to deal with the LCGs and also propose a novel ability model of the weights in the linear combination. But
EM-based sequential technigue to get a close initial LCG ap-apart from a probabilistic description, the model has similar
proximation for the modified EM algorithm to start with. The inconsistencies.
pdf’s of the signed distance and intensity gray level are em- In [14], registration is combined with the segmentation
bedded in the speed function of the level set specifying theprocess in an energy minimization problem. The evolving
direction of evolution. Experimental results show how the ap- curve/surface is embedded in a higher dimensional level set
proach is accurate in segmenting different types of 2-D andfunction and registered iteratively with a shape model. In
3-D data sets including medical images. [15], a 3D shape-segmentation approach is proposed where
a shape model is built from a set of training shapes using dis-
tance functions. A level set function evolves minimizing the
1. Introduction shape alignment energy and the intensity gray level.
In this paper, a novel and robust segmentation approach
Surgical planning, navigation, medical visualization and is proposed based on the level set technique with shape con-
diagnostics all benefit from image segmentation; and levelstraints. The segmentation approach depends on both gray
sets segmentation has retained its attention (5223, 4,5,16, level intensity and shape information; whereas the shape in-
7]) due to their topological flexibility and independence of the formation is gathered from a set of training shapes. A signed
parameterizations of the evolving contour. However, segmen-distance function is assigned to each shape and the signed
tation process is still a challenge because of the image noiselistance values are collected in the form of a histogram rep-
and inhomogeneities; therefore segmentation algorithms camesenting the occurrences of each value. Probability density
not depend only on image information but also have to ex-functions of the object and background are formed based on
ploit the prior knowledge of shapes and other properties ofthe signed distance value in addition to the gray level intensity.

the structures to be segmented. These functions are estimated using our new approach known
The incorporation of shapes and deformable models be-as the modified expectation maximization (EM) which esti-
came popular with Leventoet al]8, 9] and Sheret al. [10] mates the density function by a linear combination of Gaus-



sians (LCG) with positive and negative components. The eswhere F(z,y,z) is a velocity function andV =
timated pdf’s are used in a variational approach making the[-2-, 2-, 217, The functioné(z, v, z,t) deforms iteratively

. dx’ dy’ Oz
segmentation accurate and fast. according toF'(z, y, z), and the position of the 2D/3D front is
given at each iteration by solving the equatipfx, y, z, t) =
2. Shape Modelling by Level Sets 0. Practically, instead of EB, the valuep(z,y, z, ¢,,+1) at

o ) ) _stepn + 1 is computed fromp(z, y, z, ¢,) at stepn by the
Shape representation is the main task in shape analysisg|ation:

The selection of such representation is very important in sev-

eral computer vision and medical applications such as regis-

tration and segmentation. There are several ways described ing(x, y, z, th+1) = ¢(2, Y, 2,tn) — At - FIV@(x,y, 2, tp)].
[8,/16,/17]. Although some of these ways are powerful enough (4)

to capture local deformations, they require a large number ofThe design of the velocity functioR (x, y, z) plays the major
parameters to deal with important shape deformations. So amole in the evolutionary process. Among several formulations
emerging way to represent shapes is derived using level setproposed in21, 22, we have chosen the following formula-
[18]. This representation is invariant to translation and rota- tion:

tion. Given a curve/surfac¥ that represents boundaries of a F(z,y,z) =v —ek(z,y, 2), (5)

certain shape, we can define the following level set function: \, nare,, — 1 or —1 for the contracting or expanding front re-

spectively,e is a smoothing coefficient which is always small
with respect tol, andk(z,y, z) is the local curvature of the
front. The latter parameter acts as a regularization term.

O’ (I7 Y, Z) S V
¢(@,y,2) = ¢ d(z,9,2),V)  (2,9,2) € Ry (1)
—d((z,y,2),V) Otherwise

d((x,y,2),V) is the minimum Euclidean distance between

/ , In this paper we introduce a new algorithm called a mod-
the image locatiofiz, y, z) and the curve/surface.

