
Function Reference
Volume 2: F - O
Version 7

MATLAB®

The Language of Technical Computing

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference Volume 2: F - O
 COPYRIGHT 1984 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)

i

Contents

1
Functions — Categorical List

Desktop Tools and Development Environment 1-2
Startup and Shutdown . 1-2
Command Window and History . 1-3
Help for Using MATLAB . 1-3
Workspace, Search Path, and File Operations 1-3
Programming Tools . 1-5
System . 1-6

Mathematics . 1-7
Arrays and Matrices . 1-8
Linear Algebra . 1-10
Elementary Math . 1-12
Data Analysis and Fourier Transforms 1-15
Polynomials . 1-16
Interpolation and Computational Geometry 1-17
Coordinate System Conversion . 1-18
Nonlinear Numerical Methods . 1-18
Specialized Math . 1-20
Sparse Matrices . 1-20
Math Constants . 1-22

Programming and Data Types . 1-23
Data Types . 1-23
Arrays . 1-28
Operators and Operations . 1-30
Programming in MATLAB . 1-33

File I/O . 1-38
Filename Construction . 1-38
Opening, Loading, Saving Files . 1-39
Low-Level File I/O . 1-39
Text Files . 1-39
XML Documents . 1-39
Spreadsheets . 1-40

ii Contents

Scientific Data . 1-40
Audio and Audio/Video . 1-41
Images . 1-41
Internet Exchange . 1-42

Graphics . 1-43
Basic Plots and Graphs . 1-43
Annotating Plots . 1-44
Specialized Plotting . 1-44
Bit-Mapped Images . 1-47
Printing . 1-47
Handle Graphics . 1-47

3-D Visualization . 1-50
Surface and Mesh Plots . 1-50
View Control . 1-51
Lighting . 1-53
Transparency . 1-53
Volume Visualization . 1-53

Creating Graphical User Interfaces . 1-54
Predefined Dialog Boxes . 1-54
Deploying User Interfaces . 1-55
Developing User Interfaces . 1-55
User Interface Objects . 1-55
Finding Objects from Callbacks . 1-55

2
Functions — Alphabetical List

1
Functions — Categorical
List

The MATLAB® Function Reference contains descriptions of all MATLAB
commands and functions.

Select a category from the following table to see a list of related functions.

See Simulink®, Stateflow®, Real-Time Workshop®, and the individual
toolboxes for lists of their functions

Desktop Tools and
Development Environment

Startup, Command Window, help, editing and
debugging, tuning, other general functions

Mathematics Arrays and matrices, linear algebra, data
analysis, other areas of mathematics

Programming and Data
Types

Function/expression evaluation, program
control, function handles, object oriented
programming, error handling, operators, data
types, dates and times, timers

File I/O General and low-level file I/O, plus specific
file formats, like audio, spreadsheet, HDF,
images

Graphics Line plots, annotating graphs, specialized
plots, images, printing, Handle Graphics®

3-D Visualization Surface and mesh plots, view control, lighting
and transparency, volume visualization.

Creating Graphical User
Interface

GUIDE, programming graphical user
interfaces.

External Interfaces Java, COM, Serial Port functions.

1 Functions — Categorical List

1-2

Desktop Tools and Development Environment
General functions for working in MATLAB, including functions for startup,
Command Window, help, and editing and debugging.

Startup and Shutdown
exit Terminate MATLAB (same as quit)
finish MATLAB termination M-file
genpath Generate a path string
matlab Start MATLAB (UNIX systems)
matlab Start MATLAB (Windows systems)
matlabrc MATLAB startup M-file for single user systems or administrators
prefdir Return directory containing preferences, history, and layout files
preferences Display Preferences dialog box for MATLAB and related products
quit Terminate MATLAB
startup MATLAB startup M-file for user-defined options

“Startup and Shutdown” Startup and shutdown options

“Command Window and
History”

Controlling Command Window and History

“Help for Using
MATLAB”

Finding information

“Workspace, Search
Path, and File
Operations”

File, search path, variable management

“Programming Tools” Editing and debugging, source control, Notebook

“System” Identifying current computer, license, product
version, and more

Desktop Tools and Development Environment

1-3

Command Window and History
clc Clear Command Window
commandhistoryOpen the Command History, or select it if already open
commandwindowOpen the Command Window, or select it if already open
diary Save session to file
dos Execute DOS command and return result
format Control display format for output
home Move cursor to upper left corner of Command Window
matlab: Run specified function via hyperlink (matlabcolon)
more Control paged output for Command Window
perl Call Perl script using appropriate operating system executable
system Execute operating system command and return result
unix Execute UNIX command and return result

Help for Using MATLAB
doc Display online documentation in MATLAB Help browser
demo Access product demos via Help browser
docopt Web browser for UNIX platforms
docsearch Open Help browser Search pane and run search for specified term
help Display help for MATLAB functions in Command Window
helpbrowser Display Help browser for access to full online documentation and demos
helpwin Provide access to and display M-file help for all functions
info Display Release Notes for MathWorks products
lookfor Search for specified keyword in all help entries
playshow Run published M-file demo
support Open MathWorks Technical Support Web page
web Open Web site or file in Web browser or Help browser
whatsnew Display Release Notes for MathWorks products

Workspace, Search Path, and File Operations
• “Workspace”

• “Search Path”

• “File Operations”

1 Functions — Categorical List

1-4

Workspace
assignin Assign value to workspace variable
clear Remove items from workspace, freeing up system memory
evalin Execute string containing MATLAB expression in a workspace
exist Check if variables or functions are defined
openvar Open workspace variable in Array Editor for graphical editing
pack Consolidate workspace memory
uiimport Open Import Wizard, the graphical user interface to import data
which Locate functions and files
who, whos List variables in the workspace
workspace Display Workspace browser, a tool for managing the workspace

Search Path
addpath Add directories to MATLAB search path
genpath Generate path string
partialpath Partial pathname
path View or change the MATLAB directory search path
path2rc Replaced by savepath
pathdef List of directories in the MATLAB search path
pathsep Return path separator for current platform
pathtool Open Set Path dialog box to view and change MATLAB path
restoredefaultpathRestore the default search path
rmpath Remove directories from MATLAB search path
savepath Save current MATLAB search path to pathdef.m file

File Operations
cd Change working directory
copyfile Copy file or directory
delete Delete files or graphics objects
dir Display directory listing
exist Check if variables or functions are defined
fileattrib Set or get attributes of file or directory
filebrowser Display Current Directory browser, a tool for viewing files
lookfor Search for specified keyword in all help entries
ls List directory on UNIX
matlabroot Return root directory of MATLAB installation
mkdir Make new directory
movefile Move file or directory
pwd Display current directory
recycle Set option to move deleted files to recycle folder
rehash Refresh function and file system path caches
rmdir Remove directory

Desktop Tools and Development Environment

1-5

type List file
web Open Web site or file in Web browser or Help browser
what List MATLAB specific files in current directory
which Locate functions and files

See also “File I/O” functions.

Programming Tools
• “Editing and Debugging”

• “Performance Improvement and Tuning Tools and Techniques”

• “Source Control”

• “Publishing”

Editing and Debugging
dbclear Clear breakpoints
dbcont Resume execution
dbdown Change local workspace context
dbquit Quit debug mode
dbstack Display function call stack
dbstatus List all breakpoints
dbstep Execute one or more lines from current breakpoint
dbstop Set breakpoints
dbtype List M-file with line numbers
dbup Change local workspace context
debug M-file debugging functions
edit Edit or create M-file
keyboard Invoke the keyboard in an M-file

Performance Improvement and Tuning Tools and Techniques
memory Help for memory limitations
mlint Check M-files for possible problems, and report results
mlintrpt Run mlint for file or directory, reporting results in Web browser
pack Consolidate workspace memory
profile Profile the execution time for a function
profsave Save profile report in HTML format
rehash Refresh function and file system path caches
sparse Create sparse matrix
zeros Create array of all zeros

1 Functions — Categorical List

1-6

Source Control
checkin Check file into source control system
checkout Check file out of source control system
cmopts Get name of source control system
customverctrlAllow custom source control system
undocheckout Undo previous checkout from source control system
verctrl Version control operations on PC platforms

Publishing
notebook Open M-book in Microsoft Word (Windows only)
publish Run M-file containing cells, and save results to file of specified type

System
computer Identify information about computer on which MATLAB is running
javachk Generate error message based on Java feature support
license Show license number for MATLAB
prefdir Return directory containing preferences, history, and layout files
usejava Determine if a Java feature is supported in MATLAB
ver Display version information for MathWorks products
version Get MATLAB version number

Mathematics

1-7

Mathematics
Functions for working with arrays and matrices, linear algebra, data analysis,
and other areas of mathematics.

“Arrays and Matrices” Basic array operators and operations, creation of
elementary and specialized arrays and matrices

“Linear Algebra” Matrix analysis, linear equations, eigenvalues,
singular values, logarithms, exponentials,
factorization

“Elementary Math” Trigonometry, exponentials and logarithms,
complex values, rounding, remainders, discrete
math

“Data Analysis and
Fourier Transforms”

Descriptive statistics, finite differences, correlation,
filtering and convolution, fourier transforms

“Polynomials” Multiplication, division, evaluation, roots,
derivatives, integration, eigenvalue problem, curve
fitting, partial fraction expansion

“Interpolation and
Computational
Geometry”

Interpolation, Delaunay triangulation and
tessellation, convex hulls, Voronoi diagrams,
domain generation

“Coordinate System
Conversion”

Conversions between Cartesian and polar or
spherical coordinates

“Nonlinear Numerical
Methods”

Differential equations, optimization, integration

“Specialized Math” Airy, Bessel, Jacobi, Legendre, beta, elliptic, error,
exponential integral, gamma functions

“Sparse Matrices” Elementary sparse matrices, operations, reordering
algorithms, linear algebra, iterative methods, tree
operations

“Math Constants” Pi, imaginary unit, infinity, Not-a-Number, largest
and smallest positive floating point numbers,
floating point relative accuracy

1 Functions — Categorical List

1-8

Arrays and Matrices
• “Basic Information”

• “Operators”

• “Operations and Manipulation”

• “Elementary Matrices and Arrays”

• “Specialized Matrices”

Basic Information
disp Display array
display Display array
isempty True for empty matrix
isequal True if arrays are identical
isfloat True for floating-point arrays
isinteger True for integer arrays
islogical True for logical array
isnumeric True for numeric arrays
isscalar True for scalars
issparse True for sparse matrix
isvector True for vectors
length Length of vector
ndims Number of dimensions
numel Number of elements
size Size of matrix

Operators
+ Addition
+ Unary plus
- Subtraction
- Unary minus
* Matrix multiplication
^ Matrix power
\ Backslash or left matrix divide
/ Slash or right matrix divide
' Transpose
.' Nonconjugated transpose
.* Array multiplication (element-wise)
.^ Array power (element-wise)
.\ Left array divide (element-wise)
./ Right array divide (element-wise)

Mathematics

1-9

Operations and Manipulation
: (colon) Index into array, rearrange array
accumarray Construct an array with accumulation
blkdiag Block diagonal concatenation
cat Concatenate arrays
cross Vector cross product
cumprod Cumulative product
cumsum Cumulative sum
diag Diagonal matrices and diagonals of matrix
dot Vector dot product
end Last index
find Find indices of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip matrix along specified dimension
horzcat Horizontal concatenation
ind2sub Multiple subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
kron Kronecker tensor product
max Maximum value of array
min Minimum value of array
permute Rearrange dimensions of multidimensional array
prod Product of array elements
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
sum Sum of array elements
sqrtm Matrix square root
sub2ind Linear index from multiple subscripts
tril Lower triangular part of matrix
triu Upper triangular part of matrix
vertcat Vertical concatenation

See also “Linear Algebra” for other matrix operations.
See also “Elementary Math” for other array operations.

1 Functions — Categorical List

1-10

Elementary Matrices and Arrays
: (colon) Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
diag Diagonal matrices and diagonals of matrix
eye Identity matrix
freqspace Frequency spacing for frequency response
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
repmat Replicate and tile array
zeros Create array of all zeros

Specialized Matrices
compan Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of Hilbert matrix
magic Magic square
pascal Pascal matrix
rosser Classic symmetric eigenvalue test problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra
• “Matrix Analysis”

• “Linear Equations”

• “Eigenvalues and Singular Values”

• “Matrix Logarithms and Exponentials”

• “Factorization”

Mathematics

1-11

Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Determinant
norm Matrix or vector norm
normest Estimate matrix 2-norm
null Null space
orth Orthogonalization
rank Matrix rank
rcond Matrix reciprocal condition number estimate
rref Reduced row echelon form
subspace Angle between two subspaces
trace Sum of diagonal elements

Linear Equations
\ and / Linear equation solution
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cond Condition number with respect to inversion
condest 1-norm condition number estimate
funm Evaluate general matrix function
inv Matrix inverse
linsolve Solve linear systems of equations
lscov Least squares solution in presence of known covariance
lsqnonneg Nonnegative least squares
lu LU matrix factorization
luinc Incomplete LU factorization
pinv Moore-Penrose pseudoinverse of matrix
qr Orthogonal-triangular decomposition
rcond Matrix reciprocal condition number estimate

Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
condeig Condition number with respect to eigenvalues
eig Eigenvalues and eigenvectors
eigs Eigenvalues and eigenvectors of sparse matrix
gsvd Generalized singular value decomposition
hess Hessenberg form of matrix
poly Polynomial with specified roots
polyeig Polynomial eigenvalue problem
qz QZ factorization for generalized eigenvalues

1 Functions — Categorical List

1-12

rsf2csf Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition
svds Singular values and vectors of sparse matrix

Matrix Logarithms and Exponentials
expm Matrix exponential
logm Matrix logarithm
sqrtm Matrix square root

Factorization
balance Diagonal scaling to improve eigenvalue accuracy
cdf2rdf Complex diagonal form to real block diagonal form
chol Cholesky factorization
cholinc Incomplete Cholesky factorization
cholupdate Rank 1 update to Cholesky factorization
lu LU matrix factorization
luinc Incomplete LU factorization
planerot Givens plane rotation
qr Orthogonal-triangular decomposition
qrdelete Delete column or row from QR factorization
qrinsert Insert column or row into QR factorization
qrupdate Rank 1 update to QR factorization
qz QZ factorization for generalized eigenvalues
rsf2csf Real block diagonal form to complex diagonal form

Elementary Math
• “Trigonometric”

• “Exponential”

• “Complex”

• “Rounding and Remainder”

• “Discrete Math (e.g., Prime Factors)”

Mathematics

1-13

Trigonometric
acos Inverse cosine
acosd Inverse cosine, degrees
acosh Inverse hyperbolic cosine
acot Inverse cotangent
acotd Inverse cotangent, degrees
acoth Inverse hyperbolic cotangent
acsc Inverse cosecant
acscd Inverse cosecant, degrees
acsch Inverse hyperbolic cosecant
asec Inverse secant
asecd Inverse secant, degrees
asech Inverse hyperbolic secant
asin Inverse sine
asind Inverse sine, degrees
asinh Inverse hyperbolic sine
atan Inverse tangent
atand Inverse tangent, degrees
atanh Inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent
cos Cosine
cosd Cosine, degrees
cosh Hyperbolic cosine
cot Cotangent
cotd Cotangent, degrees
coth Hyperbolic cotangent
csc Cosecant
cscd Cosecant, degrees
csch Hyperbolic cosecant
sec Secant
secd Secant, degrees
sech Hyperbolic secant
sin Sine
sind Sine, degrees
sinh Hyperbolic sine
tan Tangent
tand Tangent, degrees
tanh Hyperbolic tangent

1 Functions — Categorical List

1-14

Exponential
exp Exponential
expm1 Exponential of x minus 1
log Natural logarithm
log1p Logarithm of 1+x
log2 Base 2 logarithm and dissect floating-point numbers into exponent and

mantissa
log10 Common (base 10) logarithm
nextpow2 Next higher power of 2
pow2 Base 2 power and scale floating-point number
reallog Natural logarithm for nonnegative real arrays
realpow Array power for real-only output
realsqrt Square root for nonnegative real arrays
sqrt Square root
nthroot Real nth root

Complex
abs Absolute value
angle Phase angle
complex Construct complex data from real and imaginary parts
conj Complex conjugate
cplxpair Sort numbers into complex conjugate pairs
i Imaginary unit
imag Complex imaginary part
isreal True for real array
j Imaginary unit
real Complex real part
sign Signum
unwrap Unwrap phase angle

Rounding and Remainder
fix Round towards zero
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
mod Modulus after division
rem Remainder after division

Mathematics

1-15

Discrete Math (e.g., Prime Factors)
factor Prime factors
factorial Factorial function
gcd Greatest common divisor
isprime True for prime numbers
lcm Least common multiple
nchoosek All combinations of N elements taken K at a time
perms All possible permutations
primes Generate list of prime numbers
rat, rats Rational fraction approximation

Data Analysis and Fourier Transforms
• “Basic Operations”

• “Finite Differences”

• “Correlation”

• “Filtering and Convolution”

• “Fourier Transforms”

Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
max Maximum elements of array
mean Average or mean value of arrays
median Median value of arrays
min Minimum elements of array
prod Product of array elements
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
var Variance

Finite Differences
del2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient

1 Functions — Categorical List

1-16

Correlation
corrcoef Correlation coefficients
cov Covariance matrix
subspace Angle between two subspaces

Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
convn N-dimensional convolution
deconv Deconvolution and polynomial division
detrend Linear trend removal
filter Filter data with infinite impulse response (IIR) or finite impulse response

(FIR) filter
filter2 Two-dimensional digital filtering

Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
fft One-dimensional discrete Fourier transform
fft2 Two-dimensional discrete Fourier transform
fftn N-dimensional discrete Fourier Transform
fftshift Shift DC component of discrete Fourier transform to center of spectrum
fftw Interface to the FFTW library run-time algorithm for tuning FFTs
ifft Inverse one-dimensional discrete Fourier transform
ifft2 Inverse two-dimensional discrete Fourier transform
ifftn Inverse multidimensional discrete Fourier transform
ifftshift Inverse fast Fourier transform shift
nextpow2 Next power of two
unwrap Correct phase angles

Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert between partial fraction expansion and polynomial coefficients
roots Polynomial roots

Mathematics

1-17

Interpolation and Computational Geometry
• “Interpolation”

• “Delaunay Triangulation and Tessellation”

• “Convex Hull”

• “Voronoi Diagrams”

• “Domain Generation”

Interpolation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional data
griddatan Data gridding and hypersurface fitting (dimension >= 2)
interp1 One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)
interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using fast Fourier transform method
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
mkpp Make piecewise polynomial
ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation
spline Cubic spline data interpolation
tsearchn Multidimensional closest simplex search
unmkpp Piecewise polynomial details

Delaunay Triangulation and Tessellation
delaunay Delaunay triangulation
delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot Two-dimensional triangular plot
trisurf Triangular surface plot
tsearch Search for enclosing Delaunay triangle
tsearchn Multidimensional closest simplex search

1 Functions — Categorical List

1-18

Convex Hull
convhull Convex hull
convhulln Multidimensional convex hull
patch Create patch graphics object
plot Linear two-dimensional plot
trisurf Triangular surface plot

Voronoi Diagrams
dsearch Search for nearest point
patch Create patch graphics object
plot Linear two-dimensional plot
voronoi Voronoi diagram
voronoin Multidimensional Voronoi diagrams

Domain Generation
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation

Coordinate System Conversion

Cartesian
cart2sph Transform Cartesian to spherical coordinates
cart2pol Transform Cartesian to polar coordinates
pol2cart Transform polar to Cartesian coordinates
sph2cart Transform spherical to Cartesian coordinates

Nonlinear Numerical Methods
• “Ordinary Differential Equations (IVP)”

• “Delay Differential Equations”

• “Boundary Value Problems”

• “Partial Differential Equations”

• “Optimization”

• “Numerical Integration (Quadrature)”

Mathematics

1-19

Ordinary Differential Equations (IVP)
ode113 Solve non-stiff differential equations, variable order method
ode15i Solve fully implicit differential equations, variable order method
ode15s Solve stiff ODEs and DAEs Index 1, variable order method
ode23 Solve non-stiff differential equations, low order method
ode23s Solve stiff differential equations, low order method
ode23t Solve moderately stiff ODEs and DAEs Index 1, trapezoidal rule
ode23tb Solve stiff differential equations, low order method
ode45 Solve non-stiff differential equations, medium order method
odextend Extend the solution of an initial value problem
odeget Get ODE options parameters
odeset Create/alter ODE options structure
decic Compute consistent initial conditions for ode15i
deval Evaluate solution of differential equation problem

Delay Differential Equations
dde23 Solve delay differential equations with constant delays
ddeget Get DDE options parameters
ddeset Create/alter DDE options structure
deval Evaluate solution of differential equation problem

