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Abstract. A novel shape based segmentation approach is proposed by
modifying the external energy component of a deformable model. The
proposed external energy component depends not only on the gray level
of the images but also on the shape information which is obtained from
the signed distance maps of objects in a given data set. The gray level
distribution and the signed distance map of the points inside and outside
the object of interest are accurately estimated by modelling the empir-
ical density function with a linear combination of discrete Gaussians
(LCDG) with positive and negative components. Experimental results
on the segmentation of the kidneys from low-contrast DCE-MRI and on
the segmentation of the ventricles from brain MRI’s show how the ap-
proach is accurate in segmenting 2-D and 3-D data sets. The 2D results
for the kidney segmentation have been validated by a radiologist and
the 3D results of the ventricle segmentation have been validated with a
geometrical phantom.

1 Introduction

Both parametric deformable models and geometrical deformable models (level
sets) are powerful methods and have been used widely for the segmentation
problems; however, they both tend to fail in the case of noise, poor image res-
olution, diffused boundaries or occluded shapes, and they don’t take advantage
of the a priori models. Yet, especially in the area of medical imaging, organs
have well constrained forms within a family of shapes [1]. Thus, additional con-
straints based on the shape of the objects are greatly needed besides the gray
level information of these objects.

To allow shape driven segmentation, Leventon et.al. [2] used a shape prior
whose variance is obtained thorough PCA, and used this shape prior to evolve the
level sets to the maximum a posteriori shape. Chen et al. [3] defined an energy
functional which basically minimizes an Euclidean distance between a given point
and its shape prior. In [4], a representation of the segmenting curve was generated
based on the pose and shape parameters of a training set, which were optimized
using a region based energy functional. In [1,5] a shape prior and its variance

J. Duncan and G. Gerig (Eds.): MICCAI 2005, LNCS 3750, pp. 821–829, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

http://www.cvip.louisville.edu


822 A. El-Baz et al.

obtained from training data are used to define a Gaussian distribution, which
is then used in the external energy component of a level sets framework. In
[6], a shape boundary prior was formed from the features of the boundary, and
this boundary was used in a level set framework. Recently, Tsai et.al. [7] used
a deterministic model to represent the desired shape as a linear combination of
weighted signed 2D distance maps and estimated these weights by minimizing a
mutual information based cost function. And Yang et.al. [8] described the shapes
with a multidimensional Gaussian probability model of these weights.

Different from the previous studies, in our approach, instead of directly using
the average image itself, we are estimating the density of the signed distance map
inside and outside the object of interest of the registered training samples by our
modified EM algorithm and use this estimated density in the external energy
component of the proposed deformable model framework. This representation of
shapes is invariant to rotation and translation, and it overcomes the deformable
models’ inability to stop in high noise or in the case of missing edges.

2 Proposed Deformable Models

In conventional deformable models, surfaces move in the direction that minimizes
an energy function given as [9]:

E = Eint + Eext =
∫

τ∈T

(
ξint

(
φ(τ)

)
+ ξext

(
φ(τ)

))
dτ (1)

where ξint
(
φ(τ)

)
and ξext

(
φ(τ)

)
denote the internal and external forces respec-

tively.
Typical external forces designed in [9] lead a deformable model toward edges

in a 2D/3D grayscale image. This and the other traditional external forces (e.g.
based on lines or, edges, or the gradient vector flow) fail to make the deformable
model closely approach an intricate boundary with concavities. Moreover, due
to high computational complexity, the deformable models with such external
energies are slow compared to the other segmentation techniques.

As a solution to these problems, we modify the external energy component of
this energy formulation, and we formulate an energy function using the density
estimations of two distributions: the signed distance map from shape models and
the gray level distribution. The external energy component of our deformable
models is formulated as:

ξext

(
φ(τ)

)
=

{
−pg(q|k)ps(d|k) if k = k∗

pg(q|k)ps(d|k) if k �= k∗

In this formulation, k is the region label with k = 1, . . . , K, q is the gray level
and d is the signed distance where ps(d|k) is the density that describes the signed
distance map inside and outside the object, and pg(q|k) is the density estimation
of the gray level. With this energy function, the stochastic external force for each
control point φ(τ) of the current deformable model evolves in a region k∗.