: _ ified Expectation-Maximization algorithm that approximates
Such representation can account for local deformations,, empirical probability density function of scalar data with
that are not visible for iso-contours that are far away from , |inear combination of Gaussians (LCG) with positive and
the original shape, and for geometrical features of the Shap%egative components. Due to both positive and negative com-
that can .also be derivegl naturally from this representation. onents, the LCG approximates inter-class transitions more
By this representation, we can construct a database Ogccurately than a conventional mixture of only positive Gaus-
curves/surfaces and signed distance functions that represert s

variations for a certain shape. So, given a set of aligned  1his approach is suitable for estimating the marginal den-
curves/surfaces, ..., Vi, level setspy, ..., o are calculated gty for either the gray level distributiop, (¢) or signed dis-

as training data. From this information, we can extract a h's'tanceSp (d) in each region in the given image. In the fol-
togram of the occurrences of signed distance values whichgying section we will describe this model for estimating the
characterizes the shape and its local variations. Also, a Meafarginal density for the gray level distributigr(¢) in each

curve/surfaceVy, is calculated as an average of the COITe- ro4ion and the similar way can be used to estimate the density
sponding points of all the training curves/surfaces. Simply, o the signed distances (d) in the given image.

we can get this curve/surface by picking each pointin the first 1, identify the model accurately, we approximate the
training curve/surface and get the nearest points in the Othanarginal gray level probability density in each region with
curves/surfaces, then calculate the average as follows: a LCG havingC,, ; positive andC,, ; negative components:

1 N
Vi (@s,95,25) = Vi(zi, yi, 2i), (2) Cpi Cni
N ; Po(al)) = wpsr(@lbpin) = Y wai10(ql0n,i0); ()
where(z;, y;, z;) are the corresponding points. r=1 =1
such thatffooo pg(qli)dg = 1. Here,q is the gray level, and
3. Curve/Surface Evolution and Level Sets ©(q|0) is a Gaussian density having a shorthand notatien

ithin the level ; i . h i (u, o) for its mean,u, and varianceg?. In contrast to more
W't/ |nft e level set forma |sfm 18, 20{)’ (tjde devo V'}:‘g conventional normal mixture models, the components are now
curve/surface Is a propagating front embedded as the zerq i, hositive and negative and have only one obvious restric-

level of a scalar functiog(x, y, z,t). The continuous change . . . . =Gy Ch,i
R o . tion in line with Eq. 6): >, 2y wpir — > 1 Wiy = L.
of ¢(af’yjz’t) can be described by the partial differential o weights are not the prior probabilities, and the LCG of
equation: ~ . : ;
Eq. (6) is considered as a functional form of the approxima-
9o(z,y, 2,1) tion of a probability density depending on parameierso)
# + F(z,y,2)|Vo(x,y,2,t)| =0, (3)  of each component.



The mixture of K LCGs, p(q) = Zfil w;p(q|i), has the  can be found using the iterative block relaxation process ex-

same form but a larger number of components, &€§.,= tending conventional EM schemes.
S, Gy andCy = 55, Gy if all the valuesd, ;. and Let pg";]v @(q) = 2% wlo(glolmh
0n,:,1 differ for the individual models: Zz lwnl w(q‘e ) be the LCG at step, or iteratiom.

Relative Contr|but|ons of each data ite;m = 0,...,Q
into each positive and negative Gaussian at the stegre

b Ch
(q) = Z Wy rp(ql0p.0) — Z ware(qlon))  (7) specified by the following respective conditional weights

wl™p(qlolm) wl™ (g0l
o (rlq) = “pE ey (1)) = e f e

To identify this model in the unsupervised mode, the mixed Pg wel@ Pyw.o(9) (11)
empirical distribution of gray levels over the image has to be i ol (rlq) — Z 7T[m](”q) =1, ¢=0,...,Q
first represented by a joint LCG of E@)(and then partitioned = " ' T

into individual _LCG-modeIs for each c_Igs& L. ’K'. Using these weights, the log-likelihood of EA.Jf can be
Under the fixed number of the positive and negative com- ; . . )
rewritten in the equivalent form:
ponentsC, the model parameters = {w.;c = 1,...,C}

and® = {0, : ¢ = 1,...,C} maximizing the image likeli- il @lm] O [m] [m]

hood can be found using an EM algorithm introduced in Sec- (W™, @) = Zof(Q)[Zl T (rlq)10g py.w e ()]

tion'4.1. It modifies the conventional EM-scheme to take ac- qé ;

count of the components with alternating signs. _ 2 7rn lla) log pl™ 12
The modified EM algorithm is sensitive to both its initial Z_: J@l ( 9108 P, 9( 112)

state specified by the numbers of positive and negative Gaus- ] . .