Boundary Value Problems
bvp4c Solve boundary value problems for ODEs
bvpget Get BVP options parameters
bvpset Create/alter BVP options structure
deval Evaluate solution of differential equation problem

Partial Differential Equations
pdepe Solve initial-boundary value problems for parabolic-elliptic PDEs
pdeval Evaluates by interpolation solution computed by pdepe

Optimization
fminbnd Scalar bounded nonlinear function minimization
fminsearch Multidimensional unconstrained nonlinear minimization, by

Nelder-Mead direct search method
fzero Scalar nonlinear zero finding
lsqnonneg Linear least squares with nonnegativity constraints
optimset Create or alter optimization options structure
optimget Get optimization parameters from options structure

1 Functions — Categorical List

1-20

Numerical Integration (Quadrature)
quad Numerically evaluate integral, adaptive Simpson quadrature (low order)
quadl Numerically evaluate integral, adaptive Lobatto quadrature (high order)
quadv Vectorized quadrature
dblquad Numerically evaluate double integral
triplequad Numerically evaluate triple integral

Specialized Math
airy Airy functions
besselh Bessel functions of third kind (Hankel functions)
besseli Modified Bessel function of first kind
besselj Bessel function of first kind
besselk Modified Bessel function of second kind
bessely Bessel function of second kind
beta Beta function
betainc Incomplete beta function
betaln Logarithm of beta function
ellipj Jacobi elliptic functions
ellipke Complete elliptic integrals of first and second kind
erf Error function
erfc Complementary error function
erfcinv Inverse complementary error function
erfcx Scaled complementary error function
erfinv Inverse error function
expint Exponential integral
gamma Gamma function
gammainc Incomplete gamma function
gammaln Logarithm of gamma function
legendre Associated Legendre functions
psi Psi (polygamma) function

Sparse Matrices
• “Elementary Sparse Matrices”

• “Full to Sparse Conversion”

• “Working with Sparse Matrices”

• “Reordering Algorithms”

• “Linear Algebra”

• “Linear Equations (Iterative Methods)”

• “Tree Operations”

Mathematics

1-21

Elementary Sparse Matrices
spdiags Sparse matrix formed from diagonals
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse random symmetric matrix

Full to Sparse Conversion
find Find indices of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import from sparse matrix external format

Working with Sparse Matrices
issparse True for sparse matrix
nnz Number of nonzero matrix elements
nonzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero matrix elements
spones Replace nonzero sparse matrix elements with ones
spparms Set parameters for sparse matrix routines
spy Visualize sparsity pattern

Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd Column minimum degree permutation
colperm Column permutation
dmperm Dulmage-Mendelsohn permutation
randperm Random permutation
symamd Symmetric approximate minimum degree permutation
symmmd Symmetric minimum degree permutation
symrcm Symmetric reverse Cuthill-McKee permutation

Linear Algebra
cholinc Incomplete Cholesky factorization
condest 1-norm condition number estimate
eigs Eigenvalues and eigenvectors of sparse matrix
luinc Incomplete LU factorization
normest Estimate matrix 2-norm
sprank Structural rank
svds Singular values and vectors of sparse matrix

1 Functions — Categorical List

1-22

Linear Equations (Iterative Methods)
bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
gmres Generalized Minimum Residual method
lsqr LSQR implementation of Conjugate Gradients on Normal Equations
minres Minimum Residual method
pcg Preconditioned Conjugate Gradients method
qmr Quasi-Minimal Residual method
spaugment Form least squares augmented system
symmlq Symmetric LQ method

Tree Operations
etree Elimination tree
etreeplot Plot elimination tree
gplot Plot graph, as in “graph theory”
symbfact Symbolic factorization analysis
treelayout Lay out tree or forest
treeplot Plot picture of tree

Math Constants
eps Floating-point relative accuracy
i Imaginary unit
Inf Infinity, ∞
intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type
j Imaginary unit
NaN Not-a-Number
pi Ratio of a circle’s circumference to its diameter, π
realmax Largest positive floating-point number
realmin Smallest positive floating-point number

Programming and Data Types

1-23

Programming and Data Types

Functions to store and operate on data at either the MATLAB command line or
in programs and scripts. Functions to write, manage, and execute MATLAB
programs.

Data Types
• “Numeric”

• “Characters and Strings”

• “Structures”

• “Cell Arrays”

• “Data Type Conversion”

• “Determine Data Type”

“Data Types” Numeric, character, structures, cell arrays,
and data type conversion

“Arrays” Basic array operations and manipulation

“Operators and Operations” Special characters and arithmetic, bit-wise,
relational, logical, set, date and time
operations

“Programming in MATLAB” M-files, function/expression evaluation,
program control, function handles, object
oriented programming, error handling

1 Functions — Categorical List

1-24

Numeric
[] Array constructor
cat Concatenate arrays
class Return object’s class name (e.g., numeric)
find Find indices and values of nonzero array elements
intmax Largest possible value of specified integer type
intmin Smallest possible value of specified integer type
intwarning Enable or disable integer warnings
ipermute Inverse permute dimensions of multidimensional array
isa Determine if item is object of given class (e.g., numeric)
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal
isnumeric Determine if item is numeric array
isreal Determine if all array elements are real numbers
isscalar True for scalars (1-by-1 matrices)
isvector True for vectors (1-by-N or N-by-1 matrices)
permute Rearrange dimensions of multidimensional array
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
reshape Reshape array
squeeze Remove singleton dimensions from array
zeros Create array of all zeros

Characters and Strings

Description of Strings in MATLAB

strings Describes MATLAB string handling

Creating and Manipulating Strings

blanks Create string of blanks
char Create character array (string)
cellstr Create cell array of strings from character array
datestr Convert to date string format
deblank Strip trailing blanks from the end of string
lower Convert string to lower case
sprintf Write formatted data to string
sscanf Read string under format control
strcat String concatenation

Programming and Data Types

1-25

strjust Justify character array
strread Read formatted data from string
strrep String search and replace
strtrim Remove leading and trailing whitespace from string
strvcat Vertical concatenation of strings
upper Convert string to upper case

Comparing and Searching Strings

class Return object’s class name (e.g., char)
findstr Find string within another, longer string
isa Determine if item is object of given class (e.g., char)
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isletter Detect array elements that are letters of the alphabet
isscalar True for scalars (1-by-1 matrices)
isspace Detect elements that are ASCII white spaces
isstrprop Determine content of each element of string
isvector True for vectors (1-by-N or N-by-1 matrices)
regexp Match regular expression
regexpi Match regular expression, ignoring case
regexprep Replace string using regular expression
strcmp Compare strings
strcmpi Compare strings, ignoring case
strfind Find one string within another
strmatch Find possible matches for string
strncmp Compare first n characters of strings
strncmpi Compare first n characters of strings, ignoring case
strtok First token in string

Evaluating String Expressions

eval Execute string containing MATLAB expression
evalc Evaluate MATLAB expression with capture
evalin Execute string containing MATLAB expression in workspace

1 Functions — Categorical List

1-26

Structures
cell2struct Cell array to structure array conversion
class Return object’s class name (e.g., struct)
deal Deal inputs to outputs
fieldnames Field names of structure
isa Determine if item is object of given class (e.g., struct)
isequal Determine if arrays are numerically equal
isfield Determine if item is structure array field
isscalar True for scalars (1-by-1 matrices)
isstruct Determine if item is structure array
isvector True for vectors (1-by-N or N-by-1 matrices)
orderfields Order fields of a structure array
rmfield Remove structure fields
struct Create structure array
struct2cell Structure to cell array conversion

Cell Arrays
{ } Construct cell array
cell Construct cell array
cellfun Apply function to each element in cell array
cellstr Create cell array of strings from character array
cell2mat Convert cell array of matrices into single matrix
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display structure of cell arrays
class Return object’s class name (e.g., cell)
deal Deal inputs to outputs
isa Determine if item is object of given class (e.g., cell)
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
isequal Determine if arrays are numerically equal
isscalar True for scalars (1-by-1 matrices)
isvector True for vectors (1-by-N or N-by-1 matrices)
mat2cell Divide matrix up into cell array of matrices
num2cell Convert numeric array into cell array
struct2cell Structure to cell array conversion

Programming and Data Types

1-27

Data Type Conversion

Numeric

double Convert to double-precision
int8 Convert to signed 8-bit integer
int16 Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
int64 Convert to signed 64-bit integer
single Convert to single-precision
uint8 Convert to unsigned 8-bit integer
uint16 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-bit integer
uint64 Convert to unsigned 64-bit integer

String to Numeric

base2dec Convert base N number string to decimal number
bin2dec Convert binary number string to decimal number
hex2dec Convert hexadecimal number string to decimal number
hex2num Convert hexadecimal number string to double number
str2double Convert string to double-precision number
str2num Convert string to number

Numeric to String

char Convert to character array (string)
dec2base Convert decimal to base N number in string
dec2bin Convert decimal to binary number in string
dec2hex Convert decimal to hexadecimal number in string
int2str Convert integer to string
mat2str Convert a matrix to string
num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices into single matrix
cell2struct Convert cell array to structure array
datestr Convert serial date number to string
func2str Convert function handle to function name string
logical Convert numeric to logical array
mat2cell Divide matrix up into cell array of matrices
num2cell Convert a numeric array to cell array
str2func Convert function name string to function handle
struct2cell Convert structure to cell array

1 Functions — Categorical List

1-28

Determine Data Type
is* Detect state
isa Determine if item is object of given class
iscell Determine if item is cell array
iscellstr Determine if item is cell array of strings
ischar Determine if item is character array
isfield Determine if item is character array
isfloat True for floating-point arrays
isinteger True for integer arrays
isjava Determine if item is Java object
islogical Determine if item is logical array
isnumeric Determine if item is numeric array
isobject Determine if item is MATLAB OOPs object
isreal Determine if all array elements are real numbers
isstruct Determine if item is MATLAB structure array

Arrays
• “Array Operations”

• “Basic Array Information”

• “Array Manipulation”

• “Elementary Arrays”

Array Operations
[] Array constructor
, Array row element separator
; Array column element separator
: Specify range of array elements
end Indicate last index of array
+ Addition or unary plus
- Subtraction or unary minus
.* Array multiplication
./ Array right division
.\ Array left division
.^ Array power
.' Array (nonconjugated) transpose

Programming and Data Types

1-29

Basic Array Information
disp Display text or array
display Overloaded method to display text or array
isempty Determine if array is empty
isequal Determine if arrays are numerically equal
isequalwithequalnansTest for equality, treating NaNs as equal
islogical Determine if item is logical array
isnumeric Determine if item is numeric array
isscalar Determine if item is a scalar
isvector Determine if item is a vector
length Length of vector
ndims Number of array dimensions
numel Number of elements in matrix or cell array
size Array dimensions

Array Manipulation
: Specify range of array elements
blkdiag Construct block diagonal matrix from input arguments
cat Concatenate arrays
circshift Shift array circularly
find Find indices and values of nonzero elements
fliplr Flip matrices left-right
flipud Flip matrices up-down
flipdim Flip array along specified dimension
horzcat Horizontal concatenation
ind2sub Subscripts from linear index
ipermute Inverse permute dimensions of multidimensional array
permute Rearrange dimensions of multidimensional array
repmat Replicate and tile array
reshape Reshape array
rot90 Rotate matrix 90 degrees
shiftdim Shift dimensions
sort Sort array elements in ascending or descending order
sortrows Sort rows in ascending order
squeeze Remove singleton dimensions
sub2ind Single index from subscripts
vertcat Horizontal concatenation

1 Functions — Categorical List

1-30

Elementary Arrays
: Regularly spaced vector
blkdiag Construct block diagonal matrix from input arguments
eye Identity matrix
linspace Generate linearly spaced vectors
logspace Generate logarithmically spaced vectors
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation
ones Create array of all ones
rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
zeros Create array of all zeros

Operators and Operations
• “Special Characters”

• “Arithmetic Operations”

• “Bit-wise Operations”

• “Relational Operations”

• “Logical Operations”

• “Set Operations”

• “Date and Time Operations”

Special Characters
: Specify range of array elements
() Pass function arguments, or prioritize operations
[] Construct array
{ } Construct cell array
. Decimal point, or structure field separator
... Continue statement to next line
, Array row element separator
; Array column element separator
% Insert comment line into code
! Command to operating system
= Assignment

Programming and Data Types

1-31

Arithmetic Operations
+ Plus
- Minus
. Decimal point
= Assignment
* Matrix multiplication
/ Matrix right division
\ Matrix left division
^ Matrix power
' Matrix transpose
.* Array multiplication (element-wise)
./ Array right division (element-wise)
.\ Array left division (element-wise)
.^ Array power (element-wise)
.' Array transpose

Bit-wise Operations
bitand Bit-wise AND
bitcmp Bit-wise complement
bitor Bit-wise OR
bitmax Maximum floating-point integer
bitset Set bit at specified position
bitshift Bit-wise shift
bitget Get bit at specified position
bitxor Bit-wise XOR

Relational Operations
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
== Equal to
~= Not equal to

1 Functions — Categorical List

1-32

Logical Operations
&& Logical AND
|| Logical OR
& Logical AND for arrays
| Logical OR for arrays
~ Logical NOT
all Test to determine if all elements are nonzero
any Test for any nonzero elements
false False array
find Find indices and values of nonzero elements
is* Detect state
isa Determine if item is object of given class
iskeyword Determine if string is MATLAB keyword
isvarname Determine if string is valid variable name
logical Convert numeric values to logical
true True array
xor Logical EXCLUSIVE OR

Set Operations
intersect Set intersection of two vectors
ismember Detect members of set
setdiff Return set difference of two vectors
issorted Determine if set elements are in sorted order
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of vector

Date and Time Operations
addtodate Modify particular field of date number
calendar Calendar for specified month
clock Current time as date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Convert serial date number to string
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week

Programming and Data Types

1-33

Programming in MATLAB

• “M-File Functions and Scripts”

• “Evaluation of Expressions and Functions”

• “Timer Functions”

• “Variables and Functions in Memory”

• “Control Flow”

• “Function Handles”

• “Object-Oriented Programming”

• “Error Handling”

• “MEX Programming”

M-File Functions and Scripts
() Pass function arguments
% Insert comment line into code
... Continue statement to next line
depfun List dependent functions of M-file or P-file
depdir List dependent directories of M-file or P-file
echo Echo M-files during execution
function Function M-files
input Request user input
inputname Input argument name
mfilename Name of currently running M-file
namelengthmaxReturn maximum identifier length
nargin Number of function input arguments
nargout Number of function output arguments
nargchk Check number of input arguments
nargoutchk Validate number of output arguments
pcode Create preparsed pseudocode file (P-file)
script Describes script M-file
varargin Accept variable number of arguments
varargout Return variable number of arguments

1 Functions — Categorical List

1-34

Evaluation of Expressions and Functions
builtin Execute built-in function from overloaded method
cellfun Apply function to each element in cell array
echo Echo M-files during execution
eval Interpret strings containing MATLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace
feval Evaluate function
iskeyword Determine if item is MATLAB keyword
isvarname Determine if item is valid variable name
pause Halt execution temporarily
run Run script that is not on current path
script Describes script M-file
symvar Determine symbolic variables in expression
tic, toc Stopwatch timer

Timer Functions
delete Delete timer object from memory
disp Display information about timer object
get Retrieve information about timer object properties
isvalid Determine if timer object is valid
set Display or set timer object properties
start Start a timer
startat Start a timer at a specific timer
stop Stop a timer
timer Create a timer object
timerfind Return an array of all visible timer objects in memory
timerfindall Return an array of all timer objects in memory
wait Block command line until timer completes

Variables and Functions in Memory
assignin Assign value to workspace variable
genvarname Construct valid variable name from string
global Define global variables
inmem Return names of functions in memory
isglobal Determine if item is global variable
mislocked True if M-file cannot be cleared
mlock Prevent clearing M-file from memory
munlock Allow clearing M-file from memory
namelengthmaxReturn maximum identifier length
pack Consolidate workspace memory
persistent Define persistent variable
rehash Refresh function and file system caches

Programming and Data Types

1-35

Control Flow
break Terminate execution of for loop or while loop
case Case switch
catch Begin catch block
continue Pass control to next iteration of for or while loop
else Conditionally execute statements
elseif Conditionally execute statements
end Terminate conditional statements, or indicate last index
error Display error messages
for Repeat statements specific number of times
if Conditionally execute statements
otherwise Default part of switch statement
return Return to invoking function
switch Switch among several cases based on expression
try Begin try block
while Repeat statements indefinite number of times

Function Handles
class Return object’s class name (e.g. function_handle)
feval Evaluate function
function_handle

Describes function handle data type
functions Return information about function handle
func2str Constructs function name string from function handle
isa Determine if item is object of given class (e.g. function_handle)
isequal Determine if function handles are equal
str2func Constructs function handle from function name string

Object-Oriented Programming

MATLAB Classes and Objects

class Create object or return class of object
fieldnames List public fields belonging to object,
inferiorto Establish inferior class relationship
isa Determine if item is object of given class
isobject Determine if item is MATLAB OOPs object
loadobj User-defined extension of load function for user objects
methods Display information on class methods
methodsview Display information on class methods in separate window
saveobj User-defined extension of save function for user objects
subsasgn Overloaded method for A(I)=B, A{I}=B, and A.field=B

1 Functions — Categorical List

1-36

subsindex Overloaded method for X(A)
subsref Overloaded method for A(I), A{I} and A.field
substruct Create structure argument for subsasgn or subsref
superiorto Establish superior class relationship

Java Classes and Objects

cell Convert Java array object to cell array
class Return class name of Java object
clear Clear Java import list or Java class definitions
depfun List Java classes used by M-file
exist Determine if item is Java class
fieldnames List public fields belonging to object
im2java Convert image to instance of Java image object
import Add package or class to current Java import list
inmem List names of Java classes loaded into memory
isa Determine if item is object of given class
isjava Determine if item is Java object
javaaddpath Add entries to dynamic Java class path
javaArray Construct Java array
javachk Generate error message based on Java feature support
javaclasspathSet and get dynamic Java class path
javaMethod Invoke Java method
javaObject Construct Java object
javarmpath Remove entries from dynamic Java class path
methods Display information on class methods
methodsview Display information on class methods in separate window
usejava Determine if a Java feature is supported in MATLAB
which Display package and class name for method

Error Handling
catch Begin catch block of try/catch statement
error Display error message
ferror Query MATLAB about errors in file input or output
intwarning Enable or disable integer warnings
lasterr Return last error message generated by MATLAB
lasterror Last error message and related information
lastwarn Return last warning message issued by MATLAB
rethrow Reissue error
try Begin try block of try/catch statement
warning Display warning message

Programming and Data Types

1-37

MEX Programming
dbmex Enable MEX-file debugging
inmem Return names of currently loaded MEX-files
mex Compile MEX-function from C or Fortran source code
mexext Return MEX-filename extension

1 Functions — Categorical List

1-38

File I/O
Functions to read and write data to files of different format types.

To see a listing of file formats that are readable from MATLAB, go to file
formats.