2D and 3D Shape Based Segmentation Using Deformable Models 823

Specifically for the examples to be given in section 3, we assume that the
empirical density comes from two classes, i.e. k = 1, 2. For the kidney segmen-
tation problem, these classes are the kidney and the other tissues, and for the
ventricle segmentation, the first class is the gray matter, white matter, fat and
bones; while the second class is the CSF of the brain (inside and outside the
ventricles).

2.1 Shape Model Construction

The signed distance map density ps(d|k) in the above mentioned external energy
is calculated using a shape model, which is basically an average surface shape
obtained from the images in the data set. The steps to construct this average
surface shape is as follows:
1. Align the images in the data set using 2D/3D rigid registration based on

Mutual Information [10].
2. Manually segment the objects of interest from the database.
3. Calculate the 2D/3D edge V that describes the boundary of the object for

all the manually segmented N number of images obtained in Step 2.
4. From the N number of shapes calculated in Step 3, find the average 2D/3D

shape Vm of the object by: Vm = 1
N

∑N
i=1 V i.

5. From the average shape, the distribution of the signed distance map inside
and outside the 3D shape is calculated as follows: (z = 0 for 2D)

d(x, y, z) =

⎧⎨
⎩

0 (x, y, z) ∈ V
S((x, y, z), V ) (x, y, z) ∈ RV

−S((x, y, z), V ) Otherwise
(2)

where Rv is the region lying inside the shape and S((x, y, z), V ) is the mini-
mum Euclidean distance between the image location (x, y, z) and the curve
V . This shape model is constructed only once throughout the whole algo-
rithm.

The results of the average shape and signed distance calculations are shown
for the kidney in Fig. 2, and the density estimation of this average shape is
calculated using our modified EM approach which will be explained in Sec. 2.2.

2.2 Density Estimation

In this paper we will use our modified Expectation-Maximization algorithm that
approximates an empirical probability density function of scalar data with a
linear combination of discrete Gaussians (LCDG) with positive and negative
components.

In the following, we describe this model to estimate the marginal density for
the gray level distribution pg(q) in each region. The same approach is also used
to estimate the density of the signed distances ps(d) in the given image.

Let q ∈ Q = {0, 1, . . . , Q − 1} denote the Q-ary gray level. The discrete
Gaussian (DG) is defined as the discrete probability distribution Ψθ = (ψ(q|θ) :
q ∈ Q) on Q such that ψ(q|θ) = Φθ(q + 0.5) − Φθ(q − 0.5) for q = 1, . . . , Q − 2,
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ψ(0|θ) = Φθ(0.5), ψ(Q − 1|θ) = 1 − Φθ(Q − 1.5) where Φθ(q) is the cumulative
Gaussian (normal) probability function with a shorthand notation θ = (µ, σ2)
for its mean, µ, and variance, σ2.

In contrast to a conventional mixture of Gaussians and/or other simple dis-
tributions, one per region, we closely approximate the empirical gray level dis-
tribution for the given image with a LCDG having Cp positive and Cn negative
components:

pg:w,Θ(q) =
Cp∑
r=1

wp,rψ(q|θp,r) −
Cn∑
l=1

wn,lψ(q|θn,l) (3)

under the obvious restriction on the positive weights w = [wp,., wn,.]:
Cp∑
r=1

wp,r −
Cn∑
l=1

wn,l = 1 (4)

To estimate the parameters for the model shown in Eq. (4), we will use our
modified EM algorithm that modified the conventional EM algorithm to take into
account both positive and negative discrete Gaussian components. The details
of the algorithm are shown in [11].