sians, and the initial parameters (mean and variance) of eacWhere logp ., (q) in the first and the second brack-

component. To find a close initial LCG-approximation of the ets should be replaced with the equal ternisgwy r Im] |

empirical distribution, we develop in Sectidi? a sequential log w(q‘g m] 0y - logﬂ'[m (r|q) andlog w[m] +log v(ql6 m])

initializing EM-based algorithm. [m]
logm " (l|q), respectively.

4.1. Modified EM Algorithm for LCGs The block relaxation converging to a local maximum of the

likelihood function in Eq.|L2) repeats iteratively the follow-
Let f(¢q),q € Q be an empirical relative frequency distri- ing two steps:

bution representing an unknown probability density function i 1] @lmii]
¥(q) such thatffooow(q)dq = ZqQZO f(q) = 1. We assume 1. E-step[m + _1}: to find the parameters , 0 "
thatf(q) is approximated by an LC®,..,.e with C,, positive by ‘maximizing L(w,®) under the fixed conditional
andC,, negative components(q|6): weights of Eq./11) for the stepn, and

2. M-step [m + 1]: to find these latter weights by max-

P Cn . P .
imizing L(w, ®) under the fixed parametesg!™+1,
Pywo(@) = 3wy (alfpr) = warplalbnr) @) g 1 ©) P
r=1 =1

until the changes of the log-likelihood and all the model pa-

In line with Eqg. B), the positive weightsv are restricted as rameters become small.

follows: c, c. The E-step performs the conditional Lagrange maximiza-
_ _ 9 tion of the log-likelihood of Eq.12) under the restriction of
pr,r an,l =1 ( ) . . . . .
Eq. (9) to obtain the following estimates of the weights:
We also assume here that the numb@,rsanc'jq} o.f thg com- wL’T” - Z f(q)ﬂl[?m]( n";+1 Z Flo)m™(1)q)
ponents of each type are known after the initialization in Sec- €Q €Q

tionl4.2 and do not change during the EM process. The ini- . .
tialization provides also the starting parameter vaiu&and ~ 1hen the parameters of each Gaussian are obtained by the
el unconditional maximization just as in the conventional EM

The probability densities form a proper subset of the setScheme (below¢” stands for " or “n”, respectively):

of the LCGs due to the additional restrictipg, o(¢) > 0, [m+1] 1 Z g ) ( 19)
which holds automatically only for probability mixtures with ~ #©" = Wi ¢ ra
no negative components. [m+1]\2 1 [m+1] [m]
The LCG that provides a local maximum of the log- (oer")? = wlm ] q&( ~ Hei ) Flg)me(rla)
likelihood of the empirical data:

The M-step performs the conditional Lagrange maximiza-
Z F(q)1og pgew.0(q) (10) tion of the log-likelihood of Eq./12) under the@ + 1 re-
1€Q strictions of Eq./L1), and determines the conditional weights



[m+1]

T (r|q) andrm (Ilg) of Eq. LD forallr = 1,...,Cp; 6. Scale down the subordinate modg}$q) andp,,(q) (i.e.
l=1,...,Chandg = 0,...,Q. The modified EM-algorithm scale down the weights of their components) and add
is valid until these weights are strictly positive, and the initial the scaled model,(¢) to and subtract the scaled model
LCG-approximation should comply to this limitation. The pr(q) from the dominant modeb,(g) in order to form

iterations have to be terminated when the log-likelihood of the desired model, (¢) of the sizeC' =2+ C,, + C,.

