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Abstract—In this paper, we (1) provide a complete frame-
work for classification using Variational Mixture of Experts
(VME); (2) derive the variational lower bound; and (3) apply
the method to landmine, or simply mine, detection and compare
the results to the Mixtures of Experts trained with Expectation
Maximization (EMME). VME has previously been used for
regression and Waterhouse explained how to apply VME to
classification (which we will call as VMEC). However, the steps
to train the model were not made clear since the equations were
applicable to vector valued parameters as opposed to matrices
for each expert. Also, a variational lower bound was not
provided. The variational lower bound provides an excellent
stopping criterion that resists over-training. We demonstrate
the efficacy of the method on real-world mine classification; in
which, training robust mine classification algorithms is difficult
because of the small number of samples per class. In our
experiments VMEC consistently improved performance over
EMME.
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I. INTRODUCTION

was not assumed in [6]; but we found such an assumption
to be necessary to calculate the lower bound. With these
assumptions, the joint distribution was modified to be a
product of the aforementioned distributions; and the lower
bound was derived using this modified joint distribution.
Our interest in this problem was motivated by mine
detection. In previous work [7], EM-HME was used in
decision fusion for mine detection and instead of a tradi-
tional mine/non-mine decision, the experts were trained on
specific classes of mines and non-mines, i.e. High Metal
Anti Tank (HMAT), Low Metal Anti-personnel (LMAP),
LMAT, HMAP, metallic and non-metallic clutter. However,
since features still overlap, the EM-HME algorithm leads
to over-fitting. In this paper, we provide a complete VMEC
framework, and compare the results of VMEC to EM-HME.

1. MIXTURE OF EXPERTS FORCLASSIFICATION

For a K-class problem, leD = {X,Y} denote the data
with X = {x("N_ andY = {y™}_, wherey™ is
of length K andy\” = 1 if 2(™ belongs to class and0

Hierarchical mixture of experts (HME) introduced by otherwise. Let/ be the number of experts ard: 1...K be
Jordan etal.[1] is a tree-like architecture that makes soft ihe class index.

splits at both the experts and the gates. Training is ac- |5 5 mixture of experts architecture composed of experts

complished through the Expectation Maximization (EM) gnq a gate as illustrated in Fig.17;, is the output of
algorithm which decouples the learning at the experts an@ypert; for classk; and w;; is the corresponding weight
gates. The EM algorithm for HME (EM-HME) converges yector. On the upper level; is one of the outputs of the
linearly [2]; and provides a probabilistic form with easily gating network; andv; is the related weight vector. For a
interpreted parameters. However, EM-HME suffers fromgivenx(»): the expert network produces a prediction with
sensitivity to initialization, does not regularize the @&  propability P;(y(™) following a multinomial distribution
eters, or use any prior information; and hence it is prongyith meany;, such that

to over-training. To address some of these problems, VME

(a Bayesian approach) was proposed in [3], [4], [5], [6]

for regression. Although the similarities of the classtiica

and regression algorithms were discussed in [6]; a cleagnq
framework was not given for classification. More explicitly

in a K class classification, there arE weight vectors Pi(y) =11, v

for each expert instead of a single weight vector. Henceyyg gate estimates the probability of each expert; and’its
instead of a single hyper-parameter, we assuiifelyper- outputg, is a softmax nonlinearity given as:
parameters for each expert. Similarly, instead of assuming

single distribution per expert, we usedd distributions per
expert. In addition, a distribution over the hyper-pararet
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Hence the joint distribution is:

P(6,9,2,D) = P(Y, Z|w,v)P(w|a)P(e) P(v|u) P (1)

Gate

In the variational approach, the goal is to find the distitut
Q@ that best approximates the posterior distribution, so the
evidenceP(D) is decomposed using

log P(D) = F(Q) + KL(Q||P)

where P(O.9.7.D)
Q)= [Q(O,0,7)lo Wd@dcbdz
and o
i i i 0,®,Z|D)
Figure 1. Mixture of Experts Architecture P _ >, 7 ( i) dOddd7
KL(QIIP) = = [ Q(6, 2, 2)log —55—5=75-d0

