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Evolutionary Periodogram for Nonstationary Signals

A. Salim Kayhan, Member, IEEE, Amro El-Jaroudi, Member, IEEE, and Luis F. Chaparro, Senior Member, IEEE

Abstract—In this paper, we present a novel estimator for the
time-dependent spectrum of a nonstationary signal. By modeling
the signal, at any given frequency, as having a time-varying
amplitude accurately represented by an orthonormal basis ex-
pansion, we are able to compute a minimum mean-squared
error estimate of this time-varying amplitude. Repeating the
process over all frequencies, we obtain a power distribution
as a function of time and frequency that is consistent with
the Wold-Cramer evolutionary spectrum. Based on the model
assumptions, we develop the evolutionary periodogram (EP) for
nonstationary signals, an estimator analogous to the periodogram
used in the stationary case. We also derive the time-frequency
resolution of the new estimator. Our approach is free of some
of the drawbacks of the bilinear distributions and of the short-
time Fourier transform spectral estimates. It is guaranteed to
produce nonnegative spectra without the cross-term behavior of
the bilinear distributions, and it does not require windowing of
data in the time domain. Examples illustrating the new estimator
are given.

I. INTRODUCTION

INCE most temporal signals of interest (e.g., speech,
Sseismic and biomedical signals) display some kind of
nonstationarity, the spectral analysis of such signals is a topic
of great research interest. Spectral analysis of nonstationary
signals has been usually done assuming local stationarity or
slow variation of the statistics of the signal. Differently from
the spectral analysis of stationary signals, related to power
distribution over frequency, there is no unique definition of
the time-dependent spectrum for nonstationary signals. In all
cases, however, such definitions must posses certain properties
which are verified when, in particular, the process is stationary
[1].

Presently, there are three main approaches to the estimation
of time-dependent spectrum of a nonstationary signal: The
short time Fourier transform (STFT) [2], the Wigner distribu-
tion [3] and the evolutionary spectrum [4]. Related approaches
have also been developed [5]-[7]. The STFT has been used
for a number of years in various areas of signal processing
[81, [9]. It assumes stationarity of the signal within a temporal
window chosen to balance the time-frequency resolution of
the spectrum. The most significant drawback of the STFT
as an estimator of the time-varying spectrum is the time-
frequency resolution trade-off that results from windowing of
the signal. This drawback has often been addressed by the
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use of time-varying windows to achieve the desired frequency
resolution at different times [10]. Another procedure for time-
varying spectral analysis is the Wigner distribution. Despite the
fact it has important and desirable mathematical properties,
the Wigner distribution also has significant limitations. The
existence of cross-terms, for instance, makes the Wigner
distribution difficult to interpret. Moreover, the positivity of
the spectral density is not guaranteed. The cross-terms can
be reduced by the use of smoothing kernels [6], [7]. Finally,
the evolutionary spectrum proposed by Priestley [4] is another
approach to the estimation of the time-varying power spectrum
of a nonstationary signal. In the evolutionary spectral theory,
attention is restricted to a class of processes called oscillatory
processes. The spectral estimates are obtained by complex
demodulation and lowpass filtering. As a special case of
Priestley’s evolutionary spectrum, one can obtain Melard’s
Wold-Cramer evolutionary spectrum [11] by representing the
nonstationary process in terms of its innovations. Melard
[4], [11] and Tjostheim [4] independently proposed such an
approach. With the Wold-Cramer spectrum, one obtains a
unique rather than a class of spectral density functions -as is
the case in Priestley’s evolutionary spectrum- which satisfies
the properties in [1].

Parametric approaches to the time-dependent spectral es-
timation have also been proposed. Rao [12] was the first
to consider autoregressive models for nonstationary signals
with time-varying coefficients represented as expansions of
orthogonal polynomials. Many other researchers [13]-{15]
have used this approach. It was shown using this approach
that the spectrum of a nonstationary signal cannot be viewed
as a concatenation of “frozen-time” spectra [11], [14]. This
makes the connection of the time-varying models to the power
spectrum difficult to establish.

