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ABSTRACT

Acute rejection is the most common reason of graft failure af-
ter kidney transplantation, and early detection is crucial to sur-
vive the transplanted kidney function. In this paper we intro-
duce a new approach for the automatic classification of normal
and acute rejection transplants from Dynamic Contrast En-
hanced Magnetic Resonance Imaging (DCE-MRI). The pro-
posed algorithm consists of three main steps; the first step iso-
lates the kidney from the surrounding anatomical structures by
evolving a deformable model based on two density functions;
the first function describes the distribution of the gray level
inside and outside the kidney region and the second function
describes the prior shape of the kidney. In the second step,
nonrigid-registration algorithms are employed to account for
the motion of the kidney due to patient breathing, and finally,
the perfusion curves that show the transportation of the con-
trast agent into the tissue are obtained from the cortex and used
in the classification of normal and acute rejection transplants.
Applications of the proposed approach yield promising results
that would, in the near future, replace the use of current tech-
nologies such as nuclear imaging and ultrasonography, which
are not specific enough to determine the type of kidney dys-
function.

1. INTRODUCTION

In the United States, approximately 12000 renal transplants
are performed annually [1], and considering the limited sup-
ply of donor organs, every effort is made to salvage the trans-
planted kidney [2]. However, acute rejection - the immuno-
logical response of the human immune system to the foreign
kidney - is the most important cause of graft failure after renal
transplantation, and the differential diagnosis of acute trans-
plant dysfunction remains a difficult clinical problem.

Currently, the diagnosis of rejection is done via biopsy,
but biopsy has the downside effect of subjecting the patients
to risks like bleeding and infections. Moreover, the relatively
small needle biopsies may lead to over or underestimation of
the extent of inflammation in the entire graft [3]. Therefore,
a noninvasive and repeatable technique is not only helpful but
also needed in the diagnosis of acute renal rejection. For this
purpose, detection of acute renal rejection after kidney trans-
plantations has become an ongoing collaboration between the
University of Mansoura and the CVIP Lab at the University of

Louisville where Dynamic Contrast-Enhanced Magnetic Res-
onance Imaging (DCE-MRI) is applied prior to biopsy for its
superior functional and anatomical information. In DCE-MRI,
a contrast agent called Gd-DTPA is injected into the blood-
stream, and as it perfuses into the organ, the kidneys are im-
aged rapidly and repeatedly. During the perfusion, Gd-DTPA
causes a change in the relaxation times of the tissue and creates
a contrast change in the images. As a result, the patterns of the
contrast change gives functional information, while MRI pro-
vides good anatomical information which helps in distinguish-
ing the diseases that affect different parts of the kidneys. How-
ever, even with an imaging technique like DCE-MRI, there are
several problems; such as, (i) the spatial resolution of the dy-
namic MR images is low due to fast scanning, (ii) the images
suffer from the motion induced by the breathing patient which
necessitates advanced registration techniques, (iii) the inten-
sity of the kidney changes non-uniformly as the contrast agent
perfuse into the cortex which complicates the segmentation
procedures.

To the best of our knowledge, there has been limited work
on the dynamic MRI to overcome the problems of registration
and segmentation. For the registration problem, Gerig et al.[7]
proposed using Hough transform to register the edges in an
image to the edges of a mask and Giele et al.[6] introduced a
phase difference movement detection method to correct kidney
displacements. Both of these studies required building a mask
manually by drawing the kidney contour on a 2D DCE-MRI
image, followed by the registration of the time frames to this
mask.

For the segmentation problem, Boykov et al. [5] presented
the use of graph cuts using Markov models; where the energy
is minimized depending on the manually exerted seed points.
Giele et al.[6] used image subtraction to obtain a mask, and
closed the possible gaps by the use of a hull function. For
further segmenting the medulla and the cortex structures, re-
peated erosions were applied to the mask to obtain several
rings; however, in such rings, the medulla structures were in-
termixed with the cortex structures, so a correlation study had
to be applied to better classify the cortical and medullary pix-
els.

Following these studies, a multi-step registration approach
was introduced by Sun et al. [8]. Initially, the edges are aligned
using an image gradient based similarity measure consider-
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ing only translational motion. Once roughly aligned, a high-
contrast image is subtracted from a pre-contrast image to ob-
tain a kidney contour; which is then propagated over the other
frames searching for the rigid registration parameters. For the
segmentation of the cortex and medulla, a level sets approach
was used.

2. METHODS

In this paper we introduce a novel and automated technique
(i) to segment the kidney and (ii) to correct for the motion
artifacts caused by breathing and patient motion; the details of
which are given below.