Filename Construction
fileparts Return parts of filename
filesep Return directory separator for this platform
fullfile Build full filename from parts
tempdir Return name of system's temporary directory
tempname Return unique string for use as temporary filename

“Filename Construction” Get path, directory, filename
information; construct filenames

“Opening, Loading, Saving Files” Open files; transfer data between files
and MATLAB workspace

“Low-Level File I/O” Low-level operations that use a file
identifier (e.g., fopen, fseek, fread)

“Text Files” Delimited or formatted I/O to text files

“XML Documents” Documents written in Extensible
Markup Language

“Spreadsheets” Excel and Lotus 123 files

“Scientific Data” CDF, FITS, HDF formats

“Audio and Audio/Video” General audio functions; SparcStation,
WAVE, AVI files

“Images” Graphics files

“Internet Exchange” URL, zip, and e-mail

File I/O

1-39

Opening, Loading, Saving Files
importdata Load data from various types of files
load Load all or specific data from MAT or ASCII file
open Open files of various types using appropriate editor or program
save Save all or specific data to MAT or ASCII file
uiimport Open Import Wizard, the graphical user interface to import data
winopen Open file in appropriate application (Windows only)

Low-Level File I/O
fclose Close one or more open files
feof Test for end-of-file
ferror Query MATLAB about errors in file input or output
fgetl Return next line of file as string without line terminator(s)
fgets Return next line of file as string with line terminator(s)
fopen Open file or obtain information about open files
fprintf Write formatted data to file
fread Read binary data from file
frewind Rewind open file
fscanf Read formatted data from file
fseek Set file position indicator
ftell Get file position indicator
fwrite Write binary data to file

Text Files
csvread Read numeric data from text file, using comma delimiter
csvwrite Write numeric data to text file, using comma delimiter
dlmread Read numeric data from text file, specifying your own delimiter
dlmwrite Write numeric data to text file, specifying your own delimiter
textread Read data from text file, write to multiple outputs
textscan Read data from text file, convert and write to cell array

XML Documents
xmlread Parse XML document
xmlwrite Serialize XML Document Object Model node
xslt Transform XML document using XSLT engine

1 Functions — Categorical List

1-40

Spreadsheets

Microsoft Excel Functions
xlsfinfo Determine if file contains Microsoft Excel (.xls) spreadsheet
xlsread Read Microsoft Excel spreadsheet file (.xls)
xlswrite Write Microsoft Excel spreadsheet file (.xls)

Lotus123 Functions
wk1read Read Lotus123 WK1 spreadsheet file into matrix
wk1write Write matrix to Lotus123 WK1 spreadsheet file

Scientific Data

Common Data Format (CDF)
cdfepoch Convert MATLAB date number or date string into CDF epoch
cdfinfo Return information about CDF file
cdfread Read CDF file
cdfwrite Write CDF file

Flexible Image Transport System
fitsinfo Return information about FITS file
fitsread Read FITS file

Hierarchical Data Format (HDF)
hdf Interface to HDF4 files
hdfinfo Return information about HDF4 or HDF-EOS file
hdfread Read HDF4 file
hdftool Start HDF4 Import Tool
hdf5 Describes HDF5 data type objects
hdf5info Return information about HDF5 file
hdf5read Read HDF5 file
hdf5write Write data to file in HDF5 format

Band-Interleaved Data
multibandreadRead band-interleaved data from file
multibandwriteWrite band-interleaved data to file

File I/O

1-41

Audio and Audio/Video

General
audioplayer Create audio player object
audiorecorderPerform real-time audio capture
beep Produce beep sound
lin2mu Convert linear audio signal to mu-law
mmfileinfo Information about a multimedia file
mu2lin Convert mu-law audio signal to linear
sound Convert vector into sound
soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions
auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN (.au) sound file

Microsoft WAVE Sound Functions
wavplay Play sound on PC-based audio output device
wavread Read Microsoft WAVE (.wav) sound file
wavrecord Record sound using PC-based audio input device
wavwrite Write Microsoft WAVE (.wav) sound file

Audio/Video Interleaved (AVI) Functions
addframe Add frame to AVI file
avifile Create new AVI file
aviinfo Return information about AVI file
aviread Read AVI file
close Close AVI file
movie2avi Create AVI movie from MATLAB movie

Images
im2java Convert image to instance of Java image object
imfinfo Return information about graphics file
imread Read image from graphics file
imwrite Write image to graphics file

1 Functions — Categorical List

1-42

Internet Exchange
ftp Connect to FTP server, creating an FTP object
sendmail Send e-mail message (attachments optional) to list of addresses
unzip Extract contents of zip file
urlread Read contents at URL
urlwrite Save contents of URL to file
zip Create compressed version of files in zip format

Graphics

1-43

Graphics
2-D graphs, specialized plots (e.g., pie charts, histograms, and contour plots),
function plotters, and Handle Graphics functions.

Basic Plots and Graphs
box Axis box for 2-D and 3-D plots
errorbar Plot graph with error bars
hold Hold current graph
LineSpec Line specification syntax
loglog Plot using log-log scales
polar Polar coordinate plot
plot Plot vectors or matrices.
plot3 Plot lines and points in 3-D space
plotyy Plot graphs with Y tick labels on the left and right
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Plotting Tools
figurepaletteDisplay figure palette on figure
pan Turn panning on or off.
plotbrowser Display plot browser on figure
plottools Start plotting tools
propertyeditorDisplay property editor on figure
zoom Turn zooming on or off

Basic Plots and Graphs Linear line plots, log and semilog plots

Annotating Plots Titles, axes labels, legends, mathematical
symbols

Specialized Plotting Bar graphs, histograms, pie charts, contour plots,
function plotters

Bit-Mapped Images Display image object, read and write graphics file,
convert to movie frames

Printing Printing and exporting figures to standard
formats

Handle Graphics Creating graphics objects, setting properties,
finding handles

1 Functions — Categorical List

1-44

Annotating Plots

annotation Create annotation objects
clabel Add contour labels to contour plot
datetick Date formatted tick labels
gtext Place text on 2-D graph using mouse
legend Graph legend for lines and patches
texlabel Produce the TeX format from character string
title Titles for 2-D and 3-D plots
xlabel X-axis labels for 2-D and 3-D plots
ylabel Y-axis labels for 2-D and 3-D plots
zlabel Z-axis labels for 3-D plots

Annotation Object Properties

arrow Properties for annotation arrows
doublearrow Properties for double-headed annotation arrows
ellipse Properties for annotation ellipses
line Properties for annotation lines
rectangle Properties for annotation rectangles
textarrow Properties for annotation textbox

Specialized Plotting
• “Area, Bar, and Pie Plots”

• “Contour Plots”

• “Direction and Velocity Plots”

• “Discrete Data Plots”

• “Function Plots”

• “Histograms”

• “Polygons and Surfaces”

• “Scatter/Bubble Plots”

• “Animation”

Graphics

1-45

Area, Bar, and Pie Plots
area Area plot
bar Vertical bar chart
barh Horizontal bar chart
bar3 Vertical 3-D bar chart
bar3h Horizontal 3-D bar chart
pareto Pareto char
pie Pie plot
pie3 3-D pie plot

Contour Plots
contour Contour (level curves) plot
contour3 3-D contour plot
contourc Contour computation
contourf Filled contour plot
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter

Direction and Velocity Plots
comet Comet plot
comet3 3-D comet plot
compass Compass plot
feather Feather plot
quiver Quiver (or velocity) plot
quiver3 3-D quiver (or velocity) plot

Discrete Data Plots
stem Plot discrete sequence data
stem3 Plot discrete surface data
stairs Stairstep graph

Function Plots
ezcontour Easy to use contour plotter
ezcontourf Easy to use filled contour plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot Easy to use function plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezpolar Easy to use polar coordinate plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surface/contour plotter
fplot Plot a function

1 Functions — Categorical List

1-46

Histograms
hist Plot histograms
histc Histogram count
rose Plot rose or angle histogram

Polygons and Surfaces
convhull Convex hull
cylinder Generate cylinder
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
ellipsoid Generate ellipsoid
fill Draw filled 2-D polygons
fill3 Draw filled 3-D polygons in 3-space
inpolygon True for points inside a polygonal region
pcolor Pseudocolor (checkerboard) plot
polyarea Area of polygon
ribbon Ribbon plot
slice Volumetric slice plot
sphere Generate sphere
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
waterfall Waterfall plot

Scatter/Bubble Plots
plotmatrix Scatter plot matrix
scatter Scatter plot
scatter3 3-D scatter plot

Animation
frame2im Convert movie frame to indexed image
getframe Capture movie frame
im2frame Convert image to movie frame
movie Play recorded movie frames
noanimate Change EraseMode of all objects to normal

Graphics

1-47

Bit-Mapped Images
frame2im Convert movie frame to indexed image
image Display image object
imagesc Scale data and display image object
imfinfo Information about graphics file
imformats Manage file format registry
im2frame Convert image to movie frame
im2java Convert image to instance of Java image object
imread Read image from graphics file
imwrite Write image to graphics file
ind2rgb Convert indexed image to RGB image

Printing
frameedit Edit print frame for Simulink and Stateflow diagram
orient Hardcopy paper orientation
pagesetupdlg Page setup dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
printpreview Preview figure to be printed
saveas Save figure to graphic file

Handle Graphics
• Finding and Identifying Graphics Objects

• Object Creation Functions

• Figure Windows

• Axes Operations

1 Functions — Categorical List

1-48

Finding and Identifying Graphics Objects
allchild Find all children of specified objects
ancestor Find ancestor of graphics object
copyobj Make copy of graphics object and its children
delete Delete files or graphics objects
findall Find all graphics objects (including hidden handles)
figflag Test if figure is on screen
findfigs Display off-screen visible figure windows
findobj Find objects with specified property values
gca Get current Axes handle
gcbo Return object whose callback is currently executing
gcbf Return handle of figure containing callback object
gco Return handle of current object
get Get object properties
ishandle True if value is valid object handle
set Set object properties

Object Creation Functions
axes Create axes object
figure Create figure (graph) windows
hggroup Create a group object
hgtransform Create a group to transform
image Create image (2-D matrix)
light Create light object (illuminates Patch and Surface)
line Create line object (3-D polylines)
patch Create patch object (polygons)
rectangle Create rectangle object (2-D rectangle)
rootobject List of root properties
surface Create surface (quadrilaterals)
text Create text object (character strings)
uicontextmenuCreate context menu (popup associated with object)

Plot Objects
areaseries Property list
barseries Property list
contourgroup Property list
errorbarseriesProperty list
lineseries Property list
quivergroup Property list
scattergroup Property list
stairseries Property list
stemseries Property list
surfaceplot Property list

Graphics

1-49

Figure Windows
clc Clear figure window
clf Clear figure
close Close specified window
closereq Default close request function
drawnow Complete any pending drawing
figflag Test if figure is on screen
gcf Get current figure handle
hgload Load graphics object hierarchy from a FIG-file
hgsave Save graphics object hierarchy to a FIG-file
newplot Graphics M-file preamble for NextPlot property
opengl Change automatic selection mode of OpenGL rendering
refresh Refresh figure
saveas Save figure or model to desired output format

Axes Operations
axis Plot axis scaling and appearance
box Display axes border
cla Clear Axes
gca Get current Axes handle
grid Grid lines for 2-D and 3-D plots
ishold Get the current hold state
makehgtform Create a transform matrix

Operating on Object Properties
get Get object properties
linkaxes Synchronize limits of specified axes
linkprop Maintain same value for corresponding properties
set Set object properties

1 Functions — Categorical List

1-50

3-D Visualization
Create and manipulate graphics that display 2-D matrix and 3-D volume data,
controlling the view, lighting and transparency.

Surface and Mesh Plots
• Creating Surfaces and Meshes

• Domain Generation

• Color Operations

• Colormaps

Creating Surfaces and Meshes
hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3-D mesh with reference plane
peaks A sample function of two variables
surf 3-D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3-D shaded surface with lighting
tetramesh Tetrahedron mesh plot
trimesh Triangular mesh plot
triplot 2-D triangular plot
trisurf Triangular surface plot

Domain Generation
griddata Data gridding and surface fitting
meshgrid Generation of X and Y arrays for 3-D plots

Surface and Mesh Plots Plot matrices, visualize functions of two variables,
specify colormap

View Control Control the camera viewpoint, zooming, rotation,
aspect ratio, set axis limits

Lighting Add and control scene lighting

Transparency Specify and control object transparency

Volume Visualization Visualize gridded volume data

3-D Visualization

1-51

Color Operations
brighten Brighten or darken colormap
caxis Pseudocolor axis scaling
colormapeditorStart colormap editor
colorbar Display color bar (color scale)
colordef Set up color defaults
colormap Set the color look-up table (list of colormaps)
ColorSpec Ways to specify color
graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSVconversion
rgbplot Plot colormap
shading Color shading mode
spinmap Spin the colormap
surfnorm 3-D surface normals
whitebg Change axes background color for plots

Colormaps
autumn Shades of red and yellow colormap
bone Gray-scale with a tinge of blue colormap
contrast Gray colormap to enhance image contrast
cool Shades of cyan and magenta colormap
copper Linear copper-tone colormap
flag Alternating red, white, blue, and black colormap
gray Linear gray-scale colormap
hot Black-red-yellow-white colormap
hsv Hue-saturation-value (HSV) colormap
jet Variant of HSV
lines Line color colormap
prism Colormap of prism colors
spring Shades of magenta and yellow colormap
summer Shades of green and yellow colormap
winter Shades of blue and green colormap

View Control
• Controlling the Camera Viewpoint

• Setting the Aspect Ratio and Axis Limits

• Object Manipulation

• Selecting Region of Interest

1 Functions — Categorical List

1-52

Controlling the Camera Viewpoint
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
cameratoolbarControl camera toolbar programmatically
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices
makehgtform Create a transform matrix

Setting the Aspect Ratio and Axis Limits
daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
xlim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits

Object Manipulation
pan Turns panning on or off
reset Reset axis or figure
rotate Rotate objects about specified origin and direction
rotate3d Interactively rotate the view of a 3-D plot
selectmoveresizeInteractively select, move, or resize objects
zoom Zoom in and out on a 2-D plot

Selecting Region of Interest
dragrect Drag XOR rectangles with mouse
rbbox Rubberband box

3-D Visualization

1-53

Lighting
camlight Cerate or position Light
light Light object creation function
lightangle Position light in sphereical coordinates
lighting Lighting mode
material Material reflectance mode

Transparency
alpha Set or query transparency properties for objects in current axes
alphamap Specify the figure alphamap
alim Set or query the axes alpha limits

Volume Visualization
coneplot Plot velocity vectors as cones in 3-D vector field
contourslice Draw contours in volume slice plane
curl Compute curl and angular velocity of vector field
divergence Compute divergence of vector field
flow Generate scalar volume data
interpstreamspeedInterpolate streamline vertices from vector-field magnitudes
isocaps Compute isosurface end-cap geometry
isocolors Compute colors of isosurface vertices
isonormals Compute normals of isosurface vertices
isosurface Extract isosurface data from volume data
reducepatch Reduce number of patch faces
reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce size of patch faces
slice Draw slice planes in volume
smooth3 Smooth 3-D data
stream2 Compute 2-D stream line data
stream3 Compute 3-D stream line data
streamline Draw stream lines from 2- or 3-D vector data
streamparticlesDraws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced stream lines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data
subvolume Extract subset of volume data set
volumebounds Return coordinate and color limits for volume (scalar and vector)

1 Functions — Categorical List

1-54

Creating Graphical User Interfaces
Predefined dialog boxes and functions to control GUI programs.

Predefined Dialog Boxes
dialog Create dialog box
errordlg Create error dialog box
helpdlg Display help dialog box
inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagesetupdlg Page setup dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetdir Display dialog box to retrieve name of directory
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Set ColorSpec using dialog box
uisetfont Set font using dialog box
waitbar Display wait bar
warndlg Create warning dialog box

Predefined Dialog Boxes Dialog boxes for error, user input, waiting, etc.

Deploying User
Interfaces

Launching GUIs, creating the handles structure

Developing User
Interfaces

Starting GUIDE, managing application data,
getting user input

User Interface Objects Creating GUI components

Finding Objects from
Callbacks

Finding object handles from within callbacks
functions

GUI Utility Functions Moving objects, text wrapping

Controlling Program
Execution

Wait and resume based on user input

Creating Graphical User Interfaces

1-55

Deploying User Interfaces
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure

Developing User Interfaces
guide Open GUI Layout Editor
inspect Display Property Inspector

Working with Application Data
getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Interactive User Input
ginput Graphical input from a mouse or cursor
waitfor Wait for conditions before resuming execution
waitforbuttonpressWait for key/buttonpress over figure

User Interface Objects
menu Generate menu of choices for user input
uibuttongroupCreate component to exclusively manage radiobuttons and togglebuttons
uicontextmenuCreate context menu
uicontrol Create user interface control
uimenu Create user interface menu
uipanel Create panel container object
uipushtool Create toolbar push button
uitoggletool Create toolbar toggle button
uitoolbar Create toolbar

Finding Objects from Callbacks
findall Find all graphics objects
findfigs Display off-screen visible figure windows
findobj Find specific graphics object
gcbf Return handle of figure containing callback object
gcbo Return handle of object whose callback is executing

1 Functions — Categorical List

1-56

2
Functions — Alphabetical
List

factor

2-738

2factor
Purpose Prime factors

Syntax f = factor(n)

Description f = factor(n) returns a row vector containing the prime factors of n.

Examples f = factor(123)
f =
 3 41

See Also isprime, primes

factorial

2-739

2factorialPurpose Factorial function

Syntax factorial(N)

Description factorial(N), for scalar N, is the product of all the integers from 1 to N, i.e.
prod(1:n). When N is an N-dimensional array, factorial(N) is the factorial for
each element of N.

Since double pricision numbers only have about 15 digits, the answer is only
accurate for n <= 21. For larger n, the answer will have the right magnitude,
and is accurate for the first 15 digits.

See Also prod

false

2-740

2falsePurpose False array

Syntax false
false(n)
false(m,n)
false(m,n,p,...)
false(size(A))

Description false is shorthand for logical(0).

false(n) is an n-by-n matrix of logical zeros.

false(m,n) or false([m,n]) is an m-by-n matrix of logical zeros.

false(m,n,p,...) or false([m n p ...]) is an m-by-n-by-p-by-... array of
logical zeros.

false(size(A)) is an array of logical zeros that is the same size as array A.

Remarks false(n) is much faster and more memory efficient than logical(zeros(n)).

See Also true, logical

fclose

2-741

2fclosePurpose Close one or more open files

Syntax status = fclose(fid)
status = fclose('all')

Description status = fclose(fid) closes the specified file if it is open, returning 0 if
successful and -1 if unsuccessful. Argument fid is a file identifier associated
with an open file. (See fopen for a complete description of fid).

status = fclose('all') closes all open files (except standard input, output,
and error), returning 0 if successful and -1 if unsuccessful.

See Also ferror, fopen, fprintf, fread, frewind, fscanf, fseek, ftell, fwrite

feather

2-742

2featherPurpose Plot velocity vectors

Syntax feather(U,V)
feather(Z)
feather(...,LineSpec)
feather(axes_handle,...)
h = feather(...)

Description A feather plot displays vectors emanating from equally spaced points along a
horizontal axis. You express the vector components relative to the origin of the
respective vector.

feather(U,V) displays the vectors specified by U and V, where U contains the x
components as relative coordinates, and V contains the y components as
relative coordinates.

feather(Z) displays the vectors specified by the complex numbers in Z. This is
equivalent to feather(real(Z),imag(Z)).

feather(...,LineSpec) draws a feather plot using the line type, marker
symbol, and color specified by LineSpec.

feather(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

h = feather(...) returns the handles to line objects in h.

Examples Create a feather plot showing the direction of theta.

theta = (90:10:90)*pi/180;
r = 2*ones(size(theta));
[u,v] = pol2cart(theta,r);
feather(u,v);

feather

2-743

See Also compass, LineSpec, rose

“Direction and Velocity Plots” for related functions

0 2 4 6 8 10 12 14 16 18 20
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

feof

2-744

2feofPurpose Test for end-of-file

Syntax eofstat = feof(fid)

Description eofstat = feof(fid) returns 1 if the end-of-file indicator for the file fid has
been set and 0 otherwise. (See fopen for a complete description of fid.)

The end-of-file indicator is set when there is no more input from the file.

See Also fopen

ferror

2-745

2ferrorPurpose Query MATLAB about errors in file input or output

Syntax message = ferror(fid)
message = ferror(fid,'clear')
[message,errnum] = ferror(...)

Description message = ferror(fid) returns the error string message. Argument fid is a
file identifier associated with an open file (see fopen for a complete description
of fid).

message = ferror(fid,'clear') clears the error indicator for the specified
file.

[message,errnum] = ferror(...) returns the error status number errnum of
the most recent file I/O operation associated with the specified file.

If the most recent I/O operation performed on the specified file was successful,
the value of message is empty and ferror returns an errnum value of 0.

A nonzero errnum indicates that an error occurred in the most recent file I/O
operation. The value of message is a string that can contain information about
the nature of the error. If the message is not helpful, consult the C run-time
library manual for your host operating system for further details.

See Also fclose, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

feval

2-746

2fevalPurpose Function evaluation

Syntax [y1, y2, ...] = feval(fhandle, x1, ..., xn)
[y1, y2, ...] = feval(function, x1, ..., xn)

Description [y1, y2, ...] = feval(fhandle, x1, ..., xn) evaluates the function
handle, fhandle, using arguments x1 through xn. If the function handle is
bound to more than one built-in or M-file, (that is, it represents a set of
overloaded functions), then the data type of the arguments x1 through xn
determines which function is dispatched to.

Note It is not necessary to use feval to call a function by means of a function
handle. This is explained in “Calling a Function Through Its Handle” in the
MATLAB Programming documentation.

[y1, y2, ...] = feval(function, x1, ..., xn) If function is a quoted
string containing the name of a function (usually defined by an M-file), then
feval(function, x1, ..., xn) evaluates that function at the given
arguments. The function parameter must be a simple function name; it cannot
contain path information.

Remarks The following two statements are equivalent.

[V,D] = eig(A)
[V,D] = feval(@eig,A)

Examples The following example passes a function handle, fhandle, in a call to fminbnd.
The fhandle argument is a handle to the humps function.