The rest of the paper is organized as follows. In Section
II, we briefly review Melard’s Wold-Cramer evolutionary
spectrum and use it to propose a model for the frequency
components of a nonstationary signal. Then in Section III,
we develop a linear minimum mean-squared error estimator
for the time-varying amplitude at each frequency. In Section
IV, we focus on a time-varying or evolutionary periodogram
(EP) estimator which we obtain from the amplitude estima-
tor of Section III, and discuss some of its properties. The
time-frequency resolution, the filtering interpretation and the
computational requirements of the evolutionary periodogram
are especially considered. Finally, in Section V, we give
some examples to illustrate the performance of the proposed
estimator and compare our results to those obtained using
the STFT, the Wigner distribution and the method of time-
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frequency representation using cone-shaped and exponential
kernels [6], [7].

II. PROBLEM STATEMENT

In this section, we first define a time-dependent spectral
density for a nonstationary process, and then formulate the
estimation of the spectral density as the estimation of a time-
varying amplitude at each frequency.

A. Definitions

According to the Wold-Cramer decomposition [4], a
discrete-time nonstationary process z[n] can be represented
as the output of a causal, linear, time-varying system with
impulse response h[n,m]

z{n] = Z h[n, m]e[m] 1)

m=-0oc

where {e[m]} is a stationary zero-mean, unit-variance white
noise process. Furthermore, as a stationary signal {¢[m]} may
be expressed as a “sum” of sinusoids with random amplitudes
and phases

em] = / ™ dZ(w) )
where Z(w) is a process with orthogonal increments, i.e.
E{dZ(wl)dZ*(wz)} =0 wi ;é W (3)
and
E{ldz()) = 5 @
T oor’

Thus, by substituting (2) into (1), we can express the nonsta-
tionary process z[n] as

™

z[n] = H(n,w)e!"dZ(w) (5)
where
H(n,w) = Z h[n, mle” 3« (=™ (6)

is Zadeh’s generalized transfer function [16], [17] of a lin-
ear time-varying system with impulse response h[n,m] and
evaluated on the unit circle. '

In (5), the nonstationary process is expressed as a “sum” of
sinusoids with time-varying amplitudes and phases. From (5),
the variance of {z[n]} is given by

- [ )P, (7)

Pz -

E{jz[n]|?} =

Equation (7) shows the distribution of the power of the non-
stationary process {z[n]} at each time 7, as a function of the
frequency parameter w. Thus, the Wold-Cramer evolutionary
spectrum [11] is thus defined as

S(n,w) = |H(n,w)|?. (8)

This definition was independently proposed by Tjostheim
[4] and Melard [4], [11], and constitutes a special case
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of Priestley’s evolutionary spectrum [4], [11]. Instead of a
class of spectral functions, as in Priestley’s general case, the
Wold-Cramer evolutionary spectrum is uniquely given by the
representation of the nonstationary process.

The definition in (8) can be viewed as Priestley’s evolu-
tionary spectrum if one restricts the function H(n,w) to the
class of oscillatory functions. This restriction requires these
functions to be slowly-varying in time. Otherwise multiple
spectra can be obtained from the same signal, and the meaning
of the frequency parameter w becomes ambiguous. Below we
present a trivial example of this ambiguity.

Example: Given the signal z[n] = 1, for all time n,
this signal can be written in the form of equation (5) as
z[n] = H(n,0)e’ with H(n,0) = 1, which will produce
a spectrum S(n,0) = 1. The same signal can be written as
z[n] = H(n,m)ed™ with H(n,7) = €77, and will have a
spectrum S(n,7w) = 1. Note that this one signal can be seen
as having the same spectrum at various frequencies. However,
only the first (H(n,0) = 1) satisfies Priestley’s restrictions on
the function H(n,w).

We will impose a condition similar to Priestley’s on the
time-varying amplitudes and we will later show how this
condition relates to the work of Priestley and its effect on
the time frequency resolution of the spectral estimator.