The (@ distribution minimizes the KL-divergence;
however, working on the KL-divergence would be
Ue = 3. i Tin intractable, so we maximize the free enerfyinstead [8].
We assume the approximating distribution factorizes as:

And the total output of the architecture is:

Hence, total probability of the outpif is:
P(Y|w,v) = Hn 1 Zl 1gln)ﬂ(y(")) Q(O,2,7) =Q(2) Hz Q(vi)Q(p:) Hk (Wir)Q(cvik)

wherew = {{wi}/_}EK, andv = {v;}[_; . These Plugging the joint distribution and th@ distribution into
parametergw, v} can be estimated using EM [1], [2] with the lower bound equation, and taking the expectations wrt.
hidden variablesZ = {{zf") N oY to all the other variables, we obtain tiig distributions as:

Q (Wlk) = N(Wik|W’U€7 AWL)c)

2" :{ Loifx™ € By Q*(au) = Gam(air|ay,by)

0 otherwise Q*(vi) = N(vi|vi, Ay.)
where R; is the region specified by expert The expecta- Q" () = Gam(piley, dy) Jm
tions of these missing variables are [1]: Q*(2) =TI, T1, p™™

9" Pi(y™) . v '
hf") L B C AN Herew;, andv; are the means of the Gaussians and they
> g(”)P (y(m) are found using Newton-Raphson updates. The covariance
_ (n) _ , . matrices Ay, and Ay, are the inverse of the negative
Since z; represents using expeftfor data pointn;  Hessian matricesdy,, = —H,' and Ay, = —H .

we can writeP(Z|v;) = g;. Therefore, the complete data o 5 learning rate), expert parameters are found by:

distribution becomes: WZ(ZH) _ wE’k’) —nH Gl
e
where
n) n (7 _
(v, Zjw,v) = 1 1L (o Py™) ) G- %, B )<)(’” G — Twa
(n) ~(n) 77 (MY (x (N _ &,
l1l. VME FOR CLASSIFICATION (VMEC) = 2w b Uit (1= B ) ) ()T — e T
Let ®© = {{vi,wix}/_,}), denote the gate Similarly, the updates to the gating parameters follow
and expert parameters. We place Gaussian priorsrl(”“) :vl(p) -nH; G,
® = {{u;, i }_1}E | on the gate and the experts: where
1 GU =2 (h(n) gz( ))X(n) = Vi
P(wla) =T, , P(Wikloir) = [T, N(wik|0, 0 'T) -3, g<">( g™ (xM) (xM)T — 7.1

P(vlp) =TI, P(vilm) =TI N(vil0, 57 'T)
Newton-Raphson updates are continued in a loop until
We also assume that the hyperparameters are Gamnia(Y, Z|w,v) converges; and the parameters found at the
distributed: last iteration are taken to b, andv;; where A,,,, and
Ay, are their covariance matrices.



The updgtes for expert hyper-hyperparameters are: B. Training for VMEC:

ap = aop + = 1) For al-of-K class problem, initialize the number of
experts/, parameters and the hyperparameters.

2) E-step: Compute the expert and gating outp}jﬁg,
¢\™ as well as the expert probabilitie (y™) and
the posterior probab|lltles(")

3) M-step: Compute the new expert parametwg%“)
and the new gating paramete«ép“) using Newton-
Raphson updates.

A. VMEC Lower Bound: 4) Update the hyperparameter§ ™ and ("™,
Parameter updates are continued until the lower bound 5) Check the convergence of the lower bound. Go to

converges; and the lower bound provides a test of correstnes ~ Step 2 if F(p + 1) — F(p) > le — 5; else terminate.

as it is supposed to be nondecreasing at each re-estimation

of the parameters. Expanding the integral and evaluatiag th

expectations, we arrive at the closed form solution for the

by = bo + 5 (Wl Wi + Trace(Aw,,))

5
and similar equations apply for the gate hyper-

hyperparameters,, and d,. As a result, hyperparameter
updates become "™ = a, /b, and u" = ¢, /d,,.