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

The fminbnd function uses feval to evaluate the function handle that was
passed in.

function [xf,fval,exitflag,output] = ...
 fminbnd(funfcn,ax,bx,options,varargin)
 .

feval

2-747

 .
 .
fx = feval(funfcn,x,varargin{:});

In the next example, @deblank returns a function handle to variable fhandle.
Examining the handle using functions(fhandle) reveals that it is bound to
two M-files that implement the deblank function. The default, strfun\
deblank.m, handles most argument types. However, the function is overloaded
by a second M-file (in the @cell subdirectory) to handle cell array arguments
as well.

fhandle = @deblank;

ff = functions(fhandle);
ff.default
ans =
 matlabroot\toolbox\matlab\strfun\deblank.m
ff.methods
ans =
 cell: 'matlabroot\toolbox\matlab\strfun\@cell\deblank.m'

When the function handle is evaluated on a cell array, feval determines from
the argument type that the appropriate function to dispatch to is the one that
resides in strfun\@cell.

feval(fhandle, {'string ','with ','blanks '})
ans =
 'string' 'with' 'blanks'

See Also assignin, function_handle, functions, builtin, eval, evalin

fft

2-748

2fftPurpose Discrete Fourier transform

Syntax Y = fft(X)
Y = fft(X,n)
Y = fft(X,[],dim)
Y = fft(X,n,dim)

Definition The functions X = fft(x) and x = ifft(X) implement the transform and
inverse transform pair given for vectors of length by:

where

is an th root of unity.

Description Y = fft(X) returns the discrete Fourier transform (DFT) of vector X, computed
with a fast Fourier transform (FFT) algorithm.

If X is a matrix, fft returns the Fourier transform of each column of the matrix.

If X is a multidimensional array, fft operates on the first nonsingleton
dimension.

Y = fft(X,n) returns the n-point DFT. If the length of X is less than n, X is
padded with trailing zeros to length n. If the length of X is greater than n, the
sequence X is truncated. When X is a matrix, the length of the columns are
adjusted in the same manner.

Y = fft(X,[],dim) and Y = fft(X,n,dim) applies the FFT operation across
the dimension dim.

N

X k() x j()ω
N
j 1–() k 1–()

j 1=

N

∑=

x j() 1 N⁄() X k()ωN
j 1–() k 1–()–

k 1=

N

∑=

ωN e 2πi–() N⁄=

N

fft

2-749

Examples A common use of Fourier transforms is to find the frequency components of a
signal buried in a noisy time domain signal. Consider data sampled at 1000 Hz.
Form a signal containing 50 Hz and 120 Hz and corrupt it with some zero-mean
random noise:

t = 0:0.001:0.6;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));
plot(1000*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')

It is difficult to identify the frequency components by looking at the original
signal. Converting to the frequency domain, the discrete Fourier transform of
the noisy signal y is found by taking the 512-point fast Fourier transform
(FFT):

Y = fft(y,512);

The power spectrum, a measurement of the power at various frequencies, is

Pyy = Y.* conj(Y) / 512;

0 10 20 30 40 50
−4

−3

−2

−1

0

1

2

3

4

5
Signal Corrupted with Zero−Mean Random Noise

time (milliseconds)

fft

2-750

Graph the first 257 points (the other 255 points are redundant) on a
meaningful frequency axis:

f = 1000*(0:256)/512;
plot(f,Pyy(1:257))
title('Frequency content of y')
xlabel('frequency (Hz)')

This represents the frequency content of y in the range from DC up to and
including the Nyquist frequency. (The signal produces the strong peaks.)

Algorithm The FFT functions (fft, fft2, fftn, ifft, ifft2, ifftn) are based on a library
called FFTW [3],[4]. To compute an -point DFT when is composite (that
is, when), the FFTW library decomposes the problem using the
Cooley-Tukey algorithm [1], which first computes transforms of size ,
and then computes transforms of size . The decomposition is applied
recursively to both the - and -point DFTs until the problem can be solved
using one of several machine-generated fixed-size “codelets.” The codelets in
turn use several algorithms in combination, including a variation of
Cooley-Tukey [5], a prime factor algorithm [6], and a split-radix algorithm [2].
The particular factorization of is chosen heuristically.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80
Frequency content of y

frequency (Hz)

N N
N N1N2=

N1 N2
N2 N1

N1 N2

N

fft

2-751

When is a prime number, the FFTW library first decomposes an -point
problem into three ()-point problems using Rader’s algorithm [7]. It then
uses the Cooley-Tukey decomposition described above to compute the
()-point DFTs.

For most , real-input DFTs require roughly half the computation time of
complex-input DFTs. However, when has large prime factors, there is little
or no speed difference.

The execution time for fft depends on the length of the transform. It is fastest
for powers of two. It is almost as fast for lengths that have only small prime
factors. It is typically several times slower for lengths that are prime or which
have large prime factors.

Note You might be able to increase the speed of fft using the utility function
fftw, which controls how MATLAB optimizes the algorithm used to compute
an FFT of a particular size and dimension.

Data Type
Support

fft supports inputs of data types double and single. If you call fft with the
syntax y = fft(X, ...), the output y has the same data type as the input X.

See Also fft2, fftn, fftw, fftshift, ifft

dftmtx, filter, and freqz in the Signal Processing Toolbox

References [1] Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine Computation
of the Complex Fourier Series,” Mathematics of Computation, Vol. 19, April
1965, pp. 297-301.

[2] Duhamel, P. and M. Vetterli, “Fast Fourier Transforms: A Tutorial Review
and a State of the Art,” Signal Processing, Vol. 19, April 1990, pp. 259-299.

[3] FFTW (http://www.fftw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software Architecture for
the FFT,” Proceedings of the International Conference on Acoustics, Speech,
and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

[5] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 611.

N N
N 1–

N 1–

N
N

fft

2-752

[6] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal Processing,
Prentice-Hall, 1989, p. 619.

[7] Rader, C. M., “Discrete Fourier Transforms when the Number of Data
Samples Is Prime,” Proceedings of the IEEE, Vol. 56, June 1968, pp. 1107-1108.

fft2

2-753

2fft2Purpose Two-dimensional discrete Fourier transform

Syntax Y = fft2(X)
Y = fft2(X,m,n)

Description Y = fft2(X) returns the two-dimensional discrete Fourier transform (DFT) of
X, computed with a fast Fourier transform (FFT) algorithm. The result Y is the
same size as X.

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n array
before doing the transform. The result is m-by-n.

Algorithm fft2(X) can be simply computed as

fft(fft(X).').'

This computes the one-dimensional DFT of each column X, then of each row of
the result. The execution time for fft depends on the length of the transform.
It is fastest for powers of two. It is almost as fast for lengths that have only
small prime factors. It is typically several times slower for lengths that are
prime or which have large prime factors.

Note You might be able to increase the speed of fft2 using the utility
function fftw, which controls how MATLAB optimizes the algorithm used to
compute an FFT of a particular size and dimension.

Data Type
Support

fft2 supports inputs of data types double and single. If you call fft2 with
the syntax y = fft2(X, ...), the output y has the same data type as the input
X.

See Also fft, fftn, fftw, fftshift, ifft2

fftn

2-754

2fftnPurpose Multidimensional discrete Fourier transform

Syntax Y = fftn(X)
Y = fftn(X,siz)

Description Y = fftn(X) returns the discrete Fourier transform (DFT) of X, computed
with a multidimensional fast Fourier transform (FFT) algorithm. The result Y
is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform. The size
of the result Y is siz.

Algorithm fftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = fft(Y,[],p);
end

This computes in-place the one-dimensional fast Fourier transform along each
dimension of X. The execution time for fft depends on the length of the
transform. It is fastest for powers of two. It is almost as fast for lengths that
have only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

Note You might be able to increase the speed of fftn using the utility
function fftw, which controls how MATLAB optimizes the algorithm used to
compute an FFT of a particular size and dimension.

Data Type
Support

fftn supports inputs of data types double and single. If you call fftn with
the syntax y = fftn(X, ...), the output y has the same data type as the input
X.

See Also fft, fft2, fftn, fftw, ifftn

fftshift

2-755

2fftshiftPurpose Shift zero-frequency component of discrete Fourier transform to center of
spectrum

Syntax Y = fftshift(X)
Y = fftshift(X,dim)

Description Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by moving the
zero-frequency component to the center of the array. It is useful for visualizing
a Fourier transform with the zero-frequency component in the middle of the
spectrum.

For vectors, fftshift(X) swaps the left and right halves of X. For matrices,
fftshift(X) swaps the first quadrant with the third and the second quadrant
with the fourth.

For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X along
each dimension.

Y = fftshift(X,dim) applies the fftshift operation along the dimension
dim.

1

4 3

2

For dim = 1: For dim = 2:

fftshift

2-756

Examples For any matrix X

Y = fft2(X)

has Y(1,1) = sum(sum(X)); the zero-frequency component of the signal is in
the upper-left corner of the two-dimensional FFT. For

Z = fftshift(Y)

this zero-frequency component is near the center of the matrix.

See Also circshift, fft, fft2, fftn, ifftshift

fftw

2-757

2fftwPurpose Interface to the FFTW library run-time algorithm for tuning fast Fourier
transform (FFT) computations

Syntax fftw('planner', method)
method = fftw('planner')
str = fftw('wisdom')
fftw('wisdom', str)
fftw('wisdom', '')
fftw('wisdom', [])

Description fftw enables you to optimize the speed of the MATLAB FFT functions fft,
ifft, fft2, ifft2, fftn, and ifftn. You can use fftw to set options for a tuning
algorithm that experimentally determines the fastest algorithm for computing
an FFT of a particular size and dimension at run time. MATLAB records the
optimal algorithm in an internal data base and uses it to compute FFTs of the
same size throughout the current session. The tuning algorithm is part of the
FFTW library that MATLAB uses to compute FFTs.

fftw('planner', method) sets the method by which the tuning algorithm
searches for a good FFT algorithm when the dimension of the FFT is not a
power of 2. You can specify method to be one of the following:

• 'estimate'

• 'measure'

• 'patient'

• 'exhaustive'

• 'hybrid'

When you call fftw('planner', method), the next time you call one of the FFT
functions, such as fft, the tuning algorithm uses the specified method to
optimize the FFT computation. Because the tuning involves trying different
algorithms, the first time you call an FFT function, it might run more slowly
than if you did not call fftw. However, subsequent calls to any of the FFT
functions, for a problem of the same size, often run more quickly than they
would without using fftw.

fftw

2-758

Note The FFT functions only uses the optimal FFT algorithm during the
current MATLAB session. “Reusing Optimal FFT Algorithms” on page 2-760
explains how to ruse the optimal algorithm in a future MATLAB session.

If you set the method to 'estimate', the FFTW library does not use run-time
tuning to select the algorithms. The resulting algorithms might not be optimal.

If you set the method to 'measure', the FFTW library experiments with many
different algorithms to compute an FFT of a given size and chooses the fastest.
Setting the method to 'patient' or 'exhaustive' has a similar result, but the
library experiments with even more algorithms so that the tuning takes longer
the first time you call an FFT function. However, subsequent calls to FFT
functions are faster than with 'measure'.

If you set 'planner' to 'hybrid', the default method, MATLAB

• Sets method to 'measure' method for FFT dimensions 8192 or smaller.

• Sets method to 'estimate' for FFT dimensions greater than 8192.

The following table compares the run times off the FFT functions for the
different methods

method = fftw('planner') returns the current planner method.

str = fftw('wisdom') returns the information in the FFTW library's internal
database, called “wisdom,” as a string. The string can be saved and then later
reused in a subsequent MATLAB session using the next syntax.

Method First Run of FFT Function Subsequent Runs of FFT
Function

'estimate' Fastest Slowest

'measure' Faster Slower

'patient' Slower Faster

'exhaustive' Slowest Fastest

fftw

2-759

fftw('wisdom', str) loads the string str, containing FFTW wisdom, into the
FFTW library's internal wisdom database.

fftw('wisdom','') or fftw('wisdom',[]) clears the internal wisdom
database.

Note on large powers of 2 For FFT dimensions that are powers of 2,
between 214 and 222, MATLAB uses special preloaded information in its
internal database to optimize the FFT computation. No tuning is performed
when the dimension of the FTT is a power of 2, unless you clear the database
using the command fftw('wisdom', []).

For more information about the FFTW library, see http://www.fftw.org.

Example Comparison of Speed for Different Planner Methods
The following example illustrates the run times for different settings of
'planner'. The example first creates some data and applies fft to it using the
default method 'hybrid'. Since the dimension of the FFT is 1458, which is less
than 8192, 'hybrid' uses the same method as 'measure'.

t=0:.001:5;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));
tic; Y = fft(y,1458); toc
Elapsed time is 0.030000 seconds.

If you execute the commands

tic; Y = fft(y,1458); toc

a second time, MATLAB reports the elapsed time as 0. To measure the elapsed
time more accurately, you can execute the command Y = fft(y,1458) 1000
times in a loop.

tic; for k=1:1000
Y = fft(y,1458);
end; toc
Elapsed time is 0.911000 seconds.

fftw

2-760

This tells you that it takes approximately 1/1000 of a second to execute
fft(y, 1458) a single time.

For comparison, set 'planner' to 'patient'. Since this 'planner' explores
possible algorithms more thoroughly than 'patient', the first time you run
fft, it takes longer to compute the results.

fftw('planner','patient')
tic;Y = fft(y,1458);toc
Elapsed time is 0.130000 seconds.

However, the next time you call fft, it runs approximately 10 times faster than
it when you use the method 'measure'.

tic;for k=1:1000
Y=fft(y,1458);
end;toc
Elapsed time is 0.080000 seconds.

Reusing Optimal FFT Algorithms
In order to use the optimized FFT algorithm in a future MATLAB session, first
save the “wisdom” using the command

str = fftw('wisdom')

You can save str for a future session using the command

save str

The next time you open MATLAB, load str using the command

load str

and then reload the “wisdom” into the FFTW database using the command

fftw('wisdom', str)

 See Also fft, fft2, fftn, ifft, ifft2, ifftn, fftshift.

fgetl

2-761

2fgetlPurpose Read line from file, discard newline character

Syntax tline = fgetl(fid)

Description tline = fgetl(fid) returns the next line of the file associated with the file
identifier fid. If fgetl encounters the end-of-file indicator, it returns -1. (See
fopen for a complete description of fid.) fgetl is intended for use with text files
only.

The returned string tline does not include the line terminator(s) with the text
line. To obtain the line terminators, use fgets.

Examples The example reads every line of the M-file fgetl.m.

fid=fopen('fgetl.m');
while 1
 tline = fgetl(fid);
 if ~ischar(tline), break, end
 disp(tline)
end
fclose(fid);

See Also fgets

fgets

2-762

2fgetsPurpose Read line from file, keep newline character

Syntax tline = fgets(fid)
tline = fgets(fid,nchar)

Description tline = fgets(fid) returns the next line of the file associated with file
identifier fid. If fgets encounters the end-of-file indicator, it returns -1. (See
fopen for a complete description of fid.) fgets is intended for use with text files
only.

The returned string tline includes the line terminators associated with the
text line. To obtain the string without the line terminators, use fgetl.

tline = fgets(fid,nchar) returns at most nchar characters of the next line.
No additional characters are read after the line terminators or an end-of-file.

See Also fgetl

fieldnames

2-763

2fieldnamesPurpose Return field names of a structure, or property names of an object

Syntax names = fieldnames(s)
names = fieldnames(obj)
names = fieldnames(obj,'-full')

Description names = fieldnames(s) returns a cell array of strings containing the
structure field names associated with the structure s.

names = fieldnames(obj) returns a cell array of strings containing the names
of the public data fields associated with obj, which is a MATLAB, COM, or
Java object.

names = fieldnames(obj,'-full') returns a cell array of strings containing
the name, type, attributes, and inheritance of each field associated with obj,
which is a MATLAB, COM, or Java object.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

the command n = fieldnames(mystr) yields

n =
 'name'
 'ID'

In another example, if f is an object of Java class java.awt.Frame, the
command fieldnames(f) lists the properties of f.

f = java.awt.Frame;

fieldnames(f)
ans =
 'WIDTH'
 'HEIGHT'
 'PROPERTIES'
 'SOMEBITS'

fieldnames

2-764

 'FRAMEBITS'
 'ALLBITS'
 .
 .

See Also setfield, getfield, isfield, orderfields, rmfield, dynamic field names

figflag

2-765

2figflag Purpose This function is OBSOLETE.

Syntax [flag] = figflag('figurename')
[flag,fig] = figflag('figurename')
[...] = figflag('figurename',silent)

Description Use figflag to determine if a particular figure exists, bring a figure to the
foreground, or set the window focus to a figure.

[flag] = figflag('figurename') returns a 1 if the figure named
'figurename' exists and sends the figure to the foreground; otherwise this
function returns 0.

[flag,fig] = figflag('figurename') returns a 1 in flag, returns the
figure’s handle in fig, and sends the figure to the foreground, if the figure
named 'figurename' exists. Otherwise this function returns 0.

[...] = figflag('figurename',silent) pops the figure window to the
foreground if silent is 0, and leaves the figure in its current position if silent
is 1.

Examples To determine if a figure window named 'Fluid Jet Simulation' exists, type

[flag,fig] = figflag('Fluid Jet Simulation')

MATLAB returns

flag =
1

fig =
1

If two figures with handles 1 and 3 have the name 'Fluid Jet Simulation',
MATLAB returns

flag =
1

fig =
1 3

See Also figure

figflag

2-766

“Figure Windows” for related functions

figure

2-767

2figurePurpose Create a figure graphics object

Syntax figure
figure('PropertyName',PropertyValue,...)
figure(h)
h = figure(...)

Description figure creates figure graphics objects. Figure objects are the individual
windows on the screen in which MATLAB displays graphical output.

figure creates a new figure object using default property values.

figure('PropertyName',PropertyValue,...) creates a new figure object
using the values of the properties specified. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

figure(h) does one of two things, depending on whether or not a figure with
handle h exists. If h is the handle to an existing figure, figure(h) makes the
figure identified by h the current figure, makes it visible, and raises it above all
other figures on the screen. The current figure is the target for graphics output.
If h is not the handle to an existing figure, but is an integer, figure(h) creates
a figure and assigns it the handle h. figure(h) where h is not the handle to a
figure, and is not an integer, is an error.

h = figure(...) returns the handle to the figure object.

Remarks To create a figure object, MATLAB creates a new window whose characteristics
are controlled by default figure properties (both factory installed and user
defined) and properties specified as arguments. See the properties section for
a description of these properties.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Use set to modify the properties of an existing figure or get to query the
current values of figure properties.

The gcf command returns the handle to the current figure and is useful as an
argument to the set and get commands.

figure

2-768

Figures can be docked in the desktop. The Dockable property determines
whether you can dock the figure.

Example To create a figure window that is one quarter the size of your screen and is
positioned in the upper left corner, use the root object’s ScreenSize property to
determine the size. ScreenSize is a four-element vector: [left, bottom, width,
height]:

scrsz = get(0,'ScreenSize');
figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

See Also axes, uicontrol, uimenu, close, clf, gcf, rootobject

“Object Creation Functions” for related functions

Figure Properties for additional information on figure properties

Object
Hierarchy

Setting Default Properties
You can set default figure properties only on the root level.

set(0,'DefaultFigureProperty',PropertyValue...)

where Property is the name of the figure property and PropertyValue is the
value you are specifying. Use set and get to access figure properties.

Property List The following table lists all figure properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Axes UI Objects

Figure

Root

figure

2-769

Property Name Property Description Property Value

Positioning the Figure

Position Location and size of figure Value: a 4-element vector
[left, bottom, width, height]
Default: depends on display

Units Units used to interpret the Position
property

Values: inches, centimeters,
normalized, points, pixels,
characters
Default: pixels

Specifying Style and Appearance

Color Color of the figure background Values: ColorSpec
Default: depends on color
scheme (see colordef)

DockControls Can figure be docked in the desktop Values: on, off
Default: on

MenuBar Toggles the figure menu bar on and
off

Values: none, figure
Default: figure

Name Figure window title Values: string
Default: '' (empty string)

NumberTitle Displays “Figure No. n”, where n is
the figure number

Values: on, off
Default: on

Resize Specifies whether the figure window
can be resized using the mouse

Values: on, off
Default: on

SelectionHighlight Highlights figure when selected
(Selected property is set to on)

Values: on, off
Default: on

Toolbar Control display of figure toolbar Values: none, auto, figure
Default: auto

Visible Makes the figure visible or invisible Values: on, off
Default: on

figure

2-770

WindowStyle Selects normal or modal window Values: normal, modal
Default: normal

Controlling the Colormap

Colormap The figure colormap Values: m-by-3 matrix of RGB
values
Default: the jet colormap

FixedColors Colors not obtained from colormap Values: m-by-3 matrix of RGB
values (read only)

MinColormap Minimum number of system color
table entries to use

Values: scalar
Default: 64

ShareColors Allows MATLAB to share system
color table slots

Values on, off
Default: on

Specifying Transparency

Alphamap The figure alphamap m-by-1 matrix of alpha values

Properties That Affect Rendering

BackingStore Enables off-screen pixel buffering Values: on, off
Default: on

DoubleBuffer Flash-free rendering for simple
animations

Values: on, off
Default: on

Renderer Rendering method used for screen
and printing

Values: painters, zbuffer,
OpenGL
Default: automatic selection
by MATLAB

RendererMode Automatic or user-selected renderer Values: auto, manual
Default: auto

WVisual Specifies the pixel format MATLAB
uses for figures. (Windows only)

Value: identifier string
Default: automatically
selected by MATLAB

Property Name Property Description Property Value

figure

2-771

XDisplay Specifies display for MATLAB (UNIX
only)

Value: display identifier
Default: :0.0

XVisual Selects visual used by MATLAB
(UNIX only)

Value: visual ID

XVisualMode Auto or manual selection of visual
(UNIX only)

Values: auto, manual
Default: auto

General Information About the Figure

Children Handles of any ui objects or axes
contained in the figure

Value: vector of handles

FileName Used by guide String

Parent The root object is the parent of all
figures.