Eq. (12) begins to decrease. Since the EM algorithm converges to a local maximum of

) o the likelihood function, it may be repeated several times with
4.2. Sequential EM-Based Initialization different initial parameter values for choosing the model giv-

We assume that the number of dominant modes is equaln9 the Pest approximation. In principle, this process can be
to the given number of classes. To simplify the notation, let "éPeated iteratively in order to approximate more and more
the empirical distribution have only two separate dominant cl0Sely the residual absolute deviations betwgén) and
modes representing the object and the background, resped(?)- But because each Gaussian in the latter model impacts
tively. The algorithm we present below is easily extended &/l the values(g), the iterations should be terminated when
to the general case ok > 2 dominant modes. We as- € @pproximation quality begins to decrease.
sume that each dominant mode is roughly approximated with _1he final mixed LCG-modeb, (q) has to be splitintas
a single Gaussian and the deviations of the empirical density-CG-Submodels, one per class, by associating each subordi-
from the two-component dominant Gaussian mixture are de-nate cor_npo_nentwnh a partlcula_r domlhgnt t_erm in such away
scribed by other components of the LCG in Eg). (There- as to minimize the expected misclassification rate. To illus-

fore the model has the two dominant positive weights, say trate the association principle, let us consider the bi-modal
w, 1 andw, 5 such thatw, ; + w,, = 1, and a numb’er "case with the two dominant Gaussians having the mean val-
b p, b, b, - ’

of “subordinate” weights of smaller absolute values such thatUeSt1 @ndpuz; 0 < uy < pz < Q. Let all the subordinate
Ch Ch - components be ordered by their mean values, too. Then let

Dor2y W = Dy W = 0. those with the mean values smaller thanand greater than

o relate to the first and second class, respectively. The com-
ponents having the mean values in the rahge ;] are as-
sociated with the classes by simple thresholding such that the
means below the threshold, belong to the components as-
sociated with the first class. The desired threshold minimizes
the classification errar(t):

The following sequential algorithm allows for estimating
both the weights and parameters of the individual Gaussian
in the latter LCG model, including the number of the non-
dominant components.

1. Approximate a given empirical distributiof(q), of gray
levels in the given image, with a dominant mixtuegq),

of two Gaussians using the conventional EM-algorithm. + .
2. Find the deviation& = [A(q) = f(q)—p2(q) : ¢ € Q] o) = / Polal2)dq + /pg(q|1)dq' (14)
betweenf(¢) andpy(¢) and split them into the positive —o0 t

and negative parts such thity) = d,(g) — ou(9): 5. Evolutionary Curve/Surface Model

The term(v = + 1) in Eq.(55) specifies the direction of
A, = [§,(q) =max{i(q),0}:q€ Q} 13 the front propagation. Several approaches were developed to
A [0n(q) = max{—4d(q),0} : ¢ € Q} (13) make all fronts either contracting or expanding (see, &8]) [
in order to evolve in both directions and avoid overlaps be-
tween the regions.The problem can be reformulated as classi-

n

3. Compute the scaling factor for the deviationsule =

oo _ o fication of each point at the evolving front. If the point belongs
J=oe Op(0)da = [~ On(a)dg. to the associated class (object), the front expands otherwise it
4. If the factor s is less than a given accuracy threshold, cOntracts.
terminate and return the modej(q) = p2(q). 5.1. PDE System

5. Otherwise consider the scaled-up absolute deviations The classification decision is based on Bayesian deci-
—L-A,and—_-A, as two new “empirical densities” sion [24] at voxel (z,y, z) at the front. The tern(v) for
and iteratively the conventional EM-algorithm to find each point is replaced by the functiotiz, y, z) so the ve-
sizesC, and C,, of the Gaussian mixturegy,(¢) and locity function is defined as:
pn(q), respectively, approximating the scaled-up devia- _
tior(ws). The size of each mixture corresponds to the mini- Fla,y,2) =viwy,z) = e kz,y,2). (15)
mum of the integral absolute error between the scaled-upvhere
absolute deviatiomA, (or A,) and its modep, (q) (or =1 if pg(q|l) * ps(d]1) > pg(g|2) * ps(d|2)
pn(q)). The number of the components is increasing se-'/(x’ y,2) = { 1 otherwise
guentially by unit step while the error is decreasing. (16)
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If the voxel (z,y, z) belongs to the object, the front will from our database. Figufb) shows one of the starfish im- 004
expand, otherwise it will contract. Now, we put the E&)(  ages that we need to segment. Figi(® shows the result of o05
in the general form using the derivative of the Heaviside stepthe registering the image shown in (a) to image in (b) using o6
function @(.))([25]) as follows : the algorithm proposed in2f]. 282