2.3 Stepwise Deformable Model Algorithm

For any given image, the proposed algorithm of segmenting the region k∗ is as
follows:

1. Register the given image to an average image using Mutual Information [10],
where the average image is obtained by averaging the registered images of
the database of Step 1 in Sec. 2. This step makes the algorithm invariant to
scaling, rotation and translation.

2. Use the modified EM algorithm to estimate the density for signed distance
map ps(d|k) inside and outside the object of interest from the average shape
which was calculated a priori.

3. Calculate the normalized histogram for the given image/volume.
4. Use the modified EM algorithm to estimate the density for each class pg(q|k),

k being the class number k = 1...K.
5. Initialize the control points φ(τ) for the deformable model, and for each

control point φ(τ) on the current deformable model, calculate sign distances
indicating exterior (−) or interior (+) positions of each of the eight nearest
neighbors w.r.t. the contour.

6. Check the label k = X(φ(τ)) for each control point:
(a) If the point is assigned to the region k = k∗, then

i. Estimate the region labels for its neighbors using Bayesian classifier
such that they have the (−) distance.

ii. If some of these sites are also assigned to the class k∗, then move
the control point to the neighboring position ensuring the minimum
total energy (i.e., expand the contour).

iii. Otherwise, do not move this point (the steady state).
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(b) If the point is assigned to the region k �= k∗, then
i. Estimate the region labels for its neighbors using Bayesian classifier

such that they have the (+) distance.
ii. Move the control point to the neighboring position ensuring the min-

imum total energy (i.e. contract the contour)
7. If the iteration adds new control points, use the cubic spline interpolation

of the whole surface and then smooth all its control points with a low pass
filter.

8. Repeat steps 5, 6, and 7 until no positional changes occur in the control
points.

3 Experimental Results

This section presents the results of our approach to segment the kidneys from the
Dynamic Contrast-Enhanced MR images of the abdomen in 2D, and to segment
the brain ventricles from MR images in 3D.

3.1 2D Results for the Kidney

In this study, Dynamic Contrast-Enhanced MRI (DCE-MRI), has been employed
by a Signa Horizon GE 1.5T scanner using a contrast agent Gadolinium DTPA.
In DCE-MRI, after the injection of a contrast agent Gd-DTPA, the abdomen is
scanned rapidly and repeatedly resulting in high noise images because of the fast
image acquisition. Moreover, the contrast of the kidney in the images changes
continuously as the contrast agent perfuses into the kidney, resulting in very low
contrast at some stages of the perfusion, necessitating the use of shape models
in segmentation.

A typical DCE-MRI scan of a kidney is given in Fig. 1(a) with its empir-
ical density (normalized histogram) shown in blue and the estimation of this
density shown in red in Fig. 1(b). Figure 1(c) shows the positive and negative
LCDG components used in our modified EM algorithm, and Fig. 1 (d) shows
the estimated density for each class.

In Fig. 2(a) the average shape of a kidney obtained from 50 subjects is given
with the signed distance map inside and outside the object as in Fig. 2(b). The
density of this signed distance map is estimated with the same density estimation
approach, the results of which are shown in Fig. 2(c), (d).

Finally, Fig. 3 shows the segmentation results of our approach compared to
the segmentations by a radiologist.

3.2 3D Results for the Brain Ventricles

In the following part, we use the proposed segmentation approach on 3D data
sets collected from 20 subjects to segment the lateral ventricles of the brain in
MR images, and in the second part, we are evaluating the segmentation approach
using the cone-beam CT scans of a mould ventricle phantom.
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Fig. 1. A typical MRI scan of a kidney (a), and its gray level density estimation with
the Modified EM Algorithm: (b) LCG components of the density estimation, (c) The
final estimated density pg(q) for the empirical density f(q) of the kidney image, (d)
The marginal density estimation for each class.

(a) (b) (c) (d)

Fig. 2. (a) An average shape for a certain cross-sections of the kidney. (b) The signed
distance map of this shape. (c) Density estimation for the signed distance. (d) Marginal
density estimations for each class.

error = 0.029% error = 0.024%

Fig. 3. Segmentation results (shown in red to the right) w.r.t. the radiologist’s seg-
mentation (to the left).