Now consider the component of z[n] at frequency wo

zo[n] = H(n, wo)e?*0™dZ (wy). )

This component is a complex exponential of frequency wo,
with random time-varying amplitude and phase, such that its
local power is given by

dw dw

2—7;) =S (n,wg)z—;.
Hence, the average squared of this component carries the
power-frequency distribution as a function of time. Priestley
{4] suggests obtaining zo[r] by bandpass filtering x[n] around
wp, and then obtaining the time-varying power at wg by
estimating the local power in a short-time window. We present
in the remainder of this paper an approach which does not
require explicitly obtaining zo[n] and computes a minimum
mean-squared error estimate of the time-varying amplitude.

E{|zo[n]|?} = |H(n,wo)|? (10)

B. Model at a Frequency wg
Let us model z[n}, when considering a frequency of interest
wo, as

(1)

where y,,[n] is a zero-mean modeling error which includes
the components of z[n] at frequencies different from wp; and,
from (9), we have defined

A(n,wo) = H(n,wp)dZ(wo).

:L'[n] = :L‘Q[’I'L] + Yo [n] = A(nv “’O)Cjwon + Yoo [TL]

(12)
Notice that

2 dwo

E{]A(n, wo)] }=S(”,w0)§ (13)

and therefore, by estimating A(n,wp) from the data z[n],
we can estimate S(n,wp) and repeating this process for all
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frequencies w, we obtain an estimate of the time-dependent
spectral density S(n,w).

Consider then the practical case in which z[n] is given in a
finite interval and we model it as before, i.c.

z[n] = A(n,wo)e?™°™ + Yy, [n] 0<n<N-1. (14
Assume also that A(n,wp) varies with time in such a way that
it can be represented as an expansion of functions {3;[n]}

which are orthonormal over 0 < n < N — 1, ie.

M(wp)-1

A(n,wo) = Y Bflnla; =b[n]"a

i=0

(15)

where (.)¥ stands for the Hermitian transpose operation,
a = [ag---apm-1]T is a vector of the random expansion
coefficients, and b[n] = [Bo[n]- - Bar—1[n]]T is a vector of
the orthonormal functions at time n. The number of expansion
functions M (< N) depends on the frequency wy and indicates
the degree to which A(n,wg) varies with time. For small
values of M, A(n,wq) is slowly varying, and for large values
of M, it is rapidly varying. It is important to note that
expressing A(n,wp) as a smoothly-varying function of time
does not contradict the definition of A(n,wp) in (12). The
random component dZ(wp) is not a function of time, and for
every realization of the process z[n], the dZ(wp) term will
have but a single value. Thus dZ(wo) has no influence on the
time behavior of A(n,wy).

Clearly any time behavior of A(n,wg) can be approximated
arbitrarily closely by increasing M. Therefore for a large M,
the choice of expansion functions is not critical. However,
as we shall see later, large values of M adversely affect
the frequency resolution of the estimator. Consequently, one
should use all a priori knowledge available to select the set of
functions best suited for the time-behavior to be approximated,
so that the order of the expansion is kept at a minimum.

Based on the above assumptions for the time-varying am-
plitude A(m,wp), the signal z[n] can be expressed in the
following vector form

x=Fa+y (16)

where F is an N x M matrix with entries

{fni} = {Bn]e¥"},0<n<N-1,0<i<M-1
an
and
x = [z[0]---z[N = 1T
y= [ywo[o]" 'quo[N—
Based on this model, we propose below a minimum mean-

squared error estimator of the time-varying amplitude
A(n,wp).

1)7T.

III. LINEAR ESTIMATION OF A(n,wp)

In this section we propose a linear estimator for the time-
varying amplitude at a given frequency, as well as derive the
conditions for it to minimize a mean-squared error measure.
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A. Linear Estimator

Let us consider the following linear estimator for A(n,wo)

N-1
A(n,wo) = Z wi[n|z[k] (18)
k=0

where wy[n] are weights to be determined later. The estimator
in (18) is given in vector form by