Value: always 0

Selected Indicates whether figure is in a
selected state

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'figure'

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Information About Current State

CurrentAxes Handle of the current axes in this
figure

Value: axes handle

Curren tCharacter The last key pressed in this figure Value: single character

CurrentObject Handle of the current object in this
figure

Value: graphics object handle

Property Name Property Description Property Value

figure

2-772

CurrentPoint Location of the last button click in
this figure

Value: 2-element vector
[x-coord, y-coord]

SelectionType Mouse selection type Values: normal, extended,
alt, open

Callback Routine Execution

BusyAction Specifies how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Defines a callback routine that
executes when a mouse button is
pressed on an unoccupied spot in the
figure

Values: string or function
handle
Default: empty string

CloseRequestFcn Defines a callback routine that
executes when you call the close
command

Values: string or function
handle
Default: closereq

CreateFcn Defines a callback routine that
executes when a figure is created

Values: string or function
handle
Default: empty string

DeleteFcn Defines a callback routine that
executes when the figure is deleted
(via close or delete)

Values: string or function
handle
Default: empty string

Interruptible Determines if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

KeyPressFcn Defines a callback routine that
executes when a key is pressed in the
figure window

Values: string or function
handle
Default: empty string

ResizeFcn Defines a callback routine that
executes when the figure is resized

Values: string or function
handle
Default: empty string

Property Name Property Description Property Value

figure

2-773

UIContextMenu Associates a context menu with the
figure

Value: handle of a
Uicontrextmenu

WindowButtonDownFcn Defines a callback routine that
executes when you press the mouse
button down in the figure

Values: string or function
handle
Default: empty string

WindowButtonMotionFcn Defines a callback routine that
executes when you move the pointer
in the figure

Values: string or function
handle
Default: empty string

WindowButtonUpFcn Defines a callback routine that
executes when you release the mouse
button

Values: string or function
handle
Default: empty string

Controlling Access to Objects

IntegerHandle Specifies integer or noninteger figure
handle

Values: on, off
Default: on (integer handle)

HandleVisibility Determines if figure handle is visible
to users or not

Values: on, callback, off
Default: on

HitTest Determines if the figure can become
the current object (see the figure
CurrentObject property)

Values: on, off
Default: on

NextPlot Determines how to display additional
graphics to this figure

Values: add, replace,
replacechildren
Default: add

Defining the Pointer

Pointer Selects the pointer symbol Values: crosshair, arrow,
watch, topl, topr, botl, botr,
circle, cross, fleur, left,
right, top, bottom,
fullcrosshair, ibeam,
custom
Default: arrow

Property Name Property Description Property Value

figure

2-774

PointerShapeCData Data that defines the pointer Value: 16-by-16 matrix
Default: set Pointer to
custom and see

PointerShapeHotSpot Specifies the pointer active spot Value: 2-element vector [row,
column]
Default: [1,1]

Properties That Affect Printing

InvertHardcopy Changes figure colors for printing Values: on, off
Default: on

PaperOrientation Horizontal or vertical paper
orientation

Values: portrait, landscape
Default: portrait

PaperPosition Controls positioning figure on
printed page

Value: 4-element vector [left,
bottom, width, height]

PaperPositionMode Enables WYSIWYG printing of
figure

Values: auto, manual
Default: manual

PaperSize Size of the current PaperType
specified in PaperUnits

Values: [width, height]

PaperType Selects from standard paper sizes Values: see property
description
Default: usletter

PaperUnits Units used to specify the PaperSize
and PaperPosition

Values: normalized, inches,
centimeters, points
Default: inches

Property Name Property Description Property Value

Figure Properties

2-775

2Figure PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

Figure
Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

Alphamap m-by-1 matrix of alpha values

Figure alphamap. This property is an m-by-1 array of non-NaN alpha values.
MATLAB accesses alpha values by their row number. For example, an index of
1 specifies the first alpha value, an index of 2 specifies the second alpha value,
and so on. Alphamaps can be any length. The default alphamap contains 64
values that progress linearly from 0 to 1.

Alphamaps affect the rendering of surface, image, and patch objects, but do not
affect other graphics objects.

BackingStore {on} | off

Offscreen pixel buffer. When BackingStore is on, MATLAB stores a copy of the
figure window in an offscreen pixel buffer. When obscured parts of the figure
window are exposed, MATLAB copies the window contents from this buffer
rather than regenerating the objects on the screen. This increases the speed
with which the screen is redrawn.

While refreshing the screen quickly is generally desirable, the buffers required
do consume system memory. If memory limitations occur, you can set
BackingStore to off to disable this feature and release the memory used by the
buffers. If your computer does not support backing store, setting the
BackingStore property results in a warning message, but has no other effect.

Setting BackingStore to off can increase the speed of animations because it
eliminates the need to draw into both an off-screen buffer and the figure
window.

Figure Properties

2-776

Note that when the Renderer is set to opengl, MATLAB sets BackingStore to
off.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects that are going to be deleted, and therefore, can check the object’s
BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback routine that executes whenever you
press a mouse button while the pointer is in the figure window, but not over a
child object (i.e., uicontrol, axes, or axes child). Define this routine as a string
that is a valid MATLAB expression or the name of an M-file. The expression
executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Figure Properties

2-777

Children vector of handles

Children of the figure. A vector containing the handles of all axes,
user-interface objects displayed within the figure. You can change the order of
the handles and thereby change the stacking of the objects on the display.

When an object’s HandleVisibility property is set to off, it is not listed in its
parent’s Children property. See HandleVisibility for more information.

Clipping {on} | off

This property has no effect on figures.

CloseRequestFcn string or function handle

Function executed on figure close. This property defines a function that
MATLAB executes whenever you issue the close command (either a
close(figure_handle) or a close all), when you close a figure window from
the computer’s window manager menu, or when you quit MATLAB.

The CloseRequestFcn provides a mechanism to intervene in the closing of a
figure. It allows you to, for example, display a dialog box to ask a user to
confirm or cancel the close operation or to prevent users from closing a figure
that contains a GUI.

The basic mechanism is

• A user issues the close command from the command line, by closing the
window from the computer’s window manager menu, or by quitting
MATLAB.

• The close operation executes the function defined by the figure
CloseRequestFcn. The default function is named closereq and is predefined
as

shh = get(0,'ShowHiddenHandles');
set(0,'ShowHiddenHandles','on');
currFig = get(0,'CurrentFigure');
set(0,'ShowHiddenHandles',shh);
delete(currFig);

These statements unconditionally delete the current figure, destroying the
window. closereq takes advantage of the fact that the close command makes
all figures specified as arguments the current figure before calling the
respective close request function.

Figure Properties

2-778

You can set CloseRequestFcn to any string that is a valid MATLAB statement,
including the name of an M-file. For example,

set(gcf,'CloseRequestFcn','disp(''This window is immortal'')')

This close request function never closes the figure window; it simply echoes
“This window is immortal” on the command line. Unless the close request
function calls delete, MATLAB never closes the figure. (Note that you can
always call delete(figure_handle) from the command line if you have
created a window with a nondestructive close request function.)

A more useful application of the close request function is to display a question
dialog box asking the user to confirm the close operation. The following M-file
illustrates how to do this.

% my_closereq
% User-defined close request function
% to display a question dialog box

selection = questdlg('Close Specified Figure?',...
 'Close Request Function',...
 'Yes','No','Yes');
switch selection,
 case 'Yes',
 delete(gcf)
 case 'No'
 return
end

Now assign this M-file to the CloseRequestFcn of a figure:

set(figure_handle,'CloseRequestFcn','my_closereq')

To make this M-file your default close request function, set a default value on
the root level.

set(0,'DefaultFigureCloseRequestFcn','my_closereq')

MATLAB then uses this setting for the CloseRequestFcn of all subsequently
created figures.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Figure Properties

2-779

Color ColorSpec

Background color. This property controls the figure window background color.
You can specify a color using a three-element vector of RGB values or one of the
MATLAB predefined names. See ColorSpec for more information.

Colormap m-by-3 matrix of RGB values

Figure colormap. This property is an m-by-3 array of red, green, and blue
(RGB) intensity values that define m individual colors. MATLAB accesses
colors by their row number. For example, an index of 1 specifies the first RGB
triplet, an index of 2 specifies the second RGB triplet, and so on. Colormaps can
be any length (up to 256 only on MS-Windows), but must be three columns
wide. The default figure colormap contains 64 predefined colors.

Colormaps affect the rendering of surface, image, and patch objects, but
generally do not affect other graphics objects. See colormap and ColorSpec for
more information.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a figure object. You must
define this property as a default value for figures. For example, the statement

set(0,'DefaultFigureCreateFcn',...
'set(gcbo,''IntegerHandle'',''off'')')

defines a default value on the root level that causes the created figure to use
noninteger handles whenever you (or MATLAB) create a figure. MATLAB
executes this routine after setting all properties for the figure. Setting this
property on an existing figure object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

CurrentAxes handle of current axes

Target axes in this figure. MATLAB sets this property to the handle of the
figure’s current axes (i.e., the handle returned by the gca command when this
figure is the current figure). In all figures for which axes children exist, there
is always a current axes. The current axes does not have to be the topmost axes,
and setting an axes to be the CurrentAxes does not restack it above all other
axes.

Figure Properties

2-780

You can make an axes current using the axes and set commands. For example,
axes(axes_handle) and set(gcf,'CurrentAxes',axes_handle) both make
the axes identified by the handle axes_handle the current axes. In addition,
axes(axes_handle) restacks the axes above all other axes in the figure.

If a figure contains no axes, get(gcf,'CurrentAxes') returns the empty
matrix. Note that the gca function actually creates an axes if one does not exist.

CurrentCharacter single character

Last key pressed. MATLAB sets this property to the last key pressed in the
figure window. CurrentCharacter is useful for obtaining user input.

CurrentMenu (Obsolete)

This property produces a warning message when queried. It has been
superseded by the root CallbackObject property.

CurrentObject object handle

Handle of current object. MATLAB sets this property to the handle of the object
that is under the current point (see the CurrentPoint property). This object is
the front-most object in the view. You can use this property to determine which
object a user has selected. The function gco provides a convenient way to
retrieve the CurrentObject of the CurrentFigure.

CurrentPoint two-element vector: [x-coordinate, y-coordinate]

Location of last button click in this figure. MATLAB sets this property to the
location of the pointer at the time of the most recent mouse button press.
MATLAB updates this property whenever you press the mouse button while
the pointer is in the figure window.

In addition, MATLAB updates CurrentPoint before executing callback
routines defined for the figure WindowButtonMotionFcn and
WindowButtonUpFcn properties. This enables you to query CurrentPoint from
these callback routines. It behaves like this:

• If there is no callback routine defined for the WindowButtonMotionFcn or the
WindowButtonUpFcn, then MATLAB updates the CurrentPoint only when
the mouse button is pressed down within the figure window.

• If there is a callback routine defined for the WindowButtonMotionFcn, then
MATLAB updates the CurrentPoint just before executing the callback. Note
that the WindowButtonMotionFcn executes only within the figure window

Figure Properties

2-781

unless the mouse button is pressed down within the window and then held
down while the pointer is moved around the screen. In this case, the routine
executes (and the CurrentPoint is updated) anywhere on the screen until
the mouse button is released.

• If there is a callback routine defined for the WindowButtonUpFcn, MATLAB
updates the CurrentPoint just before executing the callback. Note that the
WindowButtonUpFcn executes only while the pointer is within the figure
window unless the mouse button is pressed down initially within the
window. In this case, releasing the button anywhere on the screen triggers
callback execution, which is preceded by an update of the CurrentPoint.

The figure CurrentPoint is updated only when certain events occur, as
previously described. In some situations, (such as when the
WindowButtonMotionFcn takes a long time to execute and the pointer is moved
very rapidly) the CurrentPoint may not reflect the actual location of the
pointer, but rather the location at the time when the WindowButtonMotionFcn
began execution.

The CurrentPoint is measured from the lower left corner of the figure window,
in units determined by the Units property.

The root PointerLocation property contains the location of the pointer
updated synchronously with pointer movement. However, the location is
measured with respect to the screen, not a figure window.

See uicontrol for information on how this property is set when you click a
uicontrol object.

DeleteFcn string or function handle

Delete figure callback routine. A callback routine that executes when the figure
object is deleted (e.g., when you issue a delete or a close command). MATLAB
executes the routine before destroying the object’s properties so these values
are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Figure Properties

2-782

Dithermap Obsolete

This property is not useful with TrueColor displays and will be removed in a
future release.

DithermapMode Obsolete

This property is not useful with TrueColor displays and will be removed in a
future release.

DockControls {on} | off

Displays controls used to dock figure. This property determines whether the
figure enables the Desktop menu item and the dock figure button in the
titlebar that allow you to dock the figure into the MATLAB desktop.

By default, the figure docking controls are visible. If you set this property to
off, the Desktop menu item that enables you to dock the figure is disabled and
the figure dock button is not displayed.

See also the WindowStyle property for more information on docking figure.

DoubleBuffer {on} | off

Flash-free rendering for simple animations. Double buffering is the process of
drawing to an off-screen pixel buffer and then blitting the buffer contents to the
screen once the drawing is complete. Double buffering generally produces
flash-free rendering for simple animations (such as those involving lines, as
opposed to objects containing large numbers of polygons). Use double buffering
with the animated objects’ EraseMode property set to normal. Use the set
command to disable double buffering.

set(figure_handle,'DoubleBuffer','off')

Double buffering works only when the figure Renderer property is set to
painters.

FileName String

GUI FIG-file name. GUIDE stores the name of the FIG-file used to save the
GUI layout in this property.

FixedColors m-by-3 matrix of RGB values (read only)

Noncolormap colors. Fixed colors define all colors appearing in a figure window
that are not obtained from the figure colormap. These colors include axis lines

Figure Properties

2-783

and labels, the colors of line, text, uicontrol, and uimenu objects, and any colors
that you explicitly define, for example, with a statement like

set(gcf,'Color',[0.3,0.7,0.9])

Fixed color definitions reside in the system color table and do not appear in the
figure colormap. For this reason, fixed colors can limit the number of
simultaneously displayed colors if the number of fixed colors plus the number
of entries in the figure colormap exceed your system’s maximum number of
colors.

(See the root ScreenDepth property for information on determining the total
number of colors supported on your system. See the MinColorMap and
ShareColors properties for information on how MATLAB shares colors
between applications.)

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Figure Properties

2-784

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the figure can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the figure. If HitTest is off, clicking
the figure sets the CurrentObject to the empty matrix.

IntegerHandle {on} | off

Figure handle mode. Figure object handles are integers by default. When
creating a new figure, MATLAB uses the lowest integer that is not used by an
existing figure. If you delete a figure, its integer handle can be reused.

If you set this property to off, MATLAB assigns nonreusable real-number
handles (e.g., 67.0001221) instead of integers. This feature is designed for
dialog boxes where removing the handle from integer values reduces the
likelihood of inadvertently drawing into the dialog box.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a figure callback routine can be interrupted by callback routines
invoked subsequently. Only callback routines defined for the ButtonDownFcn,
KeyPressFcn, WindowButtonDownFcn, WindowButtonMotionFcn, and
WindowButtonUpFcn are affected by the Interruptible property. MATLAB
checks for events that can interrupt a callback routine only when it encounters
a drawnow, figure, getframe, or pause command in the routine. See the
BusyAction property for related information.

Figure Properties

2-785

InvertHardcopy {on} | off

Change hardcopy to black objects on white background. This property affects
only printed output. Printing a figure having a background color (Color
property) that is not white results in poor contrast between graphics objects
and the figure background and also consumes a lot of printer toner.

When InvertHardCopy is on, MATLAB eliminates this effect by changing the
color of the figure and axes to white and the axis lines, tick marks, axis labels,
etc., to black. lines, text, and the edges of patches and surfaces may be changed,
depending on the print command options specified.

If you set InvertHardCopy to off, the printed output matches the colors
displayed on the screen.

See print for more information on printing MATLAB figures.

KeyPressFcn string or function handle

Key press callback function. A callback routine invoked by a key press in the
figure window. You can define KeyPressFcn as any legal MATLAB expression,
the name of an M-file, or a function handle.

The callback can query the figure’s CurrentCharacter property to determine
what particular key was pressed and thereby limit the callback execution to
specific keys.

The callback can query the figure’s SelectionType property to determine
whether modifier keys were also pressed.

The callback can also query the root PointerWindow property to determine in
which figure the key was pressed. Note that pressing a key while the pointer is
in a particular figure window does not make that figure the current figure (i.e.,
the one referred to by the gcf command).

KeyPressFcn Event Structure
When the callback is a function handle, MATLAB passes a structure to the
callback function that contains the following fields.

Figure Properties

2-786

Some key combinations do not define a value for the Character field.

Using the KeyPressFcn
This example, creates a figure and defines a function handle callback for the
KeyPressFcn property. When the "e" key is pressed, the callback exports the
figure as an EPS file. When Ctrl-t is pressed, the callback exports the figure as
a TIFF file.

function figure_keypress
figure('KeyPressFcn',@printfig);

function printfig(src,evnt)
if evnt.Character == 'e'
 print ('-deps',['-f' num2str(src)])
elseif length(evnt.Modifier) == 1 & strcmp(evnt.Modifier{:},
'control') & evnt.Key == 't'
 print ('-dtiff','-r200',['-f' num2str(src)])
end

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

MenuBar none | {figure}

Enable-disable figure menu bar. This property enables you to display or hide
the menu bar that MATLAB places at the top of a figure window. The default
(figure) is to display the menu bar.

Field Contents

Character The character displayed as a result of the key(s)
pressed.

Modifier This field is a cell array that contains the names of
one or more modifier keys that the user pressed
(i.e., Control, Alt, Shift).

Key The key pressed (lower case label on key)

Figure Properties

2-787

This property affects only built-in menus. Menus defined with the uimenu
command are not affected by this property.

MinColormap scalar (default = 64)

Minimum number of color table entries used. This property specifies the
minimum number of system color table entries used by MATLAB to store the
colormap defined for the figure (see the ColorMap property). In certain
situations, you may need to increase this value to ensure proper use of colors.

For example, suppose you are running color-intensive applications in addition
to MATLAB and have defined a large figure colormap (e.g., 150 to 200 colors).
MATLAB may select colors that are close but not exact from the existing colors
in the system color table because there are not enough slots available to define
all the colors you specified.

To ensure that MATLAB uses exactly the colors you define in the figure
colormap, set MinColorMap equal to the length of the colormap.

set(gcf,'MinColormap',length(get(gcf,'ColorMap')))

Note that the larger the value of MinColorMap, the greater the likelihood that
other windows (including other MATLAB figure windows) will be displayed in
false colors.

Name string

Figure window title. This property specifies the title displayed in the figure
window. By default, Name is empty and the figure title is displayed as
Figure 1, Figure 2, and so on. When you set this parameter to a string, the
figure title becomes Figure 1: <string>. See the NumberTitle property.

NextPlot {add} | replace | replacechildren

How to add next plot. NextPlot determines which figure MATLAB uses to
display graphics output. If the value of the current figure is

• add — Use the current figure to display graphics (the default).

• replace — Reset all figure properties except Position to their defaults and
delete all figure children before displaying graphics (equivalent to clf
reset).

• replacechildren — Remove all child objects, but do not reset figure
properties (equivalent to clf).

Figure Properties

2-788

The newplot function provides an easy way to handle the NextPlot property.
Also see the NextPlot axes property and Controlling creating_plotsGraphics
Output for more information.

NumberTitle {on} | off (GUIDE default off)

Figure window title number. This property determines whether the string
Figure No. N (where N is the figure number) is prefixed to the figure window
title. See the Name property.

