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Abstract—In this paper, we (1) provide a complete frame-
work for classification using Variational Mixture of Experts
(VME); (2) derive the variational lower bound; and (3) apply
the method to landmine, or simply mine, detection and compare
the results to the Mixtures of Experts trained with Expectation
Maximization (EMME). VME has previously been used for
regression and Waterhouse explained how to apply VME to
classification (which we will call as VMEC). However, the steps
to train the model were not made clear since the equations were
applicable to vector valued parameters as opposed to matrices
for each expert. Also, a variational lower bound was not
provided. The variational lower bound provides an excellent
stopping criterion that resists over-training. We demonstrate
the efficacy of the method on real-world mine classification; in
which, training robust mine classification algorithms is difficult
because of the small number of samples per class. In our
experiments VMEC consistently improved performance over
EMME.
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I. I NTRODUCTION

Hierarchical mixture of experts (HME) introduced by
Jordan etal.[1] is a tree-like architecture that makes soft
splits at both the experts and the gates. Training is ac-
complished through the Expectation Maximization (EM)
algorithm which decouples the learning at the experts and
gates. The EM algorithm for HME (EM-HME) converges
linearly [2]; and provides a probabilistic form with easily
interpreted parameters. However, EM-HME suffers from
sensitivity to initialization, does not regularize the param-
eters, or use any prior information; and hence it is prone
to over-training. To address some of these problems, VME
(a Bayesian approach) was proposed in [3], [4], [5], [6]
for regression. Although the similarities of the classification
and regression algorithms were discussed in [6]; a clear
framework was not given for classification. More explicitly;
in a K class classification, there areK weight vectors
for each expert instead of a single weight vector. Hence,
instead of a single hyper-parameter, we assumedK hyper-
parameters for each expert. Similarly, instead of assuminga
single distribution per expert, we usedK distributions per
expert. In addition, a distribution over the hyper-parameters

was not assumed in [6]; but we found such an assumption
to be necessary to calculate the lower bound. With these
assumptions, the joint distribution was modified to be a
product of the aforementioned distributions; and the lower
bound was derived using this modified joint distribution.

Our interest in this problem was motivated by mine
detection. In previous work [7], EM-HME was used in
decision fusion for mine detection and instead of a tradi-
tional mine/non-mine decision, the experts were trained on
specific classes of mines and non-mines, i.e. High Metal
Anti Tank (HMAT), Low Metal Anti-personnel (LMAP),
LMAT, HMAP, metallic and non-metallic clutter. However,
since features still overlap, the EM-HME algorithm leads
to over-fitting. In this paper, we provide a complete VMEC
framework, and compare the results of VMEC to EM-HME.

II. M IXTURE OF EXPERTS FORCLASSIFICATION

For aK-class problem, letD = {X,Y } denote the data
with X = {x(n)}Nn=1 and Y = {y(n)}Nn=1 wherey(n) is
of lengthK andy(n)k = 1 if x(n) belongs to classk and0
otherwise. LetI be the number of experts andk : 1...K be
the class index.

In a mixture of experts architecture composed of experts
and a gate as illustrated in Fig.1 ;̂yik is the output of
expert i for classk; and wik is the corresponding weight
vector. On the upper level,gi is one of the outputs of the
gating network; andvi is the related weight vector. For a
givenx(n); the expert networki produces a prediction with
probability Pi(y

(n)) following a multinomial distribution
with meanŷik such that

ŷik =
exp(wT

ikx)∑K

r=1 exp(w
T
irx)

and

Pi(y) =
∏

k ŷ
yk

ik

The gate estimates the probability of each expert; and itsith

outputgi is a softmax nonlinearity given as:

gi =
exp(vT

i x)∑I

m=1(expv
T
mx)



Figure 1. Mixture of Experts Architecture

And the total output of the architecture is:

ŷk =
∑

i gi ŷik

Hence, total probability of the outputY is:

P (Y |w,v) =
∏N

n=1

∑I

i=1 g
(n)
i Pi(y

(n))

where w = {{wik}
I
i=1}

K
k=1 and v = {vi}

I
i=1 . These

parameters{w,v} can be estimated using EM [1], [2] with
hidden variablesZ = {{z

(n)
i }Nn=1}

I
i=1:

z
(n)
i =

{
1 if x(n) ∈ Ri ;
0 otherwise

whereRi is the region specified by experti. The expecta-
tions of these missing variables are [1]:

h
(n)
i =

g
(n)
i Pi(y

(n))
∑

j g
(n)
j Pj(y(n))

Since z(n)i represents using experti for data pointn;
we can writeP (Z|vi) = gi. Therefore, the complete data
distribution becomes:

P (Y,Z|w,v) =
∏

n

∏
i

(
g
(n)
i Pi(y

(n))
)z

(n)
i

III. VME FOR CLASSIFICATION (VMEC)

Let Θ = {{vi,wik}
I
i=1}

K
k=1 denote the gate

and expert parameters. We place Gaussian priors
Φ = {{µi, αik}

I
i=1}

K
k=1 on the gate and the experts:

P (w|α) =
∏

i,k P (wik|αik) =
∏

i,kN(wik|0, α
−1
ik I)

P (v|µ) =
∏

i P (vi|µi) =
∏

iN(vi|0, µ
−1
i I)

We also assume that the hyperparameters are Gamma
distributed:

P (µ) =
∏

i P (µi) =
∏

i Gam(µi|c0, d0)
P (α) =

∏
i,k P (αik) =

∏
i,kGam(αik|a0, b0)

Hence the joint distribution is:

P (Θ,Φ, Z,D) = P (Y,Z|w,v)P (w|α)P (α)P (v|µ)P (µ)

In the variational approach, the goal is to find the distribution
Q that best approximates the posterior distribution, so the
evidenceP (D) is decomposed using

logP (D) = F (Q) +KL(Q||P )

where

F (Q) =
∫
Q(Θ,Φ, Z) log

P (Θ,Φ, Z,D)

Q(Θ,Φ, Z)
dΘdΦdZ

and

KL(Q||P ) = −
∫
Q(Θ,Φ, Z) log

P (Θ,Φ, Z|D)

Q(Θ,Φ, Z)
dΘdΦdZ

The Q distribution minimizes the KL-divergence;
however, working on the KL-divergence would be
intractable, so we maximize the free energyF instead [8].
We assume the approximating distribution factorizes as:

Q(Θ,Φ, Z) = Q(Z)
∏

iQ(vi)Q(µi)
∏

kQ(wik)Q(αik)

Plugging the joint distribution and theQ distribution into
the lower bound equation, and taking the expectations wrt.
to all the other variables, we obtain theQ distributions as:
Q∗(wik) = N(wik|wik, Awik

)
Q∗(αik) = Gam(αik|ap, bp)
Q∗(vi) = N(vi|vi, Avi

)
Q∗(µi) = Gam(µi|cp, dp)

Q∗(Z) =
∏N

n=1

∏I

i=1 h
(n)
i

z
(n)
i

Herewik andvi are the means of the Gaussians and they
are found using Newton-Raphson updates. The covariance
matricesAwik

and Avi
are the inverse of the negative

Hessian matrices;Awik
= −H−1

w andAvi
= −H−1

v .
For a learning rateη, expert parameters are found by:

w
(p+1)
ik = w

(p)
ik − ηH−1

w Gw

where
Gw =

∑
n h

(n)

i (y
(n)
k − ŷ

(n)
ik )x(n) − αikwik

Hw = −
∑

n h
(n)

i ŷ
(n)
ik (1− ŷ

(n)
ik )(x(n))(x(n))T − αik.I

Similarly, the updates to the gating parameters follow
v
(p+1)
i = v

(p)
i − ηH−1

v Gv

where
Gv =

∑
n(h

(n)
i − g

(n)
i )x(n) − µivi

Hv = −
∑

n g
(n)
i (1− g

(n)
i )(x(n))(x(n))T − µi.I

Newton-Raphson updates are continued in a loop until
P (Y,Z|w, v) converges; and the parameters found at the
last iteration are taken to bewik andvi; whereAwik

and
Avi

are their covariance matrices.