A(n,wy) = wn]¥x (19)
where w[n] is a N x 1 vector with weights {wx[n]}.
By substituting (16) into (19), we write the estimator as
A(n,wp) = wn]FFa+ w(n|fy. (20)
The equation above shows that each estimate is formed of two
components: The first depends on the time-varying amplitude
at the frequency of interest wg, and the second is an error
term which depends on all the other components of z[n] at
frequencies different from wq. The optimal estimator must
produce the correct time-varying amplitude from the first
component and minimize the contribution of the error term.
In other words, we need to impose the restrictions that

w[n]?Fa = b[n]”a (2))
or
w[n]®F = b[n]?. (22)
Also we minimize the mean-squared error
MSE = E{|A(n,wp) — A(n,wo)|*}
= wln)" E{yy" }w[n]
= w[n]# Ry, w(n] 23)

where R, is the covariance matrix of the modeling er-
TOT Y., [n]. Equations (22) and (23) above constitute “band-
pass” type estimator conditions: Letting the desired component
through unchanged and minimizing the contribution of the
undesired components.

B. Mean-Squared Error Minimization

Since y,,[n] is a function of the analysis frequency wo
and is not known a priori, we make the assumption that
R,, = L In other words, we assume the modeling error is
white. This assumption, while seemingly not realistic, makes
the estimator suppress equally components not at the frequency
of interest. This assumption is actually the most general one
could make about the modeling error y,,[r] in absence of
any a priori information about it. It is important to note that
this assumption affects only the suppression capabilities of
the estimator weights, and that it is similar to the assumptions
made for the periodogram estimator in the stationary case [18].
By applying this assumption to (23), the mean-squared error
reduces to

MSE = wn]? win). (24)
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Fig. 1. Time-dependent minimum mean-squared error.

We minimize this error subject to the constraints in (21) using
the method of Lagrange multipliers, i.e., we minimize the cost
function

Cln] = win]fwln] — [w[n]HF - b[n]H]A (25)

where A is an M x 1 vector of Lagrange multipliers. By
setting the derivative of the cost function to zero, we obtain
the following minimization conditions

H _ \HFH, (26)

Wopt[n]

Solving for the vector A by multiplying both sides of (26) by
F from the right and using the property FHF = I (due to the
orthonormality of the functions {f;[n]}), and the conditions
in (22) we get

M = wop[n]7F

= b [n). @7

Substituting (27) into (26) to obtain the optimal weights yields

Wopt[n] = Fbin). 28

Finally, the minimum mean-squared error is obtained by
substituting (28) into (24)

MSEin = b[n]7b[n] = Z |8[n]|?
Two observations are in order here. First, the minimum MSE
varies with time and depends on the set of expansion functions
selected for the analysis. Fig. 1 shows the minimum MSE as a
function of time for the discrete Legendre set of orthonormal
polynomials [19] with M = 6,and N = 256. Second, the
optimal weights W,,¢{n] do not depend on the observed data
vector X, a direct result of the white noise assumption imposed
on the process Yo, (1]

The minimum MSE estimator is then obtained by substitut-
ing (28) in (19) and is given in vector form by

A(n,wo) = b[n] FFx

(29)

(30)
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or alternatively in scalar form by

R M-1 N-1 )
Aln,wo) = Y BiIn] Y Bilklz[kle™7**. (31
=0 k=0

IV. MINIMUM MEAN-SQUARED
ERROR SPECTRAL ESTIMATION

In this section, we define the Evolutionary Periodogram
(EP) based on the minimum mean-squared error amplitude
estimator developed in the previous section. We also derive
and examine many properties of this spectral estimator.

A. The Evolutionary Periodogram

The estimator A(n, wp) in (31) provides an estimate of the
time-varying amplitude of the component of z[n] at frequency
wo; by varying wo over all possible values of frequency, we
obtain the time-varying amplitude A(n,w) for all discrete
frequencies. An estimate of the time-varying spectral density
is then given by

A 2w 4 2
Sgp(n,w) = -d—IA(n,w)! (32)
2

M-1 N-1
Z grinl Y Bilkla[kle™F|  (33)
=0 k=0

where we have dropped the expectation operator from the
definition in (13). The factor 2r M /N substituted for dw will
be explained later in this section.