2.1. Segmentation

Accurate segmentation of the kidney from DCE-MRI is a chal-
lenge since the gray level distribution of the kidney and sur-
rounding organs is not highly distinguishable, thus we add ad-
ditional constraints based on the shape of the objects to control
the evolution of the deformable models in the segmentation
process. So the proposed deformable model takes into account
not only the gray level distribution but also a shape model of
the kidney that depends on a sign distance map.

In conventional deformable models, surfaces move in the
direction that minimizes an energy function that is composed
of internal and external energy components given as:

E = Eint + Eext =
∫

τ∈T

(
ξint

(
φ(τ)

)
+ ξext

(
φ(τ)

))
dτ (1)

where ξint

(
φ(τ)

)
and ξext

(
φ(τ)

)
denote the internal and ex-

ternal force, respectively.
Typical external forces designed in [9] lead a deformable

model toward edges in a 2D grayscale image. This and the
other traditional external forces (e.g. based on lines or, edges,
or the gradient vector flow) fail to make the deformable model
closely approach an intricate boundary with concavities. As a
solution to this problem, we modify the external energy com-
ponent of this energy formulation, and we formulate an energy
function using the density estimations of two distributions: the
signed distance map from shape models and the gray level dis-
tribution. The external energy component of our deformable
models is formulated as:

ξext

(
φ(τ)

)
=

{ −p(q|k)ps(d|k)p(k) if k = k∗

p(q|k)ps(d|k)p(k) if k �= k∗

In this formulation, k is the region label with k = 1 for
the background and k = 2 for the kidney, q is the gray level,
d is the signed distance; where ps(d|k) represents the den-
sity that describes the signed distance map inside and outside
the object, and pg(q|k) is the density estimation of the gray
level. With this energy function, the stochastic external force
for each control point φ(τ) of the current deformable model
evolves in a region k∗. In this paper we used our previous
probabilistic model to get accurate density estimation using
linear combination of Gaussian (LCG) distribution with posi-
tive and negative components for both pg(q|k) and ps(d|k) [10].

The density of the signed distance map ps(d|k) in the above
mentioned external energy is calculated using a shape model,
which is basically an average shape obtained from the images
in the data set.

A typical DCE–MRI scan of a kidney is given in Fig. 1(a),
and the steps to estimate its gray level density are illustrated
in Fig. 1(b,c,d). In Fig. 2(a) the average shape of a kidney
obtained from 30 subjects is given with the signed distance
map inside and outside the object as in Fig. 2(b); and its den-
sity estimation in (c). Finally, Fig. 3 shows the segmentation
results of our approach compared to the segmentations by a
radiologist.
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Fig. 1. Typical MRI scan of a kidney (a); and its gray level density esti-
mation with the Modified EM Algorithm: (b) LCG components of the density
estimation, (c) the final estimated density pg(q) (in red) for the empirical den-
sity f(q) (in blue) of the kidney image, (d) the marginal density estimation for
each class.
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Fig. 2. (a) The average signed distance map inside and outside the kid-
ney shape. (b) Density estimation ps(d) of the signed distance map density
favr(d). (c) Marginal density estimations for each class; red indicating the
kidney and blue indicating the background.

error = 0.3820% error = 0.3997%

Fig. 3. Segmentation results using the proposed approach with the errors
w.r.t the radiologist segmentation.
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2.2. Model for the local deformation

In DCE-MRI sequences, the registration problem arises be-
cause of the patient & breathing movements. To overcome this
problem, we proposed a new a approach to handle the kidney
motion. The proposed approach is based on deforming the
segmented kidney over closed equispaced contours (i.e. iso-
contours) to closely match the prototype. We do not use a
free-form deformation based on B-spline on square lattice be-
cause it requires additional smoothing constraints that lead to
very time consuming computations. Instead we use evolution
of the iso-contours guided with an exponential speed function
in the directions minimizing distances between corresponding
pixel pairs on the iso-contours of both the objects. The nor-
malized cross-correlation is used as image similarity measure
insensitive to intensity changes (e.g. due to tissue motion in
medical imagery and the contrast agent).