T, Y, 2,t 509

% (E'k(wayaz)ilj(zayaz)) 510

X 6a(m,y,z) ((é(x,y,z))’V(é(x,y,z)’ (17) zi;

The functiond,, (.) selects the narrow band points around the 513

front and the parameter controls the width of the narrow 514

band. 515

€Y (b) (©) 516

5.2. Registration Step Figure 1.(:_;1) One_ of the aligne(_j starfish images from thg datqbase, 517
(b) Non-aligned image of starfish, (c) Results of the registration of

To make the proposed approach of shape-based segmentga) and (b) o18
tion invariant for the scaling, rotation, and translation of the 519
object, the first step of the proposed approach is to align the 520
image with any image from our aligned database. The defor- ozt
mations that we use are defined using the Free Form Defor- , = e — 222
mations (FFD) as explained in2€]. The essence of FFD is 00 6 o msoe oo
to deform an object by manipulating a regular control lattice ) A 24
overlaid on its volumetric embedding space. One of the main __| 925
advantages of the FFD technique is that it imposes implicit | 026
smoothness constraints during deformation, since it guaran- 027
tees continuity at control points and continuity elsewhere. , g o28
Therefore there is no need to introduce computationally ex- TR Twe o m gy oo e a0 929
pensive regularization components on the deformed shapes. (a) (b) gfi
5.3. Algorithm I . it 32

: \ 0.025| 533
1. Estimate the pdf’s of the object and background for the 00 534
intensity gray level and shape signed distance values us- N Y 535
ing the modified EM. 028 4 e 536
2. Register the image with any one of the aligned images ol——wr—r— ) R RERVAAA. T o3
from the database. o etcomponents ‘ 038
(c) (d) 539
3. Initialize the level set function. 540
Figure 2.(a) Empirical density (¢) approximated with the two dom- 541
4. Mark the points of the narrow band. inant Gaussian components- (q) for the image shown in Fid/(b), 542
) ) ) (b) Deviation and absolute deviation betwegy) andpy.2(q), (C) 543
5. For each point calculate the signed distance vafi@$  Estimating the number of subordinate mixture, (d) Estimated density
the minimum Euclidean distance frovii,. for the absolute deviation Zj‘;
6. 1f ps(d|1) * py(q|1) > ps(d[2) * py(q]2), then the front Figure2 illustrates the sequential EM-based initialization,  °*°
expands at this point, otherwise it contracts. (a) the empirical density of starfish image shown in Eigp) S
7. Go to step 4. This process is repeated until the change ir"d the initial mixture of two Gaussians approximating the gjg
the level set function is not significant. dominant modes, (b) the deviation between the empirical den-
sity f(¢q) and the mixture of the two dominant components ~ “°°
6. Experimental Results pg2(q), (d) the estimated density of the scaled deviation us- ~°*
ing the six Gaussian components which give the minimum °°?

We illustrate the performance of the proposed techniqueserror between the estimated density for the deviation and the °°°
by applying it on different 2-D and 3-D data sets. The first ex- empirical deviation as shown in Fi@(c). o4
ample which we show is the segmentation of starfish. The Figure3 presents the final LCG-model and its 8 compo-  °°°
segmentation separates starfish from the surrounding backaents obtained by the modified algorithm as well as the suc- 956
ground so that each image has only two dominant objectscessive changes of the log-likelihood. The first 10 iterations 057
(K = 2): the darker background and the brighter starfish. of the refining EM-algorithm increase the log-likelihood of 222

Figure/l(a) demonstrates one of the aligned starfish imagesEq. (12) from —4 to —2.9; then the modified EM algorithm



CVPR
#193

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
5901
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