PaperOrientation {portrait} | landscape

Horizontal or vertical paper orientation. This property determines how printed
figures are oriented on the page. portrait orients the longest page dimension
vertically; landscape orients the longest page dimension horizontally. See the
orient command for more detail.

PaperPosition four-element rect vector

Location on printed page. A rectangle that determines the location of the figure
on the printed page. Specify this rectangle with a vector of the form

 rect = [left, bottom, width, height]

where left specifies the distance from the left side of the paper to the left side
of the rectangle and bottom specifies the distance from the bottom of the page
to the bottom of the rectangle. Together these distances define the lower left
corner of the rectangle. width and height define the dimensions of the
rectangle. The PaperUnits property specifies the units used to define this
rectangle.

PaperPositionMode auto | {manual}

WYSIWYG printing of figure. In manual mode, MATLAB honors the value
specified by the PaperPosition property. In auto mode, MATLAB prints the
figure the same size as it appears on the computer screen, centered on the page.

PaperSize [width height]

Paper size. This property contains the size of the current PaperType, measured
in PaperUnits. See PaperType to select standard paper sizes.

Figure Properties

2-789

PaperType Select a value from the following table.

Selection of standard paper size. This property sets the PaperSize to one of the
following standard sizes.

Property Value Size (Width x Height)

usletter (default) 8.5-by-11 inches

uslegal 11-by-14 inches

tabloid 11-by-17 inches

A0 841-by-1189mm

A1 594-by-841mm

A2 420-by-594mm

A3 297-by-420mm

A4 210-by-297mm

A5 148-by-210mm

B0 1029-by-1456mm

B1 728-by-1028mm

B2 514-by-728mm

B3 364-by-514mm

B4 257-by-364mm

B5 182-by-257mm

arch-A 9-by-12 inches

arch-B 12-by-18 inches

arch-C 18-by-24 inches

arch-D 24-by-36 inches

arch-E 36-by-48 inches

Figure Properties

2-790

Note that you may need to change the PaperPosition property in order to
position the printed figure on the new paper size. One solution is to use
normalized PaperUnits, which enables MATLAB to automatically size the
figure to occupy the same relative amount of the printed page, regardless of the
paper size.

PaperUnits normalized | {inches} | centimeters | points

Hardcopy measurement units. This property specifies the units used to define
the PaperPosition and PaperSize properties. All units are measured from the
lower left corner of the page. normalized units map the lower left corner of the
page to (0, 0) and the upper right corner to (1.0, 1.0). inches, centimeters, and
points are absolute units (one point equals 1/72 of an inch).

If you change the value of PaperUnits, it is good practice to return it to its
default value after completing your computation so as not to affect other
functions that assume PaperUnits is set to the default value.

Parent handle

Handle of figure’s parent. The parent of a figure object is the root object. The
handle to the root is always 0.

Pointer crosshair | {arrow} | watch | topl |
topr | botl | botr | circle | cross |
fleur | left | right | top | bottom |
fullcrosshair | ibeam | custom

Pointer symbol selection. This property determines the symbol used to indicate
the pointer (cursor) position in the figure window. Setting Pointer to custom
allows you to define your own pointer symbol. See the PointerShapeCData
property and Specifying the Figure Pointer for more information.

A 8.5-by-11 inches

B 11-by-17 inches

C 17-by-22 inches

D 22-by-34 inches

E 34-by-43 inches

Property Value Size (Width x Height)

Figure Properties

2-791

PointerShapeCData 16-by-16 matrix

User-defined pointer. This property defines the pointer that is used when you
set the Pointer property to custom. It is a 16-by-16 element matrix defining the
16-by-16 pixel pointer using the following values:

• 1 — Color pixel black.

• 2 — Color pixel white.

• NaN — Make pixel transparent (underlying screen shows through).

Element (1,1) of the PointerShapeCData matrix corresponds to the upper left
corner of the pointer. Setting the Pointer property to one of the predefined
pointer symbols does not change the value of the PointerShapeCData.
Computer systems supporting 32-by-32 pixel pointers fill only one quarter of
the available pixmap.

PointerShapeHotSpot two-element vector

Pointer active area. A two-element vector specifying the row and column
indices in the PointerShapeCData matrix defining the pixel indicating the
pointer location. The location is contained in the CurrentPoint property and
the root object’s PointerLocation property. The default value is element (1,1),
which is the upper left corner.

Position four-element vector

Figure position. This property specifies the size and location on the screen of
the figure window. Specify the position rectangle with a four-element vector of
the form

rect = [left, bottom, width, height]

where left and bottom define the distance from the lower left corner of the
screen to the lower left corner of the figure window. width and height define
the dimensions of the window. See the Units property for information on the
units used in this specification. The left and bottom elements can be negative
on systems that have more than one monitor.

You can use the get function to obtain this property and determine the position
of the figure and you can use the set function to resize and move the figure to
a new location.

Figure Properties

2-792

Note that on MS-Windows systems, figure windows cannot be less than 104
pixels wide, regardless of the value of the Position property.

Renderer painters | zbuffer | OpenGL

Rendering method used for screen and printing. This property enables you to
select the method used to render MATLAB graphics. The choices are

• painters — The original rendering method used by MATLAB is faster when
the figure contains only simple or small graphics objects.

• zbuffer — MATLAB draws graphics objects faster and more accurately
because objects are colored on a per-pixel basis and MATLAB renders only
those pixels that are visible in the scene (thus eliminating front-to-back
sorting errors). Note that this method can consume a lot of system memory
if MATLAB is displaying a complex scene.

• OpenGL — OpenGL is a renderer that is available on many computer systems.
This renderer is generally faster than painters or zbuffer and in some cases
enables MATLAB to access graphics hardware that is available on some
systems. Note that when the Renderer is set to opengl, MATLAB sets
BackingStore to off.

Using the
OpenGL
Renderer

Hardware vs. Software OpenGL Implementations
There are two kinds of OpenGL implementations — hardware and software.

The hardware implementation makes use of special graphics hardware to
increase performance and is therefore significantly faster than the software
version. Many computers have this special hardware available as an option or
may come with this hardware right out of the box.

Software implementations of OpenGL are much like the ZBuffer renderer that
is available on MATLAB Version 5.0; however, OpenGL generally provides
superior performance to ZBuffer.

OpenGL Availability
OpenGL is available on all computers that MATLAB runs on. MATLAB
automatically finds hardware versions of OpenGl if they are available. If the
hardware version is not available, then MATLAB uses the software version.

The software versions that are available on different platforms are

Figure Properties

2-793

• On UNIX systems, MATLAB uses the software version of OpenGL that is
included in the MATLAB distribution.

• On MS-Windows, OpenGL is available as part of the operating system. If you
experience problems with OpenGL, contact your graphics driver vendor to
obtain the latest qualified version of OpenGL.

MATLAB issues a warning if it cannot find a usable OpenGL library.

OpenGL Renderer Feature – Microsoft Windows
If you do not want to use hardware OpenGL, but do want to use object
transparency, you can issue the following command.

feature('UseGenericOpenGL',1)

This command forces MATLAB to use generic OpenGL on Microsoft Windows
computers. Generic OpenGL is useful if your hardware version of OpenGL does
not function correctly and you want to use image, patch, or surface
transparency, which requires the OpenGL renderer. To reenable hardware
OpenGL, use the command

feature('UseGenericOpenGL',0)

Note that the default setting is to use hardware OpenGL. To query the current
state of the generic OpenGL feature, use the command

feature('UseGenericOpenGL')

See the opengl reference page for additional information

Determining What Version You Are Using
To determine the version and vendor of the OpenGL library that MATLAB is
using on your system, type the following command at the MATLAB prompt:

opengl info

This command also returns a string of extensions to the OpenGL specification
that are available with the particular library MATLAB is using. This
information is helpful to The MathWorks, so please include this information if
you need to report bugs.

Figure Properties

2-794

OpenGL vs. Other MATLAB Renderers
There are some differences between drawings created with OpenGL and those
created with the other renderers. The OpenGL specific differences include

• OpenGL does not do colormap interpolation. If you create a surface or patch
using indexed color and interpolated face or edge coloring, OpenGL
interpolates the colors through the RGB color cube instead of through the
colormap.

• OpenGL does not support the phong value for the FaceLighting and
EdgeLighting properties of surfaces and patches.

• OpenGL does not support logarithmic-scale axes.

If You Are Having Problems
Consult the OpenGL Technical Note if you are having problems using OpenGL.
This technical note contains a wealth of information on MATLAB renderers.

RendererMode {auto} | manual

Automatic or user selection of renderer. This property enables you to specify
whether MATLAB should choose the Renderer based on the contents of the
figure window, or whether the Renderer should remain unchanged.

When the RendererMode property is set to auto, MATLAB selects the rendering
method for printing as well as for screen display based on the size and
complexity of the graphics objects in the figure.

For printing, MATLAB switches to zbuffer at a greater scene complexity than
for screen rendering because printing from a Z-buffered figure can be
considerably slower than one using the painters rendering method, and can
result in large PostScript files. However, the output does always match what is
on the screen. The same holds true for OpenGL: the output is the same as that
produced by the ZBuffer renderer — a bitmap with a resolution determined by
the print command’s −r option.

Criteria for Autoselection of OpenGL Renderer
When the RendererMode property is set to auto, MATLAB uses the following
criteria to determine whether to select the OpenGL renderer:

If the opengl autoselection mode is autoselect, MATLAB selects OpenGL if

Figure Properties

2-795

• The host computer has OpenGL installed and is in True Color mode
(OpenGL does not fully support 8-bit color mode).

• The figure contains no logarithmic axes (logarithmic axes are not supported
in OpenGL).

• MATLAB would select zbuffer based on figure contents.

• Patch objects’ faces have no more than three vertices (some OpenGL
implementations of patch tesselation are unstable).

• The figure contains less than 10 uicontrols (OpenGL clipping around
uicontrols is slow).

• No line objects use markers (drawing markers is slow).

• Phong lighting is not specified (OpenGL does not support Phong lighting; if
you specify Phong lighting, MATLAB uses the ZBuffer renderer).

Or

• Figure objects use transparency (OpenGL is the only MATLAB renderer that
supports transparency).

When the RendererMode property is set to manual, MATLAB does not change
the Renderer, regardless of changes to the figure contents.

Resize {on} | off

Window resize mode. This property determines if you can resize the figure
window with the mouse. on means you can resize the window, off means you
cannot. When Resize is off, the figure window does not display any resizing
controls (such as boxes at the corners), to indicate that it cannot be resized.

ResizeFcn string or function handle

Window resize callback routine. MATLAB executes the specified callback
routine whenever you resize the figure window. You can query the figure’s
Position property to determine the new size and position of the figure window.
During execution of the callback routine, the handle to the figure being resized
is accessible only through the root CallbackObject property, which you can
query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not directly supported
by the MATLAB Position/Units paradigm.

Figure Properties

2-796

For example, consider a GUI layout that maintains an object at a constant
height in pixels and attached to the top of the figure, but always matches the
width of the figure. The following ResizeFcn accomplishes this; it keeps the
uicontrol whose Tag is 'StatusBar' 20 pixels high, as wide as the figure, and
attached to the top of the figure. Note the use of the Tag property to retrieve the
uicontrol handle, and the gcbo function to retrieve the figure handle. Also note
the defensive programming regarding figure Units, which the callback
requires to be in pixels in order to work correctly, but which the callback also
restores to their previous value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn callback;
however, the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be called if the
PaperPositionMode property is set to manual and you have defined a resize
function. If you do not want your resize function called by print, set the
PaperPositionMode to auto.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See Resize Behavior for information on creating resize functions using GUIDE.

Selected on | off

Is object selected? This property indicates whether the figure is selected. You
can, for example, define the ButtonDownFcn to set this property, allowing users
to select the object with the mouse.

SelectionHighlight {on} | off

figures do not indicate selection.

Figure Properties

2-797

SelectionType {normal} | extend | alt | open

Mouse selection type. MATLAB maintains this property to provide information
about the last mouse button press that occurred within the figure window. This
information indicates the type of selection made. Selection types are actions
that are generally associated with particular responses from the user interface
software (e.g., single-clicking a graphics object places it in move or resize mode;
double-clicking a filename opens it, etc.).

The physical action required to make these selections varies on different
platforms. However, all selection types exist on all platforms.

Note that the ListBox style of uicontrols sets the figure SelectionType
property to normal to indicate a single mouse click or to open to indicate a
double mouse click. See uicontrol for information on how this property is set
when you click a uicontrol object.

ShareColors {on} | off Obsolete

Share slots in system color table with like colors. This property is obsolete
because MATLAB now requires true color systems.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need

Selection Type MS-Windows X-Windows

Normal Click left mouse button. Click left mouse button.

Extend Shift - click left mouse
button or click both left
and right mouse buttons.

Shift - click left mouse
button or click
middle mouse button.

Alternate Control - click left mouse
button or click right
mouse button.

Control - click left mouse
button or click
right mouse button.

Open Double-click any mouse
button.

Double-click any mouse
button.

Figure Properties

2-798

to define object handles as global variables or pass them as arguments between
callback routines.

For example, suppose you want to direct all graphics output from an M-file to
a particular figure, regardless of user actions that may have changed the
current figure. To do this, identify the figure with a Tag.

figure('Tag','Plotting Figure')

Then make that figure the current figure before drawing by searching for the
Tag with findobj.

figure(findobj('Tag','Plotting Figure'))

Toolbar none | {auto} | figure

Control display of figure toolbar. The Toolbar property enables you to control
whether MATLAB displays the default figure toolbar on figures. There are
three possible values:

• none — do not display the figure toolbar

• auto — display the figure toolbar, but remove it if a uicontrol is added to the
figure

• figure — display the figure toolbar

Note that this property affects only the figure toolbar; other toolbars (e.g., the
Camera Toolbar or Plot Edit Toolbar) are not affected. Selecting Figure
Toolbar from the figure View menu sets this property to figure.

Type string (read only)

Object class. This property identifies the kind of graphics object. For figures,
Type is always the string 'figure'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the figure. Assign this property the handle of a
uicontextmenu object created in the figure. Use the uicontextmenu function to
create the context menu. MATLAB displays the context menu whenever you
right-click over the figure.

Figure Properties

2-799

Units {pixels} | normalized | inches |
centimeters | points | characters

Units of measurement. This property specifies the units MATLAB uses to
interpret size and location data. All units are measured from the lower left
corner of the window.

• normalized units map the lower left corner of the figure window to (0,0) and
the upper right corner to (1.0,1.0).

• inches, centimeters, and points are absolute units (one point equals 1/72
of an inch).

• The size of a pixel depends on screen resolution.

• characters units are defined by characters from the default system font; the
width of one character is the width of the letter x, the height of one character
is the distance between the baselines of two lines of text.

This property affects the CurrentPoint and Position properties. If you change
the value of Units, it is good practice to return it to its default value after
completing your computation so as not to affect other functions that assume
Units is set to the default value.

When specifying the units as property/value pairs during object creation, you
must set the Units property before specifying the properties that you want to
use these units.

UserData matrix

User-specified data. You can specify UserData as any matrix you want to
associate with the figure object. The object does not use this data, but you can
access it using the set and get commands.

Visible {on} | off

Object visibility. The Visible property determines whether an object is
displayed on the screen. If the Visible property of a figure is off, the entire
figure window is invisible.

WindowButtonDownFcnstring or functional handle

Button press callback function. Use this property to define a callback routine
that MATLAB executes whenever you press a mouse button while the pointer
is in the figure window. Define this routine as a string that is a valid MATLAB

Figure Properties

2-800

expression or the name of an M-file. The expression executes in the MATLAB
workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

WindowButtonMotionFcnstring or functional handle

Mouse motion callback function. Use this property to define a callback routine
that MATLAB executes whenever you move the pointer within the figure
window. Define this routine as a string that is a valid MATLAB expression or
the name of an M-file. The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

WindowButtonUpFcn string or function handle

Button release callback function. Use this property to define a callback routine
that MATLAB executes whenever you release a mouse button. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

The button up event is associated with the figure window in which the
preceding button down event occurred. Therefore, the pointer need not be in
the figure window when you release the button to generate the button up event.

If the callback routines defined by WindowButtonDownFcn or
WindowButtonMotionFcn contain drawnow commands or call other functions
that contain drawnow commands and the Interruptible property is set to off,
the WindowButtonUpFcn may not be called. You can prevent this problem by
setting Interruptible to on.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

WindowStyle {normal} | modal | docked

Normal, modal, or dockable window behavior. When WindowStyle is set to
modal, the figure window traps all keyboard and mouse events over all
MATLAB windows as long as they are visible. Windows belonging to
applications other than MATLAB are unaffected. Modal figures remain
stacked above all normal figures and the MATLAB command window. When
multiple modal windows exist, the most recently created window keeps focus

Figure Properties

2-801

and stays above all other windows until it becomes invisible, or is returned to
WindowStyle normal, or is deleted. At that time, focus reverts to the window
that last had focus.

Figures with WindowStyle modal and Visible off do not behave modally until
they are made visible, so it is acceptable to hide a modal window instead of
destroying it when you want to reuse it.

You can change the WindowStyle of a figure at any time, including when the
figure is visible and contains children. However, on some systems this may
cause the figure to flash or disappear and reappear, depending on the
windowing system’s implementation of normal and modal windows. For best
visual results, you should set WindowStyle at creation time or when the figure
is invisible.

Modal figures do not display uimenu children or built-in menus, but it is not an
error to create uimenus in a modal figure or to change WindowStyle to modal
on a figure with uimenu children. The uimenu objects exist and their handles
are retained by the figure. If you reset the figure’s WindowStyle to normal, the
uimenus are displayed.

Use modal figures to create dialog boxes that force the user to respond without
being able to interact with other windows. Typing Control C at the MATLAB
prompt causes all figures with WindowStyle modal to revert to WindowStyle
normal, allowing you to type at the command line.

Docked WindowStyle
When WindowStyle is set to docked, the figure is docked in the desktop or a
document window. When you issue the following command,

set(figure_handle,'WindowStyle','docked')

MATLAB docks the figure identified by figure_handle and sets the
DockControls property to on, if it was off.

Note that if WindowStyle is docked, you cannot set the DockControls property
to off.

Figure Properties

2-802

WVisual identifier string (MS Windows only)

Specify pixel format for figure. MATLAB automatically selects a pixel format
for figures based on your current display settings, the graphics hardware
available on your system, and the graphical content of the figure.

Usually, MATLAB chooses the best pixel format to use in any given situation.
However, in cases where graphics objects are not rendered correctly, you might
be able select a different pixel format and improve results. See “Understanding
the WVisual String” for more information.

Querying Available Pixel Formats on Window Systems
You can determine what pixel formats are available on your system for use
with MATLAB using the following statement:

set(gcf,'WVisual')

MATLAB returns a list of the currently available pixel formats for the current
figure. For example, the following are the first three entries from a typical list.

01 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
Opengl, GDI, Window)
02 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
Opengl, Double Buffered, Window)
03 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
Opengl, Double Buffered, Window)

Use the number at the beginning of the string to specify which pixel format to
use. For example,

set(gcf,'WVisual','02')

specifies the second pixel format in the list above. Note that pixel formats may
differ on your system.

Understanding the WVisual String
The string returned by querying the WVisual property provide information on
the pixel format. For example,

• RGB 16 bits(05 06 05 00) – indicates true color with 16-bit resolution (5
bits for red, 6 bits for green, 5 bits for blue, and 0 for alpha (transparency).
MATLAB requires true color.

Figure Properties

2-803

• zdepth 24 – indicates 24-bit resolution for sorting object’s front to back
position on the screen. Selecting pixel formats with higher (24 or 32) zdepth
might solve sorting problems.

• Hardware Accelerated – some graphics functions may be performed by
hardware for increased speed. If there are incompatibilities between your
particular graphic hardware and MATLAB, select a pixel format in which
the term Generic appears instead of Hardware Accelerated.

• Opengl – supports OpenGL. See “Pixel Formats and OpenGL” for more
information.

• GDI – supports for Windows 2-D graphics interface.

• Double Buffered – support for double buffering with the OpenGL renderer.
Note that the figure DoubleBuffer property applies only to the painters
renderer.

• Bitmap – support for rendering into a bitmap (as opposed to drawing in the
window)

• Window – support for rendering into a window

Pixel Formats and OpenGL
If you are experiencing problems using hardware OpenGL on your system, you
can try using generic OpenGL, which is implemented in software. To do this,
first instruct MATLAB to use the software version of OpenGL with the
following statement.

feature('UseGenericOpenGL',1)

Then allow MATLAB to select best pixel format to use.

See the Renderer property for more information on how MATLAB uses
OpenGL.