We call this estimator the evolutionary periodogram (EP).
The reason for this name is twofold: (1) The derivation
parallels closely the one given for the periodogram in [18],
(2) for the special case where A(n,w) does not vary with
time (i.e., M = 1,80 = 1/v/N), the EP reduces to

N-1 2

% Z z[k]e‘j“k

k=0

Sgp(n,w) = (34)

which is the standard periodogram spectral estimator. The
proposed EP thus includes the periodogram estimator for
stationary processes as a special case.

B. Properties of the EP

Many of the properties of the periodogram have their
counterparts in the EP, some of which will be considered
below.

Time-Frequency Resolution: The EP in (33) can be written
as

2

N

Sep(n,w) = (35)

N-1 ‘
Z [Z B [n]Bs k]] [Kle~7<*
k=0

=0

which can be interpreted as the magnitude squared of the
Fourler transform of z[k] windowed by the sequence v[n, k] =

21—0 B¢ [n]Bi[k]. We observe that the frequency resolution
of the estimator is therefore determined by the bandwidth of
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the window v(n, k]. The Fourier transform of this time-varying
window is given by
M-1

V(n,w)= Y [nBi(w)

=0

(36)

where B;(w) is the Fourier transform of j3;[n]. Since V(n,w)
is a linear combination of the Fourier transforms of the N-
point expansion functions {8;[n],0 < i < M — 1}, the
bandwidth of V(n,w) is approximately equal to the highest
frequency of significance in {B;(w),0 < ¢ < M — 1}.
For many of the standard sets of expansion functions (e.g.,
Fourier, Legendre), this frequency wmax is approximately
2n(M — 1)/N radians, and since the expansion functions
are defined over N points, wmax is the center of a lobe
which is 27 /N radians wide. The bandwidth of the window
V(n,w) is then 2n(M — 1)/N + 2x/N = 2xM /N radians.
Therefore, a frequency component in the input signal will
spread (smear) with a width 27M/N, so that, frequency
components which are closer than 27 M /N cannot be resolved.
1t is this bandwidth which is substituted for dw in (32) above
to give the form of the EP estimator in (33).

Note that for M = 1 (stationary processes), the bandwidth
reduces to 27 /N, the resolution of the periodogram, which
is not surprising in the light of the earlier discussion. Also
for a full set of expansion functions M = N, the bandwidth
increases to 2w, which means that we cannot resolve any
frequency components. This result illustrates that if we do
not restrict the time-behavior of the amplitudes A(n,w), i..
if we let M = N, the spectrum smears over all frequencies
and the estimator will yield values of the spectrum which are
constant in frequency. The parameter w then loses its physical
interpretation [4]. Therefore, to obtain meaningful spectra one
has to restrict the time behavior of A(n,w) (as pointed out by
Priestley [4]) by making M much smaller than N.

As we increase our ability to track fast changes in time by
increasing M to include higher order basis functions, we in-
crease the minimum separation between resolvable frequency
components thereby decreasing the frequency resolution. If we
decrease our resolution in time by decreasing M, we decrease
the minimum separation between resolvable frequency com-
ponents thereby increasing our resolution in frequency. It is
important to note that, as in the STFT, the resolution can be
further controlled using the length N of our analysis sequence.

The bandwidth of V(n,w) is sometimes actually smaller
than 2rM/N. Recall that V(n,w) is a linear combination of
{Bi(w),0 < i < M — 1} and that each of these functions is
weighted using 3;[n]. Therefore, for certain values of n—when
Bar—1[n] is very small (or zero}—Bps_1(w) has little or no
contribution to V(n,w). The highest frequency component in
V(n,w) is then associated with Bps_o(w) and the bandwidth
decreases (the frequency resolution increases) by a factor of
27 /N. Hence, depending on the set of expansion functions
used, the EP achieves better frequency resolutions at certain
times than at others.

In Fig. 2(a), we show a plot of |V (n,w)|? for N = 64 and
M = 2 where we used the discrete Legendre polynomials for
our basis functions. Note how the bandwidth of V(n,w) varies
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Fig. 2. (a) Fourier transform of the window function. (b) Bandwidth of

window at its narrowest point (solid line) and widest point (dashed line).

with time. It is narrowest for n = 31, and 32 and widest for
n = 0, and 63. In Fig. 2(b), the solid line shows the window
at its narrowest bandwidth, and the dashed line shows the
window at its widest bandwidth.