CVPR
#193
CVPR 2006 Submission #193. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

o 616
003 g: 617
0025 H 618
0.0 Eia‘z 619
5 620
e 621
e m e S @ o (© o
(@) (b) Flgun_a 5.(@) The_ |n|t|aI|zat|o_n of the level sets function t_o segment 6o

00 the aligned starfish shown in Fidi(c), (b) The segmentation of the
’ aligned image, (c) The final segmentation of starfish after multiply- 625
I /\ ing the aligned starfish image by the inverse of the transformation ©26
oo function (which we used in the rigid registration) with error 0.4% 627
oo with the ground truth. 628
A 629
\/\/ 630
oo T we performed finite element analysis on the motion of the real 531
© ! « ) brain ventricles. 632
For finite element analysis of the ventricle shape changes, 633
Figure 3.(a) Final density estimation of the bi-modal distribution, W& assume the cerebrospinal fluid (CSF) inside lateral ventri- 634
(b) The dynamic changes of the log-likelihood of the modified EM cles is isotropic and linear elastic. So, the linear elastic me- 635
algorithm, (c) All components of the final LCG, (d) The marginal chanical model is employed for finite element analysis. The 636
density estimation for each class. Young’s modulus of CSF is 1000 Pascals and the Poisson ra- 637
tio is 0.499 (R7]). For adults, the pressure of CSF under nor- 633
mal conditions can range betwe&hand180 mmH,0O. The 639
oue o median pressurél5 mmH,O of the CSF should be the one 640
ou - most people have statistically. Therefore, we apply the uni- 641
oond 00 form pressura 15 mmH,O over the surfaces of the ventricles 642
o for each subject, and perform finite element analysis to cap- 643
S B & ture the variation of the ventricles. After finite element anal- 644
(a) (b) (© ysis, the 3D structure is re-sliced and 10 states of the ventri- 645
_ _ _ _ _ _ Cles are obtained resulting 20 subjects x 10 states = 200 646
Figure 4 (a) Average signed distance of aligned star images, (b) Final 7, s¢15 for the ventricles. The four states of one subject’s 647
estimated density, (c) The marginal density estimation for each Classventricles are shown in Fi. Using the resulting 200 datasets  64s
for the ventricles, we are following our density estimation ap- 649
terminates since the log-likelihood begins to decrease. The?roach to estimate the density of the gray level distribution 650
minimum classification error of 0.00018 between the starfish@nd the signed distance map inside and outside the ventricles. 651
and the background for the final LCG-model is obtained with Ir_1 this estimation, we are considering that the brain MRl con- 652
the thresholdt = 82 in Eq. (14). In this case the LCG- SIS'FS of two classes: one class is composed of th(_e gray matter, 653
components 1-3 and 4—6 correspond to the starfish and th¥/hite matter, fat and bones; and the other class is the CSF of 654
background, respectively. the b_ram (|_n3|d_e and_out5|de the ventricles). The results o_f 655
FigureZ(a) shows the average signed distance of all alignedd€nsity estimation using the proposed approach are shown in 656
segmented starfish. We used the approach as discussed mg. 7/ and the sggmentatloq results afc dn‘fer_ent s_|gna] tora- 657
the previous sections to estimate the marginal density that detioS (SNR) (obtained by adding Gaussian noise with different 653
scribes the distribution of signed distance inside and outsidevariance) are shown in Fig. 659
the starfish object. The results of this approach are shown in 660
Fig.4(b) and (c). 661
Figurel5 shows the result of our proposed segmentation 662
approach with error of 0.4% with the ground truth. 663
In the following part, we test the proposed segmentation 664
approach on 3D data sets to show that it can work robustly 665
for 3D images as well. To get an accurate 3D shape model of 666
the lateral ventricles of the brain, the 3D images were taken (@) (b) (©) ) 667
from 20 subjects. However, 20 data sets are not enough to 668
get an accurate shape for the ventricles because the ventricldggure 6.The four states of the real ventricles at t = 0 sec, 0.7 sec, ©%°
vibrate during the MRI or CT scans. Therefore, to cover all 0-9 sec, 1.1 sec (final) from left to right and top to bottom. 670
671

the shape variations of the brain ventricles for each subject,



CVPR
#193

672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727

CVPR

#193
CVPR 2006 Submission #193. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