IV. EXPERIMENTAL RESULTS

lower bound as: Synthetic data was generated by sampling from two
Gaussian distributions with standard deviatibh at means
P(©,d, 7, D) (0.7,0.7) and (0.5,0.7). For testing, 200 points were
Q) = /Q(@, ®,Z)log ————+>dOdddZ generated from each class. For training, the number of
Q(O,9,2) . ) X . )
points were increased at each iteration, from 10 points to
=Y Ezvwllog P(Y, Z|X,v,w)] 60 points per class. Classification performance on test data
nyi is displayed in Fig.2 where VME consistently performs
+ ZE[log P(vi|pi)] + ZE[log P(1s)] better. VME gives better results even when we increase the
p P number of points in the training set because of the fact that
+ ZE[IOgP(Wik|aik) + ZE[log Plair)] (1) the resultsy, sum to1, and (2) the VME gate prefers
. " fewer experts.
— ZE log Q(v)] ZE log Q(11:)]
Number of True Classification on Test Data
_ 340 T T T T T T T T T
ZElogszk ZElogQ k)] — Ellog Q(2)] g xors Eedgerx g K xPxx]
® o © o % 00 0
where d i soor ® 1
* VME
Ew,a[k)gp(wm)} = 5[7/)(611)) —log b;v] ) log(27) 2600 @ ® +  EMME| |
2ab ( z;cwlk + Trace( Awik)) 200 15 20 25 30 35 40 45 50 55 60
E,[log P(a)] = ag log bo — bo(ap/by) —log(agp)
+ (ao — 1)[1/)(ap) log bp] Figure 2.  Classification for varying numbers of training da¥aME
performs better and shows consistent behaviour.
Ey[log Q(a)] = —log'(ay) + (a, — 1)3(ay)
+logh, —ay V. LANDMINE DETECTION
BwllogQ(wi)] = llog | A, | + Q(log(%) +1) The mine dataset and th'e twq mine features, Grgnma and
o ) EHD are completely described in [7], [9], [10]. In Fig.3(a),
Ez[log Q(Z)] = 2. hz(n)logh " the two mines features (Granma and EHD) are displayed.
Ezy[log P(Z|v;)] = . hz IOgQ Different colors represent the five different classes. Tt fi
Ezwllog P(Y|Z,wir)] = >, hZ log P;(y™) three classes are High metal mines, LMAT, and LMAP. The

last two classes are the metallic and non-metallic clutter.
Expressions for the gat#,[log P(u;)]), E.[log@Q(ui)]),  In Fig.3(b), Receiver operating characteristic (ROC) esrv
Ey ,llog P(v;|pi)]), EvllogQ(v;)] are similar to those zoomed around 90%PD are displayed for 1 experiment with
of the experts. VMEC algorithm updates the parameter$ classes, 5 experts, and 10 fold cross-validation. In Fg.3
through the Expectation (E) and Maximization (M) stepsthe increase in the lower bound in one of the ten folds
until the change in the lower bound becomes less than & displayed. The sharp increase in the lower bound cor-
threshold ¢° in our case). responds to one of the hyper-parameter updates. In Fig.3(d)



on the same fold, classification using EMME is given; where

over-training can be observed. In Fig.3(e), over-training

avoided using VME. The solid colors represent the class

of the maximum decision in that region. In Table I, for 5

experiments on mine data, VME algorithm gives an average

Table |
PFAs AT 90% PDFORS5 CROSSVALIDATION RUNS

of 11.6% PFA at 90%PD, whereas EMME stays around

16.20%PFA at 90%PD.
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(a) Granma and EHD features of Mine Data.
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(d) EMME Classification results.  (e) VME Classification results.

Figure 3. Landmine Results. In a setting of 5 classes and 5risxder
a 10 fold cross-validation, VME algorithm consistently ieases detection
rates to around 90/11.6 percent from 90/16.2 of EMME.

VI. FUTURE WORK

VME improved the performance in these experiments
with real-world data. Our future work will involve sensi-
tivity analysis, finding the optimal number of experts, and
investigating more suitable experts.

(10]

[ Experiment[ 1 [ 2 [ 3 ] 4 [ 5 |
EMME 0.17| 0.16 | 0.15 | 0.18 | 0.15
VME 0.12| 0.11 | 0.10 | 0.13 | 0.12
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