For ventricle segmentation from MRI, twenty data sets are not enough to
get an accurate shape for the ventricles because the ventricles vibrate during the
MRI or CT scans. Therefore, to cover all the shape variations of the brain ventri-
cles for each subject, we performed finite element analysis on the motion of the
real brain ventricles. For finite element analysis of the ventricle shape changes,
assuming the cerebrospinal fluid (CSF) inside lateral ventricles is isotropic and
linear elastic, we employed the linear elastic mechanical model. The Young’s
modulus of the CSF is 1000 Pascals and the Poisson ratio is 0.499 ([12]). For
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(a) (b) (c) (d)

Fig. 4. The four states of the real ventricles at t=0, 0.7, 0.9, 1.1 seconds (final) from
left to right.
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Fig. 5. (a) Final density estimation for the mixed frequency gray level distribution,
(b) The class model of gray level for each class, (c) Final density estimation for the
sign map inside and outside the 3-D brain ventricle, (d) The final class model of signed
distance map for each class.

adults, the pressure of the CSF under normal conditions ranges between 50 and
180 mmH2O with a median pressure of 115 mmH2O. Therefore, the uniform
pressure of 115 mmH2O is applied over the surfaces of the ventricles for each
subject, and finite element analysis is performed to capture the variation of
the ventricles. After finite element analysis, the 3D structure is re-sliced and 10
states of the ventricles are obtained resulting in 20 subjects × 10 states = 200
datasets. The four states of one subject’s ventricles are shown in Fig. 4. Using
the resulting 200 data sets for the ventricles, we followed our density estimation
approach to estimate the density of the gray level distribution and the signed
distance map inside and outside the ventricles. The results of density estimation
using the proposed approach are shown in Fig. 5 and the segmentation results
at different signal to ratios (SNR) (obtained by adding Gaussian noise with
different variance) are shown in Fig. 6.

The hand segmentation of the radiologists may not always be accurate be-
cause of hand shaking. Therefore, to get accurate evaluation of our proposed
approach, we used a mould ventricle phantom that resembles the geometrical
structure of the real ventricles, scanned it with cone-beam CT, and used the
scans for finite element simulation. Following the same procedure of the ven-
tricle motion estimation, we captured all variations of the phantom ventricles.
For the database obtained from the geometrical phantom, the inverse mapping
method was used to get the same gray level distribution with the real ventricles;
the gray level distribution of which was shown in Fig. 5(b). The final step of our
algorithm is to estimate the pdf that describes the signed distance map inside
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(a) (b) (c) (d)

Fig. 6. (a) Results of our segmentation approach at SNR = 28dB, error = 0.01%
(b)at SNR = 7.8dB, error = 0.2% (c)at SNR = -1.9dB, error = 2.8%. (d) Result of
the segmentation errors using the conventional EM algorithm as a density estimator
at SNR = 28dB, error = 18.8%. The errors are shown in red.
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Fig. 7. (a) Final density estimation for the signed distance map inside and outside the
3-D ventricle phantom, (b) The final class model of signed distance map for each class.
Segmentation using our approach at different SNR (c) SNR = 28dB, error = 0.008%,
(d) SNR = −1.9dB, error = 1.76%.

and outside the geometrical phantom; the results of our modified EM algorithm
are shown in Fig. 7. Figure 7 (c – e) show the results of our segmentation for
the geometrical phantom at different signal to noise ratios and the errors are
calculated with respect to the ground truth from the phantom.

4 Conclusion

We have presented an approach for image segmentation which depends on both
the intensity gray level and the shape information, and we have applied the
algorithm on 2D and 3D images. Apart from the other shape based segmenta-
tion methods which calculate the mean and the variance and assume gaussian
distribution, in our method, the mean and variance are all embedded into the
estimated density, which is calculated using our modified EM algorithm. This
algorithm is notably fast, and works both in 2D and 3D.
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