The first step of the proposed approach is to use the fast
marching level set methods [11] to generate the distance map
inside the kidney regions as shown in Fig. 4(a), (b). The sec-
ond step is to use this distance map to generate equal space
separated contours (iso-contours) as shown in Fig. 4(c) and
(d). Note that the number of iso-contours depend on the accu-
racy and the speed which the user needs to achieve. The third
step of the proposed approach is to use normalized cross cor-
relation to find the correspondence between the iso-contours.
Since we start with aligned images, we limit our searching
space to a small window (e.g. 10 × 10) to improve the speed
of the proposed approach. The final step is the evolution of the
iso-contours; here, our goal is to deform the iso-contours in the
first image (target image) to match the iso-contours in the sec-
ond image (source image). Before we discuss the details of
the evolution algorithm lets define the following terminology:

• φA
niso

(h, ν) is the iso-contours in the target image, where
h = 1, . . . ,H is the index of the control points in the
given contour, niso = 1, . . . Niso is the index of the
iso-contours, and ν is the iteration step.

• φB
miso

(γ) is the iso-contours in the source image, where
γ = 1, . . . , Γ is the index of the control points in the
given contour, and miso = 1, . . . , Miso is the index of
the iso-contours.

• S is Euclidean distance between two corresponding points
located on both iso-contours of both images.

• SA
niso,niso−1 is the Euclidian distance between φA

niso
(l, ν)

and φA
n−1(l, ν)

• V is the propagation speed function.

The most important step in the model propagation is the
selection of the propagation speed function V. The selection
of the speed function must satisfy the following conditions:

1. V = 0 if S = 0

2. V ≤ min(S, SA
niso,niso−1, S

A
niso,niso+1) if S > 0; is the

smoothness constraint, which prevents the current point

from passing the closest neighbor contour as shown in
Fig. 5.

The speed function of the following form satisfies the above
conditions:

V = eβS − 1 (2)

where β is the propagation constant with the upper bound

β �
ln

(
min(S, SA

niso,niso−1, S
A
niso,niso+1) + 1

)
S

Based on the speed function shown in Eq. (2) we can de-
form the iso-contours using the following equation as shown
in Fig. 5(b):

φA(h, ν + 1) = V
S φB

miso
(γ) + S−V

S φA
niso

(h, ν) (3)

for h = 1, . . . ,H, miso = 1, . . . , Miso, niso = 1, . . . , Niso.

(a) (b)

(c) (d)

Fig. 4. The distance map of two kidneys (a, b) and the isocontours (c, d).

(a) (b)

Fig. 5. (a) Model constrains and (b) model evolution.

The final step of our approach is to segment the cortex
from the segmented kidney. To achieve this task, we use the
same approach but based only on the intensity. In Fig. 7, we
show the cortex segmentation results on two of the kidneys.
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(a) (b)

Fig. 6. Checkerboard image to show the quality of the approach, (a) before
non-rigid registration, and (b) after non-rigid registration.

Fig. 7. The segmentation of the cortex from the kidney images.

3. RESULTS AND CONCLUSION

The ultimate goal of the proposed algorithms is to successfully
construct a renogram (mean intensity signal curves) from the
DCE-MRI sequences, showing the behavior of the kidney as
the contrast agent perfuse into the transplant. In acute rejec-
tion patients, the DCE-MRI images show a delayed perfusion
pattern and a reduced cortical enhancement. We tested the
above algorithms on thirty patients; four of which are shown
in Figure 8. The normal patient shows the expected abrupt
increase to the higher signal intensities and the valley with
a small slope. The acute rejection patients show a delay in
reaching their peak signal intensities. From these observa-
tions, we have been able to conclude that the relative peak
signal intensity, time to peak signal intensity, the slope be-
tween the peak and the first minimum, and the slope between
the peak and the signal measured from the last image in the
sequence are the major four features in the renograms of the
segmented kidney for classification.

To distinguish between normal and acute rejection, we use
Bayesian supervised classifier learning statistical characteris-
tics from a training set for the normal and acute rejection. The
density estimation required in the Bayes classifier is performed
for each feature by using a linear combination of Gaussians
(LCG) with positive and negative components, their parame-
ters are estimated using a modified EM algorithm which ap-
peared in [10]. In our approach we used 50% of the data for
the training and the other 50% for testing. For testing data,
the Bayes classifier succeeds to classify 13 out of 15 correctly
(86.67%). For the training data the Bayes classifier classifies
all of them correctly, so the over all accuracy of the proposed
approach is 93.3%.

In this paper we presented a framework for the detection of
acute renal rejection from Dynamic Contrast Enhanced Mag-
netic Resonance Images which includes segmentation of the
kidneys from the abdomen images, non-rigid registration and

Bayes classification.
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Fig. 8. Normalized cortex signals from 4 subjects wrt. scan number. Sub-
jects 1 and 2 are acute rejection, subject 3 is normal and subject 4 is chronic
glomerulopathy proved by biopsy.
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