It is also important to recall that the parameter M can be
a function of frequency allowing us to tailor the resolution in
time-frequency to suit the task at hand.

Filtering Interpretation of the EP: The EP estimator in
(33) at a certain frequency wq can also be written as

2

) LN LIS
Sgp(n,wo) = i Z [Z 5:["]@'[]@]] z[k]
k=0 Li=0
N ¥ 2
= [n, £ — k|z[k] 37
M k=0 ! =0

Therefore, S'EP(n,wo) can be considered as the magnitude
squared of the output of a linear time-varying filter with a
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Fig. 3. (a) Real part of signal in example 1. (b) EP estimate for signal in example 1. (c) Wigner distribution for signal in example 1. (d) Time-frequency
representation with cone-shaped kernels for signal in example 1. (¢) Time-frequency representation with exponential kernels for signal in example 1. 43}
The STFT estimate for signal in example 1.

finite time-dependent impulse response time-varying frequency response centered around wo
, . M-1
_ [SMS BrnIBiR]leMoF, —(N ~1) <k <0 N 8 lB e
gln, k] = { 0. otherwise G(n,w) = Zﬂ B [n]Bi(w — wo). (38)

and excited with an input z[n]. This is a bandpass filter with Computing Sep(n,wo) is thus equivalent to passing z[n]
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1534

Time (sample)

©

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 42, NO. 6, JUNE 1994

Time (sample)

M "/‘"1\

//l/,l;%'//'/";/;';"“‘ ’,,’:‘l\\ ‘
TN
P N |
Ao
€000
@

QI
BB
ol W% %%0“““

25559 ‘““_‘,:'; i
st
88!

e

®

Fig. 4. (continued) (¢) Time-frequency representation with exponential kernels for signal in example 2. (f) The STFT estimate for signal in example 2.

through a time-varying bandpass filter centered around the
frequency of interest, and then computing the local energy of
the output by calculating its magnitude squared. This property
has a well-known equivalent for the periodogram [18] and for
the STFT [8] estimators.

It is worthwhile to point out that the filtering interpretation
shows the similarity of the EP to the process suggested by
Priestley [4] for computing the evolutionary spectrum. How-
ever, the approach to obtain the EP differs from Priestley’s in
the following points. First, the EP bandpass filters are time-
varying and designed using the set of orthonormal functions
that constrain the time behavior of the spectral density. Second,
this approach is computationally efficient as we shall see
below. Third, there is no time-averaging in computing the local
power in contrast to Priestley’s approach.

Computational Requirements of the EP: The EP estimate
can be computed efficiently over a finite interval 0 < n <
N — 1 by using fast Fourier transform (FFT) algorithms
(if M is constant for all frequencies). We use M FFT’s to
calculate the inner summation in (33)—the Fourier transform
of B;[k]z[k], for 0 < 7 < M — 1. Then, at each time n we
calculate the weighted summation of these values. Therefore,
the computational load is directly proportional to the number
of expansion functions. For M expansion functions over N
samples, we perform N x M complex multiplications to
calculate G;[k]z[k] (assuming the functions are complex),

M x N log, N complex multiplications and additions for the
FFTs, and 2M x N? complex multiplications and additions
to combine these values into an amplitude estimate. Thus,
M (2 + (log, 2N)/N) complex multiplications and additions
are necessary for each sample in the time-frequency plane
before the calculation of the magnitude squared. It is possible
to use parallel processors for real time applications of the EP
with delay.

V. EXAMPLES

In this section we present simulation results using the EP
estimator, and compare them with results using the Wigner
distribution, the short-time Fourier transform, and the time-
frequency distribution using the cone-shaped kernel and the
exponential kernel.