The updates for expert hyper-hyperparameters are:

ap = a0 +
d

2

bp = b0 +
1

2
(wT

ikwik + Trace(Awik
))

and similar equations apply for the gate hyper-
hyperparameterscp and dp. As a result, hyperparameter
updates becomeα(p+1)

ik = ap/bp andµ(p+1)
i = cp/dp.

A. VMEC Lower Bound:

Parameter updates are continued until the lower bound
converges; and the lower bound provides a test of correctness
as it is supposed to be nondecreasing at each re-estimation
of the parameters. Expanding the integral and evaluating the
expectations, we arrive at the closed form solution for the
lower bound as:

F (Q) =

∫
Q(Θ,Φ, Z) log

P (Θ,Φ, Z,D)

Q(Θ,Φ, Z)
dΘdΦdZ

=
∑

n,i

EZ,v,w[logP (Y,Z|X,v,w)]

+
∑

i

E[logP (vi|µi)] +
∑

i

E[logP (µi)]

+
∑

i,k

E[logP (wik|αik) +
∑

i,k

E[logP (αik)]

−
∑

i

E[logQ(vi)]−
∑

i

E[logQ(µi)]

−
∑

i,k

E[logQ(wik)]−
∑

i,k

E[logQ(αik)]− E[logQ(Z)]

where
Ew,α[logP (w|α)] =

d

2
[ψ(ap)− log bp]−

d

2
log(2π)

−
ap
2bp

(
wT

ikwik + Trace(Awik
)
)

Eα[logP (α)] = a0 log b0 − b0(ap/bp)− log Γ(a0)
+ (a0 − 1)[ψ(ap)− log bp]

Eα[logQ(α)] = − log Γ(ap) + (ap − 1)ψ(ap)
+ log bp − ap

Ew[logQ(wik)] =
1

2
log |Awik

|+
d

2
(log(2π) + 1)

EZ [logQ(Z)] =
∑

n h
(n)
i log h

(n)
i

EZ,v[logP (Z|vi)] =
∑

n h
(n)
i log g

(n)
i

EZ,w[logP (Y |Z,wik)] =
∑

n h
(n)
i logP i(y

(n))

Expressions for the gateEµ[logP (µi)]), Eµ[logQ(µi)]),
Ev,µ[logP (vi|µi)]), Ev[logQ(vi)] are similar to those
of the experts. VMEC algorithm updates the parameters
through the Expectation (E) and Maximization (M) steps
until the change in the lower bound becomes less than a
threshold (e−5 in our case).

B. Training for VMEC:

1) For a1-of-K class problem, initialize the number of
expertsI, parameters and the hyperparameters.

2) E-step: Compute the expert and gating outputsŷ
(n)
ik ,

g
(n)
i as well as the expert probabilitiesPi(y

(n)) and
the posterior probabilitiesh(n)i .

3) M-step: Compute the new expert parametersw
(p+1)
ik

and the new gating parametersv(p+1)
i using Newton-

Raphson updates.
4) Update the hyperparametersα(p+1)

ik andµ(p+1)
i .

5) Check the convergence of the lower bound. Go to
Step 2 ifF (p+ 1)− F (p) > 1e− 5; else terminate.

IV. EXPERIMENTAL RESULTS

Synthetic data was generated by sampling from two
Gaussian distributions with standard deviation0.1 at means
(0.7, 0.7) and (0.5, 0.7). For testing, 200 points were
generated from each class. For training, the number of
points were increased at each iteration, from 10 points to
60 points per class. Classification performance on test data
is displayed in Fig.2 where VME consistently performs
better. VME gives better results even when we increase the
number of points in the training set because of the fact that
(1) the resultsyk sum to1, and (2) the VME gate prefers
fewer experts.
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Figure 2. Classification for varying numbers of training data. VME
performs better and shows consistent behaviour.