WVisualMode auto | manual (MS Windows only)

Auto or manual selection of pixel format. VisualMode can take on two values —
auto (the default) and manual. In auto mode, MATLAB selects the best pixel
format to use based on your computer system and the graphical content of the
figure. In manual mode, MATLAB does not change the visual from the one
currently in use. Setting the WVisual property sets this property to manual.

Figure Properties

2-804

XDisplay display identifier (UNIX only)

Specify display for MATLAB. You can display figure windows on different
displays using the XDisplay property. For example, to display the current
figure on a system called fred, use the command

set(gcf,'XDisplay','fred:0.0')

XVisual visual identifier (UNIX only)

Select visual used by MATLAB. You can select the visual used by MATLAB by
setting the XVisual property to the desired visual ID. This can be useful if you
want to test your application on an 8-bit or grayscale visual. To see what
visuals are available on your system, use the UNIX xdpyinfo command. From
MATLAB, type

!xdpyinfo

The information returned contains a line specifying the visual ID. For example,

visual id: 0x23

To use this visual with the current figure, set the XVisual property to the ID.

set(gcf,'XVisual','0x23')

To see which of the available visuals MATLAB can use, call set on the XVisual
property:

set(gcf,'XVisual')

The following typical output shows the visual being used (in curly brackets)
and other possible visuals. Note that MATLAB requires a TrueColor visual.

{ 0x23 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff) }
 0x24 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)
 0x25 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)
 0x26 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)
 0x27 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)
 0x28 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)
 0x29 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)
 0x2a (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

You can also use the glxinfo unix command to see what visuals are available
for use with the OpenGL renderer. From MATLAB, type

Figure Properties

2-805

!glxinfo

After providing information about the implemenation of OpenGL on your
system, glxinfo returns a table of visuals. The partial listing below shows
typcial output.

visual x bf lv rg d st colorbuffer ax dp st accumbuffer ms cav
 id dep cl sp sz l ci b ro r g b a bf th cl r g b a ns b eat
--
0x23 24 tc 0 24 0 r y . 8 8 8 8 0 0 0 0 0 0 0 0 0 None
0x24 24 tc 0 24 0 r . . 8 8 8 8 0 0 0 0 0 0 0 0 0 None
0x25 24 tc 0 24 0 r y . 8 8 8 8 0 24 8 0 0 0 0 0 0 None
0x26 24 tc 0 24 0 r . . 8 8 8 8 0 24 8 0 0 0 0 0 0 None
0x27 24 tc 0 24 0 r y . 8 8 8 8 0 0 0 16 16 16 0 0 0 Slow

The third column is the class of visual. tc means a true color visual. Note that
some visuals may be labeled Slow under the caveat column. Such visuals
should be avoided.

To determine which visual MATLAB will use by default with the OpenGL
renderer, use the MATLAB opengl info command. The returned entry for the
visual might look like the following.

Visual = 0x23 (TrueColor, depth 24, RGB mask 0xff0000 0xff00
0x00ff)

Experimenting with a different TrueColor visual may improve certain
rendering problems.

XVisualMode auto | manual

Auto or manual selection of visual. VisualMode can take on two values — auto
(the default) and manual. In auto mode, MATLAB selects the best visual to use
based on the number of colors, availability of the OpenGL extension, etc. In
manual mode, MATLAB does not change the visual from the one currently in
use. Setting the XVisual property sets this property to manual.

figurepalette

2-806

2figurepalettePurpose Show or hide figure palette

Syntax figurepalette('show')
figurepalette('hide')
figurepalette('toggle')
figurepalette(figure_handle,...)

Description figurepalette('show') displays the palette on the current figure.

figurepalette('hide') hides the palette on the current figure.

figurepalette('toggle') or figurepalette toggles the visibility of the
palette on the current figure.

figurepalette(figure_handle,...) shows or hides the palette on the figure
specified by figure_handle.

See Also plotbrowser, propertyeditor

fileattrib

2-807

2fileattribPurpose Set or get attributes of file or directory

Syntax fileattrib
fileattrib('name')
fileattrib('name','attrib')
fileattrib('name','attrib','users')
fileattrib('name','attrib','users','s')
[status,message,messageid] =

fileattrib('name','attrib','users','s')

Description The fileattrib function is like the DOS attrib command or the UNIX chmod
command.

fileattrib displays the attributes for the current directory. Values are

fileattrib('name') displays the attributes for name, where name is the
absolute or relative pathname for a directory or file. Use the wildcard * at the
end of name to view attributes for all matching files.

fileattrib('name','attrib') sets the attribute for name, where name is the
absolute or relative pathname for a directory or file. Specify the + qualifier
before the attribute to set it, and specify the - qualifier before the attribute to
clear it. Use the wildcard * at the end of name to set attributes for all matching
files. Values for attrib are

Value Description

0 Attribute is off

1 Attribute is set (on)

NaN Attribute does not apply

Value for attrib Description

a Archive (Windows only)

h Hidden file (Windows only)

fileattrib

2-808

For example, fileattrib('myfile.m','+w') makes myfile.m a writable file.

fileattrib('name','attrib','users') sets the attribute for name, where
name is the absolute or relative pathname for a directory or file, and defines
which users are affected by attrib, where users is applicable only for UNIX
systems. For more information about these attributes, see UNIX reference
information for chmod. The default value for users is u. Values for users are

fileattrib('name','attrib','users','s') sets the attribute for name,
where name is the absolute or relative pathname for a file or a directory and its
contents, and defines which users are affected by attrib. Here the s specifies
that attrib be applied to all contents of name, where name is a directory.

[status,message,messageid] =
fileattrib('name','attrib','users','s') sets the attribute for name,
returning the status, a message, and the MATLAB error message ID (see error
and lasterr). Here, status is 1 for success and is 0 for error. If attrib, users,
and s are not specified, and status is 1, message is a structure containing the
file attributes and messageid is blank. If status is 0, messageid contains the
error. If you use a wildcard * at the end of name, mess will be a structure.

s System file (Windows only)

w Write access (Windows and UNIX)

x Executable (UNIX only)

Value for users Description

a All users

g Group of users

o All other users

u Current user

Value for attrib Description

fileattrib

2-809

Examples Get Attributes of File
To view the attributes of myfile.m, type

fileattrib('myfile.m')

MATLAB returns

 Name: 'd:/work/myfile.m'
 archive: 0
 system: 0
 hidden: 0
 directory: 0
 UserRead: 1
 UserWrite: 0
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

UserWrite is 0, meaning myfile.m is read only. The Group and Other values
are NaN because they do not apply to the current operating system, Windows.

Set File Attribute
To make myfile.m become writable, type

fileattrib('myfile.m','+w')

Running fileattrib('myfile.m') now shows UserWrite to be 1.

Set Attributes for Specified Users
To make the directory d:/work/results be a read-only directory for all users,
type

fileattrib('d:/work/results','-w','a')

The - preceding the write attribute, w, specifies that write status is removed.

fileattrib

2-810

Set Multiple Attributes for Directory and Its Contents
To make the directory d:/work/results and all its contents be read only and
be hidden, on Windows, type

fileattrib('d:/work/results','+h-w','','s')

Because users is not applicable on Windows systems, its value is empty. Here,
s applies the attribute to the contents of the specified directory.

Return Status and Structure of Attributes
To return the attributes for the directory results to a structure, type

[stat,mess]=fileattrib('results')

MATLAB returns

stat =
 1

mess =
 Name: 'd:\work\results'
 archive: 0
 system: 0
 hidden: 0
 directory: 1
 UserRead: 1
 UserWrite: 1
 UserExecute: 1
 GroupRead: NaN
 GroupWrite: NaN
 GroupExecute: NaN
 OtherRead: NaN
 OtherWrite: NaN
 OtherExecute: NaN

fileattrib

2-811

The operation was successful as indicated by the status, stat, being 1. The
structure mess contains the file attributes. Access the attribute values in the
structure. For example, typing

mess.Name

returns the path for results

ans =
d:\work\results

Return Attributes with Wildcard for name
Return the attributes for all files in the current directory whose names begin
with new.

[stat,mess]=fileattrib('new*')

MATLAB returns

stat =
 1

mess =
1x3 struct array with fields:
 Name
 archive
 system
 hidden
 directory
 UserRead
 UserWrite
 UserExecute
 GroupRead
 GroupWrite
 GroupExecute
 OtherRead
 OtherWrite
 OtherExecute

The results indicate there are three matching files. To view the filenames, type

mess.Name

fileattrib

2-812

MATLAB returns

ans =
d:\work\results\newname.m

ans =
d:\work\results\newone.m

ans =
d:\work\results\newtest.m

To view just the first filename, type

mess(1).Name

ans =
d:\work\results\newname.m

See Also copyfile, cd, dir, filebrowser, fileparts, ls, mfilename, mkdir, movefile,
rmdir

filebrowser

2-813

2filebrowserPurpose Display Current Directory browser, a tool for viewing files in current directory

Graphical
Interface

As an alternative to the filebrowser function, select Current Directory from
the Desktop menu in the MATLAB desktop.

Syntax filebrowser

Description filebrowser displays the Current Directory browser.

See Also cd, copyfile, fileattrib, ls, mkdir, movefile, pwd, rmdir

Use the pathname edit box to view
directories and their contents.

Click the find button
to search for content
within M-files.

Double-click a file to
open it in an
appropriate tool.

View the help
portion of the
selected M-file.

file formats

2-814

2file formatsPurpose Readable file formats

Description This table shows the file formats that MATLAB is capable of reading.

File
Format

Extension File Content Read
Command

Returns

Text MAT Saved MATLAB
workspace

load Variables in
the file

CSV Comma-separated
numbers

csvread Double array

DLM Delimited text dlmread Double array

TAB Tab-separated text dlmread Double array

Scientific
Data

CDF Data in Common
Data Format

cdfread Cell array of
CDF records

FITS Flexible Image
Transport System
data

fitsread Primary or
extension
table data

HDF Data in
Hierarchical Data
Format

hdfread HDF or
HDF-EOS
data set

Spread-
sheet

XLS Excel worksheet xlsread Double or cell
array

WK1 Lotus 123
worksheet

wk1read Double or cell
array

file formats

2-815

Image TIFF TIFF image imread True color,
grayscale, or
indexed
image(s)

PNG PNG image imread True color,
grayscale, or
indexed image

HDF HDF image imread True color,
grayscale, or
indexed
image(s)

BMP BMP image imread True color or
indexed image

JPEG JPEG image imread True color or
grayscale
image

GIF GIF image imread Indexed
image

PCX PCX image imread Indexed
image

XWD XWD image imread Indexed
image

CUR Cursor image imread Indexed
image

ICO Icon image imread Indexed
image

File
Format

Extension File Content Read
Command

Returns

file formats

2-816

See Also fscanf, fread, textread, importdata

Audio
file

AU NeXT/SUN sound auread Sound data
and sample
rate

WAV Microsoft WAVE
sound

wavread Sound data
and sample
rate

Movie AVI Audio/video aviread MATLAB
movie

File
Format

Extension File Content Read
Command

Returns

fileparts

2-817

2filepartsPurpose Return filename parts

Syntax [pathstr,name,ext,versn] = fileparts('filename')

Description [pathstr,name,ext,versn] = fileparts('filename') returns the path,
filename, extension, and version for the specified file. The returned ext field
contains a dot (.) before the file extension.

The fileparts function is platform dependent.

You can reconstruct the file from the parts using

fullfile(pathstr,[name ext versn])

Examples This example returns the parts of file to path, name, ext, and ver.

file = '\home\user4\matlab\classpath.txt';

[pathstr,name,ext,versn] = fileparts(file)

pathstr =
\home\user4\matlab

name =
classpath

ext =
.txt

versn =
 ''

See Also fullfile

filesep

2-818

2filesepPurpose Return the directory separator for this platform

Syntax f = filesep

Description f = filesep returns the platform-specific file separator character. The file
separator is the character that separates individual directory names in a path
string.

Examples On the PC,

iofun_dir = ['toolbox' filesep 'matlab' filesep 'iofun']

iofun_dir =

toolbox\matlab\iofun

On a UNIX system,

iodir = ['toolbox' filesep 'matlab' filesep 'iofun']

iodir =

toolbox/matlab/iofun

See Also fullfile, fileparts, pathsep

fill

2-819

2fillPurpose Filled two-dimensional polygons

Syntax fill(X,Y,C)
fill(X,Y,ColorSpec)
fill(X1,Y1,C1,X2,Y2,C2,...)
fill(...,'PropertyName',PropertyValue)
h = fill(...)

Description The fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with vertex color
specified by C. C is a vector or matrix used as an index into the colormap. If C is
a row vector, length(C) must equal size(X,2) and size(Y,2); if C is a column
vector, length(C) must equal size(X,1) and size(Y,1). If necessary, fill
closes the polygon by connecting the last vertex to the first.

fill(X,Y,ColorSpec) fills two-dimensional polygons specified by X and Y with
the color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional filled
areas.

fill(...,'PropertyName',PropertyValue) allows you to specify property
names and values for a patch graphics object.

h = fill(...) returns a vector of handles to patch graphics objects, one
handle per patch object.

Remarks If X or Y is a matrix, and the other is a column vector with the same number of
elements as rows in the matrix, fill replicates the column vector argument to
produce a matrix of the required size. fill forms a vertex from corresponding
elements in X and Y and creates one polygon from the data in each column.

The type of color shading depends on how you specify color in the argument list.
If you specify color using ColorSpec, fill generates flat-shaded polygons by
setting the patch object’s FaceColor property to the corresponding RGB triple.

If you specify color using C, fill scales the elements of C by the values specified
by the axes property CLim. After scaling C, C indexes the current colormap.

fill

2-820

If C is a row vector, fill generates flat-shaded polygons where each element
determines the color of the polygon defined by the respective column of the X
and Y matrices. Each patch object’s FaceColor property is set to 'flat'. Each
row element becomes the CData property value for the nth patch object, where
n is the corresponding column in X or Y.

If C is a column vector or a matrix, fill uses a linear interpolation of the vertex
colors to generate polygons with interpolated colors. It sets the patch graphics
object FaceColor property to 'interp' and the elements in one column become
the CData property value for the respective patch object. If C is a column vector,
fill replicates the column vector to produce the required sized matrix.

Examples Create a red octagon.

t = (1/16:1/8:1)'*2*pi;
x = sin(t);
y = cos(t);
fill(x,y,'r')
axis square

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fill

2-821

See Also axis, caxis, colormap, ColorSpec, fill3, patch

“Polygons and Surfaces” for related functions

fill3

2-822

2fill3Purpose Filled three-dimensional polygons

Syntax fill3(X,Y,Z,C)
fill3(X,Y,Z,ColorSpec)
fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...)
fill3(...,'PropertyName',PropertyValue)
h = fill3(...)

Description The fill3 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,C) fills three-dimensional polygons. X, Y, and Z triplets specify
the polygon vertices. If X, Y, or Z is a matrix, fill3 creates n polygons, where n
is the number of columns in the matrix. fill3 closes the polygons by
connecting the last vertex to the first when necessary.

C specifies color, where C is a vector or matrix of indices into the current
colormap. If C is a row vector, length(C) must equal size(X,2) and size(Y,2);
if C is a column vector, length(C) must equal size(X,1) and size(Y,1).

fill3(X,Y,Z,ColorSpec) fills three-dimensional polygons defined by X, Y, and
Z with color specified by ColorSpec.

fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...) specifies multiple filled
three-dimensional areas.

fill3(...,'PropertyName',PropertyValue) allows you to set values for
specific patch properties.

h = fill3(...) returns a vector of handles to patch graphics objects, one
handle per patch.

Algorithm If X, Y, and Z are matrices of the same size, fill3 forms a vertex from the
corresponding elements of X, Y, and Z (all from the same matrix location), and
creates one polygon from the data in each column.

If X, Y, or Z is a matrix, fill3 replicates any column vector argument to produce
matrices of the required size.

If you specify color using ColorSpec, fill3 generates flat-shaded polygons and
sets the patch object FaceColor property to an RGB triple.

fill3

2-823

If you specify color using C, fill3 scales the elements of C by the axes property
CLim, which specifies the color axis scaling parameters, before indexing the
current colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets the
FaceColor property of the patch objects to 'flat'. Each element becomes the
CData property value for the respective patch object.

If C is a column vector or a matrix, fill3 generates polygons with interpolated
colors and sets the patch object FaceColor property to 'interp'. fill3 uses a
linear interpolation of the vertex colormap indices when generating polygons
with interpolated colors. The elements in one column become the CData
property value for the respective patch object. If C is a column vector, fill3
replicates the column vector to produce the required sized matrix.

Examples Create four triangles with interpolated colors.

X = [0 1 1 2;1 1 2 2;0 0 1 1];
Y = [1 1 1 1;1 0 1 0;0 0 0 0];
Z = [1 1 1 1;1 0 1 0;0 0 0 0];
C = [0.5000 1.0000 1.0000 0.5000;

1.0000 0.5000 0.5000 0.1667;
0.3330 0.3330 0.5000 0.5000];

fill3(X,Y,Z,C)

fill3

2-824

See Also axis, caxis, colormap, ColorSpec, fill, patch

“Polygons and Surfaces” for related functions

filter

2-825

2filterPurpose Filter data with an infinite impulse response (IIR) or finite impulse response
(FIR) filter

Syntax y = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
[...] = filter(b,a,X,[],dim)

Description The filter function filters a data sequence using a digital filter which works
for both real and complex inputs. The filter is a direct form II transposed
implementation of the standard difference equation (see “Algorithm”).

y = filter(b,a,X) filters the data in vector X with the filter described by
numerator coefficient vector b and denominator coefficient vector a. If a(1) is
not equal to 1, filter normalizes the filter coefficients by a(1). If a(1) equals
0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a multidimensional
array, filter operates on the first nonsingleton dimension.

[y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter delays.
If X is a row or column vector, output zf is a column vector of
max(length(a),length(b))-1. If X is a matrix, zf is an array of such vectors,
one for each column of X, and similarly for multidimensional arrays.

[y,zf] = filter(b,a,X,zi) accepts initial conditions, zi, and returns the
final conditions, zf, of the filter delays. Input zi is a vector of length
max(length(a),length(b))-1, or an array with the leading dimension of size
max(length(a),length(b))-1 and with remaining dimensions matching those
of X.

y = filter(b,a,X,zi,dim) and [...] = filter(b,a,X,[],dim) operate
across the dimension dim.

Example You can use filter to find a running average without using a for loop. This
example finds the running average of a 16-element vector, using a window size
of 5.

data = [1:0.2:4]';

filter

2-826

windowSize = 5;
filter(ones(1,windowSize)/windowSize,1,data)

ans =
 0.2000
 0.4400
 0.7200
 1.0400
 1.4000
 1.6000
 1.8000
 2.0000
 2.2000
 2.4000
 2.6000
 2.8000
 3.0000
 3.2000
 3.4000
 3.6000

Algorithm The filter function is implemented as a direct form II transposed structure,

or

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
 - a(2)*y(n-1) - ... - a(na+1)*y(n-na)

where n-1 is the filter order, and which handles both FIR and IIR filters [1].

Σ Z–1

x(m)

–a(n)

Zn–1(m)

. . .

. . .

b(n)

. . . Σ Z–1

Z2(m)

Σ Z–1

Z1(m)

–a(3)

b(3)

–a(2)

b(2)

Σ

b(1)

y(m)

filter

2-827

The operation of filter at sample is given by the time domain difference
equations

The input-output description of this filtering operation in the -transform
domain is a rational transfer function,

See Also filter2

filtfilt, filtic in the Signal Processing Toolbox

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal Processing,
Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311-312.

m

y m() b 1()x m() z1 m 1–()+=

z1 m() b 2()x m() z2 m 1–() a 2()y m()–+=

zn 2– m() b n 1–()x m() zn 1– m 1–() a n 1–()y m()–+=

zn 1– m() b n()x m() a n()y m()–=

...=

z

Y z() b 1() b 2()z 1– … b nb 1+()z nb–+ ++
1 a 2()z 1– … a na 1+()z na–+ + +

---X z()=

filter2

2-828

2filter2Purpose Two-dimensional digital filtering

Syntax Y = filter2(h,X)
Y = filter2(h,X,shape)

Description Y = filter2(h,X) filters the data in X with the two-dimensional FIR filter in
the matrix h. It computes the result, Y, using two-dimensional correlation, and
returns the central part of the correlation that is the same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

Remarks Two-dimensional correlation is equivalent to two-dimensional convolution
with the filter matrix rotated 180 degrees. See the Algorithm section for more
information about how filter2 performs linear filtering.

Algorithm Given a matrix X and a two-dimensional FIR filter h, filter2 rotates your filter
matrix 180 degrees to create a convolution kernel. It then calls conv2, the
two-dimensional convolution function, to implement the filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of the FIR
filter with the input matrix. By default, filter2 then extracts the central part
of the convolution that is the same size as the input matrix, and returns this as
the result. If the shape parameter specifies an alternate part of the convolution
for the result, filter2 returns the appropriate part.