0.014 0.0; 728

=== Py@ — Py al2)
X — 0.014
00 (@ — pain) 729
0012 0.012 Distribution of the gray 730
0.01] 0.01] levels of the brain tissues
. : (White matter, gray matter,
0.008] 0.008] fat and bones) 731
0009 0.006 Distribution of CSF 732
0.004 0.004] inside the ventricle
(a) (b) 733

0.002] 0.002]
t=177 7 34

735
736
737
738
739
Figure 9.The four states of the phantom ventricles at t=0 sec, 0.4 740
0004 0004 sec, 0.7 sec, 1 sec (final) from left to right and top to bottom. 741
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745

Figure 7.(a) Final density estimation for the mixed frequency gray ™ 0009 746

level distribution, (b) The class model of gray level for each class, *™ 0004 747

(c) Final density estimation for the sign map inside and outside the o 0.002 748

3-D brain ventricle, (d) The final class model of signed distance map  _gr—r———r—— 0
for each class.
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751

Figure 10.(a) Final density estimation for the sign map inside and 752
' outside the 3-D ventricle phantom, (b) The final class model of /55
signed distance map for each class. 754
755
tom. The results of our modified EM algorithm are shown in 726
(a) (b) (©) (d)

Fig.[10. Figure1l shows the results of our segmentation for />’
the geometrical phantom at different signal to noise ratios and /°%

Figure 8. (a) Results of our segmentation approach at SNR = 280B, ¢ errors are calculated with respect to the ground truth from 759
error = 0.23% (b) SNR = 7.8dB.error = 0.9% (c) SNR = - the phantom 760

1.9dB, error = 4.8%. (d) Result of the segmentation errors us- 761
ing the conventional EM algorithm as a density estimator at SNR =

762
28dB,error = 18.8%. The errors are shown in red. 263
764
The hand segmentation of the radiologists may not always 765
be accurate because of hand shaking. Therefore, to get ac- 766
curate evaluation of our proposed approach, we are using a 67
ventricle phantom that resembles the geometrical structure of (@) (b) 768
the real ventricles. To use the mould ventricle phantom, itis _ . _ . 769
scanned using cone-beam CT machine so that the scans can E@ure 11.Segmentation using our approach at different SNR (a) 770
o . . - R = 28dB,error = 0.01%, (b) SNR = 7.8dB,error = 771

used for finite element simulation. Following the same proce- v _
) . . . . 0.8% () SNR = —1.9dB, error = 3.68%. 772

dure of the ventricle motion estimation as described above, we
captured all the variations of the motion of the phantom ven- s
tricles. Figured shows the four states of this ventricle phan- -~ : 774
. . . Conclusion

tom. The shape changes of the ventricles for the subject anJ 775

776
777

the ventricle phantom are recorded in short videos that willbe  We have presented a segmentation approach that depends
supplemented. on both the intensity gray level and the shape information.

For the database that was obtained from the geometricaDur modified EM is used to estimate the density distribution ’"®
phantom, the inverse mapping method was used to get thef the intensity and signed distance values. The density distri- 779
same gray level distribution as of the real ventricles; the graybutions are embedded in the PDE that controls the evolution 780

781

level distribution of which was shown in Fig(b). The final of the level set function. We consider the registration between
step of our algorithm is to estimate the pdf that describes thethe average shape (2D/3D) and the object to be segmented as’®’
signed distance map inside and outside the geometrical phara basic step in our approach. Unlike the other approaches, our 83



segmentation does not need energy minimization avoiding the[13] J. Yang and J. Duncan, “3D image segmentation of deformable
local minimum problem. Different types of images are used

and the results are promising. This technique is very suitable
to segment the anatomical structures that have noise and in

homogeneity problems.

This algorithm is very robust and accurate, it is invariant
to translation, rotation and scaling. Therefore, the presented
segmentation algorithm is not only useful for medical imag- [15]
ing society but also for the computer vision applications. Our
future work will include the segmentation of 2D and 3D color
objects.
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