V. L ANDMINE DETECTION

The mine dataset and the two mine features, Granma and
EHD are completely described in [7], [9], [10]. In Fig.3(a),
the two mines features (Granma and EHD) are displayed.
Different colors represent the five different classes. The first
three classes are High metal mines, LMAT, and LMAP. The
last two classes are the metallic and non-metallic clutter.
In Fig.3(b), Receiver operating characteristic (ROC) curves
zoomed around 90%PD are displayed for 1 experiment with
5 classes, 5 experts, and 10 fold cross-validation. In Fig.3(c),
the increase in the lower bound in one of the ten folds
is displayed. The sharp increase in the lower bound cor-
responds to one of the hyper-parameter updates. In Fig.3(d),



on the same fold, classification using EMME is given; where
over-training can be observed. In Fig.3(e), over-trainingis
avoided using VME. The solid colors represent the class
of the maximum decision in that region. In Table I, for 5
experiments on mine data, VME algorithm gives an average
of 11.6% PFA at 90%PD, whereas EMME stays around
16.20%PFA at 90%PD.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

EHD

G
ra

nm
a

Data, direction:  2

 

 
HMAT+HMAP

LMAT

LMAP

HMC+MMC+LMC

NMC

(a) Granma and EHD features of Mine Data.
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(d) EMME Classification results.
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(e) VME Classification results.

Figure 3. Landmine Results. In a setting of 5 classes and 5 experts, for
a 10 fold cross-validation, VME algorithm consistently increases detection
rates to around 90/11.6 percent from 90/16.2 of EMME.

VI. FUTURE WORK

VME improved the performance in these experiments
with real-world data. Our future work will involve sensi-
tivity analysis, finding the optimal number of experts, and
investigating more suitable experts.

Table I
PFAS AT 90% PDFOR 5 CROSS-VALIDATION RUNS

Experiment 1 2 3 4 5

EMME 0.17 0.16 0.15 0.18 0.15
VME 0.12 0.11 0.10 0.13 0.12

ACKNOWLEDGMENT

This research was partially supported by NSF Grant No.
0730484.

REFERENCES

[1] M. I. Jordan, “Hierarchical mixtures of experts and the EM
algorithm,” Neural Computation, vol. 6, pp. 181–214, 1994.

[2] M. I. Jordan and L. Xu, “Convergence results for the EM
approach to mixtures of experts architectures,”Neural Net-
works, vol. 8, pp. 1409–1431, 1995.

[3] C. M. Bishop and M. Svensen, “Bayesian hierarchical mix-
tures of experts,” inProceedings Nineteenth Conference on
Uncertainty in Artificial Intelligence, 2003, pp. 57 – 64.

[4] N. Ueda and Z. Ghahramani, “Optimal model inference for
Bayesian mixture of experts,” inProc. IEEE Workshop on
Neural Networks for Signal Processing, vol. 1, 2000, pp. 145–
154.

[5] S. Waterhouse, D. Mackay, and T. Robinson, “Bayesian
methods for mixtures of experts,” inAdv. Neur. Inf. Proc.
Sys. 7. MIT Press, 1996, pp. 351–357.

[6] S. R. Waterhouse, “Classification and regression using mix-
tures of experts,” Ph.D. dissertation, Department of Engineer-
ing, University of Cambridge, 1997.

[7] S. Yuksel, G. Ramachandran, P. Gader, J. Wilson, D. Ho,
and G. Heo, “Hierarchical methods for landmine detection
with wideband electro-magnetic induction and ground pen-
etrating radar multi-sensor systems,” inIEEE International
Geoscience and Remote Sensing Symposium (IGARSS), vol. 2,
July 2008, pp. II–177–II–180.

[8] C. Bishop, Pattern Recognition and Machine Learning.
Springer Verlag, August 2006.

[9] H. Frigui and P. Gader, “Detection and discrimination of land
mines in ground-penetrating radar based on edge histogram
descriptors and a possibilistic K-nearest neighbor classifier,”
Fuzzy Systems, IEEE Transactions on, vol. 17, no. 1, pp. 185–
199, Feb. 2009.

[10] G. Ramachandran, P. Gader, and J. Wilson, “Fast physics-
based mine detection algorihtms for wide-band electromag-
netic induction sensors,” inSPIE Defense, Security and Sens-
ing, April 2009, pp. 7303–77.