For the first example, the signal is given by

z1[n] = A1[n]e?™ + Ag[n]e?™

where Ai[n] = 1 — n/(N = 1), Az[n] = n/(N - 1),
w; = 037, wp = 077, and N = 128 The signal is
composed of two sinusoids: One with a linearly increasing
amplitude, and the other with a linearly decreasing amplitude.
The real part of this signal is shown in Fig. 3(a). The EP
estimate is shown in Fig. 3(b), the Wigner distribution (WD)
in Fig. 3(c), the estimate using the cone-shaped kernel (CSK)
for time-frequency representation [6] in Fig. 3(d), the one

(39)
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Fig. 5. EP spectral estimate at time n = 32 for sinusoids in noise in example 3. (b) Spectral estimate at time n = 32 for sinusoids in noise in
example 3 using time-frequency representation with cone-shaped kemnels. () Average (solid line) plus/minus one standard deviation (dashed line) of the
EP spectral estimates in example. (d) Average (solid line) plus/minus one standard deviation (dashed lines) of the time-frequency representation with

cone-shaped kernels estimates in example 3.

using the exponential kernels (EK) [7] in Fig. 3(e), and the
STFT in Fig. 3(f). For the EP, we use the discrete Legendre
polynomials with M = 2. For the CSK, we use a cone
parameter ¢ = 0.000143, for the STFT a Hamming window of
length 16, and for the EK, the parameter o = 1. Clearly, the
EP estimate is superior to its counterparts. Fig. 3(b) clearly
shows the quadratic time behavior of the power in each
sinusoid, and displays no cross-term behavior and a strictly
nonnegative estimate. Fig. 3(c) shows the cross-terms of the
Wigner distribution, which overwhelm the true components of
the signal. The WD, CSK and EK display negative estimates.
The EP also outperforms the STFT by tracking the time
behavior more accurately with better frequency resolution.
In the second example, the signal is given by

za[n) = Afn](e#1 " 4 3l (40)

where An] = 16n(N — n)/N?, wyg[n] = 7/2 £ mn/4N
and N 128. This signal is a sum of 2 chirps with
quadratic amplitudes, one with increasing frequency and one

with decreasing frequency. Fig. 4(a) shows the real part of
this signal. Fig. 4(b) illustrates the EP estimate, Fig. 4(c) the
Wigner distribution, Fig. 4(d) the CSK estimate, Fig. 4(e) the
EK estimate, and Fig. 4(f) the STFT. For each estimate, we
display the 3-D mesh plot of the time-frequency distribution
and a 2-D contour plot of the same. In this case, we use the set
of Fourier basis functions with M = 5 for the EP, and the same
parameters as in the previous example for the other estimators.
Again, the WD, CSK, and EK produce undesired cross-terms
and negative estimates. Also, by comparing the contour plots,
it is clear that the EP produces better time-frequency resolution
than the STFT.

In the third example, we demonstrate the performance
of the EP in noisy environments. We use the signal in
the first example and imbed it in white Gaussian noise.
Fig. 5(a) shows the EP estimate with M = 2 at time n
32 for ten different seeds with SNR = 25 dB. Fig. 5(b)
shows the estimate produced by the method of time-frequency
representation using cone-shaped kernels (CSK) for the same
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n and the same seeds. The EP produces better estimates which
clearly show the two sinusoids in the signal while the other
approach produces estimates with negative values and large
spurious peaks. Figs. 5(c) and 5(d) show the average of the
ten estimates (solid line) plus/minus one standard deviation
(dashed lines) with SNR = 19 dB for the EP and CSK,
respectively. The EP is clearly the approach with the lower
variance and the advantage of nonnegative estimates.

VI. CONCLUSION

In this paper, we propose a novel approach for the estimation
of the spectra of nonstationary signals. This approach, which
we call the evolutionary periodogram is based on expressing
the time-varying amplitude at each frequency as an expansion
of orthonormal functions, then obtaining a minimum mean-
squared estimate of these amplitudes. The EP has the standard
periodogram estimator as a special case. We examine the
time-frequency resolution trade-off properties of the EP, its
filtering interpretation and its computational advantages. The
EP outperforms the Wigner distribution and the STFT in
analyzing nonstationary signals. It produces estimates which
are easily interpreted and does not suffer from the drawbacks
of current approaches.
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