See Also conv2, filter

'full' Returns the full two-dimensional correlation. In this case, Y is
larger than X.

'same' (default) Returns the central part of the correlation. In this
case, Y is the same size as X.

'valid' Returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

find

2-829

2findPurpose Find indices and values of nonzero elements

Syntax indices = find(X)
[i,j] = find(X)
[i,j,v] = find(X)
[...] = find(X, k)
find(X, k, 'first')
[...] = find(X, k, 'last')

Description indices = find(X) returns the linear indices corresponding to the nonzero
entries of the array X. If none are found, find returns an empty matrix. In
general, find(X) regards X as X(:), which is the long column vector formed by
concatenating the columns of X.

[i,j] = find(X) returns the row and column indices of the nonzero entries in
the matrix X. This syntax is especially useful when working with sparse
matrices. If X is an N-dimensional array with N > 2, j contains linear indices
for the dimensions of X other than the first.

[i,j,v] = find(X) returns a column vector v of the nonzero entries in X, as
well as row and column indices.

[...] = find(X, k) or [...] = find(X, k, 'first') returns at most the
first k indices corresponding to the nonzero entries of X. k must be a positive
integer, but it can be of any numeric data type.

[...] = find(X, k, 'last') returns at most the last k indices corresponding
to the nonzero entries of X.

Examples X = [1 0 4 -3 0 0 0 8 6];
indices = find(X)

returns linear indices for the nonzero entries of X.

indices =

 1 3 4 8 9

You can use a logical expression to define X. For example,

find(X > 2)

find

2-830

returns linear indices corresponding to the entries of X that are greater than 2.

ans =

 3 8 9

The following commands

X = [3 2 0; -5 0 7; 0 0 1];
[i,j,v] = find(X)

return

i =

 1
 2
 1
 2
 3

a vector of row indices of the nonzero entries of X,

j =

 1
 1
 2
 3
 3

a vector of column indices of the nonzero entries of X, and

v =

 3
 -5
 2
 7
 1

a vector containing the nonzero entries of X.

Some operations on a vector

find

2-831

x = [11 0 33 0 55]';
find(x)

ans =

 1
 3
 5

find(x == 0)

ans =

 2
 4

find(0 < x & x < 10*pi)

ans =

 1

For the matrix

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

find(M > 3, 4)

returns the indices of the first four entries of M that are greater than 3.

ans =

 1
 3
 5

find

2-832

 6

See Also nonzeros, sparse, colon, logical operators, relational operators

findall

2-833

2findallPurpose Find handles of all graphics objects

Syntax object_handles = findall(handle_list)
object_handles = findall(handle_list,'property','value',...)

Description object_handles = findall(handle_list) returns the handles of all objects
in the hierarchy under the objects identified in handle_list.

object_handles = findall(handle_list,'property','value',...)
returns the handles of all objects in the hierarchy under the objects identified
in handle_list that have the specified properties set to the specified values.

Remarks findall is similar to findobj, except that it finds objects even if their
HandleVisibility is set to off.

Examples plot(1:10)
xlabel xlab
a = findall(gcf)
b = findobj(gcf)
c = findall(b,'Type','text') % return the xlabel handle twice
d = findobj(b,'Type','text') % can't find the xlabel handle

See Also allchild, findobj

findfigs

2-834

2findfigsPurpose Find visible off-screen figures

Syntax findfigs

Description findfigs finds all visible figure windows whose display area is off the screen
and positions them on the screen.

A window appears to MATLAB to be off-screen when its display area (the area
not covered by the window’s title bar, menu bar, and toolbar) does not appear
on the screen.

This function is useful when you are bringing an application from a larger
monitor to a smaller one (or one with lower resolution). Windows visible on the
larger monitor may appear off-screen on a smaller monitor. Using findfigs
ensures that all windows appear on the screen.

See Also figflag

“Finding and Identifying Graphics Objects” for related functions

findobj

2-835

2findobjPurpose Locate graphics objects with specific properties

Syntax h = findobj
h = findobj('PropertyName',PropertyValue,...)
h = findobj('PropertyName',PropertyValue,'-logicaloperator',

'PropertyName',PropertyValue,...)
h = findobj('-regexp','PropertyName','regexp',...)
h = findobj(objhandles,...)
h = findobj(objhandles,'-depth',d,...)
h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)

Description findobj locates graphics objects and returns their handles. You can limit the
search to objects with particular property values and along specific branches of
the hierarchy.

h = findobj returns the handles of the root object and all its descendants.

h = findobj('PropertyName',PropertyValue,...) returns the handles of
all graphics objects having the property PropertyName, set to the value
PropertyValue. You can specify more than one property/value pair, in which
case, findobj returns only those objects having all specified values.

h = findobj('PropertyName',PropertyValue,'-logicaloperator',
PropertyName',PropertyValue,...) applies the logical operator to the

property value matching. Possible values for -logicaloperator are:

• -and

• -or

• -xor

• -not

See the Examples section for examples of how to use these operators. See
Logical Operators for an explanation of logical operators.

h = findobj('-regexp','PropertyName','regexp',...) matches objects
using regular expressions as if the value of the property PropertyName was
passed to the regexp function as

regexp(PropertyValue,'regexp')

findobj

2-836

If a match occurs, findobj returns the object’s handle. See the regexp function
for information on how MATLAB uses regular expressions.

h = findobj(objhandles,...) restricts the search to objects listed in
objhandles and their descendants.

h = findobj(objhandles,'-depth',d,...) specified the depth of the search.
The depth argument d controls how many levels under the handles in
objhandles are traversed. Specifying d as inf to get the default behavior of all
levels. Specify d as 0 to get the same behavior as using the flat argument.

h = findobj(objhandles,'flat','PropertyName',PropertyValue,...)
restricts the search to those objects listed in objhandles and does not search
descendants.

Remarks findobj returns an error if a handle refers to a nonexistent graphics object.

findobj correctly matches any legal property value. For example,

findobj('Color','r')

finds all objects having a Color property set to red, r, or [1 0 0].

When a graphics object is a descendant of more than one object identified in
objhandles, MATLAB searches the object each time findobj encounters its
handle. Therefore, implicit references to a graphics object can result in its
handle being returned multiple times.

Examples Find all line objects in the current axes:

h = findobj(gca,'Type','line')

Find all objects having a Label set to 'foo' and a String set to 'bar':

h = findobj('Label','foo','-and','String','bar');

Find all objects whose String is not 'foo' and is not 'bar':

h = findobj('-not','String','foo','-not','String','bar');

Find all objects having a String set to 'foo' and a Tag set to 'button one' and
whose Color is not 'red' or 'blue':

h = findobj('String','foo','-and','Tag','button one',...

findobj

2-837

'-and','-not',{'Color','red','-or','Color','blue'})

Find all objects for which you have assigned a value to the Tag property (that
is, the value is not the empty string ''):

h = findobj('-regexp','Tag','[^'']')

Find all children of the current figure that have their BackgroundColor
property set to a certain shade of gray ([.7 .7 .7]). Note that this statement
also searches the current figure for the matching property value pair.

h = findobj(gcf,'-depth',1,'BackgroundColor',[.7 .7 .7])

See Also copyobj, gcf, gca, gcbo, gco, get, regexp, set

See Example — Using Logical Operators and Regular Expressions for more
examples.

“Finding and Identifying Graphics Objects” for related functions

findstr

2-838

2findstrPurpose Find a string within another, longer string

Syntax k = findstr(str1,str2)

Description k = findstr(str1,str2) searches the longer of the two input strings for any
occurrences of the shorter string, returning the starting index of each such
occurrence in the double array k. If no occurrences are found, then findstr
returns the empty array, [].

The search performed by findstr is case sensitive. Any leading and trailing
blanks in either input string are explicitly included in the comparison.

Unlike the strfind function, the order of the input arguments to findstr is not
important. This can be useful if you are not certain which of the two input
strings is the longer one.

Examples s = 'Find the starting indices of the shorter string.';

findstr(s,'the')
ans =
 6 30

findstr('the',s)
ans =
 6 30

See Also strfind, strmatch, strtok, strcmp, strncmp, strcmpi, strncmpi, regexp,
regexpi, regexprep

finish

2-839

2finishPurpose MATLAB termination M-file

Description When MATLAB quits, it runs a script called finish.m, if it exists and is on the
MATLAB search path or in the current directory. This is a file that you create
yourself in order to have MATLAB perform any final tasks just prior to
terminating. For example, you might want to save the data in your workspace
to a MAT-file before MATLAB exits.

finish.m is invoked whenever you do one of the following:

• Click the close box in the MATLAB desktop on Windows or the UNIX
equivalent

• Select Exit MATLAB from the desktop File menu

• Type quit or exit at the Command Window prompt

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or drawnow so
that figures are visible. See the reference pages for these functions for more
information.

Examples Two sample finish.m files are provided with MATLAB in
$matlabroot/toolbox/local. Use them to help you create your own finish.m,
or rename one of the files to finish.m and add it to the path to use it.

• finishsav.m—Saves the workspace to a MAT-file when MATLAB quits.

• finishdlg.m—Displays a dialog allowing you to cancel quitting and saves
the workspace. It uses quit cancel and contains the following code.

button = questdlg('Ready to quit?', ...
 'Exit Dialog','Yes','No','No');
switch button
 case 'Yes',
 disp('Exiting MATLAB');
 %Save variables to matlab.mat
 save
 case 'No',
 quit cancel;
end

See Also quit, startup

fitsinfo

2-840

2fitsinfoPurpose Return information about a FITS file

Syntax S = fitsinfo(filename)

Description S = fitsinfo(filename) returns a structure whose fields contain information
about the contents of a Flexible Image Transport System (FITS) file. filename
is a string that specifies the name of the FITS file.

The structure S contains the following fields.

A FITS file can also include any number of optional components, called
extensions, in FITS terminology. To provide information about these
extensions, the structure S can also include one or more of the following
structure arrays.

Information Returned from a Basic FITS File

Field Name Description Return Type

Contents List of extensions in the file in the
order that they occur

Cell array of
strings

FileModDate File modification date String

Filename Name of the file String

FileSize Size of the file in bytes Double

PrimaryData Information about the primary data
in the FITS file

Structure array

Additional Information Returned from FITS Extensions

Field Name Description Return Type

AsciiTable ASCII Table extensions Structure array

BinaryTable Binary Table extensions Structure array

Image Image extensions Structure array

Unknown Nonstandard extensions Structure array

fitsinfo

2-841

The tables that follow show the fields of each of the structure arrays that can
be returned by fitsinfo.

Note For all Intercept and Slope field names below, the equation used to
calculate actual values is actual_value = (Slope * array_value) +
Intercept.

Fields of the PrimaryData Structure Array

Field Name Description Return Type

DataSize Size of the primary data in bytes Double

DataType Precision of the data String

Intercept Value, used with Slope, to
calculate actual pixel values from
the array pixel values

Double

Keywords Keywords, values, and comments
of the header in each column

Cell array of
strings

MissingDataValue Value used to represent undefined
data

Double

Offset Number of bytes from beginning of
the file to the first data value

Double

Size Sizes of each dimension Double array

Slope Value, used with Intercept, to
calculate actual pixel values from
the array pixel values

Double

fitsinfo

2-842

Fields of the AsciiTable Structure Array

Field Name Description Return Type

DataSize Size of the data in the ASCII Table
in bytes

Double

FieldFormat Formats in which each field is
encoded, using FORTRAN-77
format codes

Cell array of
strings

FieldPos Starting column for each field Double array

FieldPrecision Precision in which the values in
each field are stored

Cell array of
strings

FieldWidth Number of characters in each field Double array

Intercept Values, used with Slope, to
calculate actual data values from
the array data values

Double array

Keywords Keywords, values, and comments in
the ASCII table header

Cell array of
strings

MissingDataValue Representation of undefined data in
each field

Cell array of
strings

NFields Number of fields in each row Double array

Offset Number of bytes from beginning of
the file to the first data value

Double

Rows Number of rows in the table Double

RowSize Number of characters in each row Double

Slope Values, used with Intercept, to
calculate actual data values from
the array data values

Double array

fitsinfo

2-843

Fields of the BinaryTable Structure Array

Field Name Description Return Type

DataSize Size of the data in the Binary Table,
in bytes. Includes any data past the
main part of the Binary Table.

Double

ExtensionOffset Number of bytes from the beginning
of the file to any data past the main
part of the Binary Table

Double

ExtensionSize Size of any data past the main part
of the Binary Table, in bytes

Double

FieldFormat Data type for each field, using FITS
binary table format codes

Cell array of
strings

FieldPrecision Precisions in which the values in
each field are stored

Cell array of
strings

FieldSize Number of values in each field Double array

Intercept Values, used with Slope, to
calculate actual data values from
the array data values

Double array

Keywords Keywords, values, and comments in
the Binary Table header

Cell array of
strings

MissingDataValue Representation of undefined data in
each field

Cell array of
double

NFields Number of fields in each row Double

Offset Number of bytes from beginning of
the file to the first data value

Double

Rows Number of rows in the table Double

fitsinfo

2-844

RowSize Number of bytes in each row Double

Slope Values, used with Intercept, to
calculate actual data values from
the array data values

Double array

Fields of the Image Structure Array

Field Name Description Return Type

DataSize Size of the data in the Image
extension in bytes

Double

DataType Precision of the data String

Intercept Value, used with Slope, to calculate
actual pixel values from the array
pixel values

Double

Keywords Keywords, values, and comments in
the Image header

Cell array of
strings

MissingDataValue Representation of undefined data Double

Offset Number of bytes from the beginning
of the file to the first data value

Double

Size Sizes of each dimension Double array

Slope Value, used with Intercept, to
calculate actual pixel values from
the array pixel values

Double

Fields of the BinaryTable Structure Array

Field Name Description Return Type

fitsinfo

2-845

Example Use fitsinfo to obtain information about FITS file tst0012.fits. In addition
to its primary data, the file also contains three extensions: Binary Table,
Image, and ASCII Table.

S = fitsinfo('tst0012.fits');
S =
 Filename: 'tst0012.fits'
 FileModDate: '27-Nov-2000 13:25:55'
 FileSize: 109440
 Contents: {'Primary' 'Binary Table' 'Image' 'ASCII'}
 PrimaryData: [1x1 struct]
 BinaryTable: [1x1 struct]
 Image: [1x1 struct]
 AsciiTable: [1x1 struct]

Fields of the Unknown Structure Array

Field Name Description Return Type

DataSize Size of the data in nonstandard
extensions, in bytes

Double

DataType Precision of the data String

Intercept Value, used with Slope, to calculate
actual data values from the array
data values

Double

Keywords Keywords, values, and comments in
the extension header

Cell array of
strings

MissingDataValue Representation of undefined data Double

Offset Number of bytes from beginning of
the file to the first data value

Double

Size Sizes of each dimension Double array

Slope Value, used with Intercept, to
calculate actual data values from
the array data values

Double

fitsinfo

2-846

The PrimaryData substructure shows that the data resides in a 102-by-109
matrix of single-precision values. There are 44,472 bytes of primary data
starting at an offset of 2,880 bytes from the start of the file.

S.PrimaryData
ans =
 DataType: 'single'
 Size: [102 109]
 DataSize: 44472
 MissingDataValue: []
 Intercept: 0
 Slope: 1
 Offset: 2880
 Keywords: {25x3 cell}

Examining the ASCII Table substructure, you can see that this table has 53
rows, 59 columns, and contains 8 fields per row. The last field in each row, for
example, begins in the 55th column and contains a 4-digit integer.

S.AsciiTable
ans =
 Rows: 53
 RowSize: 59
 NFields: 8
 FieldFormat: {1x8 cell}
 FieldPrecision: {1x8 cell}
 FieldWidth: [9 6.2000 3 10.4000 20.1500 5 1 4]
 FieldPos: [1 11 18 22 33 54 54 55]
 DataSize: 3127
 MissingDataValue: {'*' '---.--' '*' [] '*' '*' '*' ''}
 Intercept: [0 0 -70.2000 0 0 0 0 0]
 Slope: [1 1 2.1000 1 1 1 1 1]
 Offset: 103680
 Keywords: {65x3 cell}

S.AsciiTable.FieldFormat
ans =
 'A9' 'F6.2' 'I3' 'E10.4' 'D20.15' 'A5' 'A1' 'I4'

The ASCII Table includes 65 keyword entries arranged in a 65-by-3 cell array.

key = S.AsciiTable.Keywords

fitsinfo

2-847

key =
S.AsciiTable.Keywords
ans =
 'XTENSION' 'TABLE' [1x48 char]
 'BITPIX' [8] [1x48 char]
 'NAXIS' [2] [1x48 char]
 'NAXIS1' [59] [1x48 char]
 . . .
 . . .
 . . .

One of the entries in this cell array is shown here. Each row of the array
contains a keyword, its value, and comment.

key{2,:}

ans =
BITPIX % Keyword

ans =
 8 % Keyword value

ans =
 Character data 8 bits per pixel % Keyword comment

See Also fitsread

fitsread

2-848

2fitsreadPurpose Extract data from a FITS file

Syntax data = fitsread(filename)
data = fitsread(filename, 'raw')
data = fitsread(filename, extname)
data = fitsread(filename, extname, index)

Description data = fitsread(filename) reads the primary data of the Flexible Image
Transport System (FITS) file specified by filename. Undefined data values are
replaced by NaN. Numeric data are scaled by the slope and intercept values and
are always returned in double precision.

data = fitsread(filename, extname) reads data from a FITS file according
to the data array or extension specified in extname. You can specify only one
extname. The valid choices for extname are shown in the following table.

data = fitsread(filename, extname, index) is the same as the above
syntax, except that if there is more than one of the specified extension type
extname in the file, then only the one at the specified index is read.

data = fitsread(filename, 'raw', ...) reads the primary or extension
data of the FITS file, but, unlike the above syntaxes, does not replace undefined
data values with NaN and does not scale the data. The data returned has the
same class as the data stored in the file.

Data Arrays or Extensions

extname Description

'primary' Read data from the primary data array.

'table' Read data from the ASCII Table extension.

'bintable' Read data from the Binary Table extension.

'image' Read data from the Image extension.

'unknown' Read data from the Unknown extension.

fitsread

2-849

Example Read FITS file tst0012.fits into a 109-by-102 matrix called data.

data = fitsread('tst0012.fits');

whos data
 Name Size Bytes Class

 data 109x102 88944 double array

Here is the beginning of the data read from the file.

data(1:5,1:6)
ans =
 135.2000 134.9436 134.1752 132.8980 131.1165 128.8378
 137.1568 134.9436 134.1752 132.8989 131.1167 126.3343
 135.9946 134.9437 134.1752 132.8989 131.1185 128.1711
 134.0093 134.9440 134.1749 132.8983 131.1201 126.3349
 131.5855 134.9439 134.1749 132.8989 131.1204 126.3356

Read only the Binary Table extension from the file.

data = fitsread('tst0012.fits', 'bintable')

data =
 Columns 1 through 4
 {11x1 cell} [11x1 int16] [11x3 uint8] [11x2 double]
 Columns 5 through 9
 [11x3 cell] {11x1 cell} [11x1 int8] {11x1 cell} [11x3 int32]
 Columns 10 through 13
 [11x2 int32] [11x2 single] [11x1 double] [11x1 uint8]

See Also fitsinfo

fix

2-850

2fixPurpose Round towards zero

Syntax B = fix(A)

Description B = fix(A) rounds the elements of A toward zero, resulting in an array of
integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
 Columns 1 through 4
 -1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

fix(a)

ans =
 Columns 1 through 4
 -1.0000 0 3.0000 5.0000

 Columns 5 through 6
 7.0000 2.0000 + 3.0000i

See Also ceil, floor, round

flipdim

2-851

2flipdimPurpose Flip array along a specified dimension

Syntax B = flipdim(A,dim)

Description B = flipdim(A,dim) returns A with dimension dim flipped.

When the value of dim is 1, the array is flipped row-wise down. When dim is 2,
the array is flipped columnwise left to right. flipdim(A,1) is the same as
flipud(A), and flipdim(A,2) is the same as fliplr(A).

Examples flipdim(A,1) where

A =

 1 4
 2 5
 3 6

produces

 3 6
 2 5
 1 4

See Also fliplr, flipud, permute, rot90

fliplr

2-852

2fliplrPurpose Flip matrices left-right

Syntax B = fliplr(A)

Description B = fliplr(A) returns A with columns flipped in the left-right direction, that
is, about a vertical axis.

If A is a row vector, then fliplr(A) returns a vector of the same length with
the order of its elements reversed. If A is a column vector, then fliplr(A)
simply returns A.

Examples If A is the 3-by-2 matrix,

A =
 1 4

2 5
3 6

then fliplr(A) produces

4 1
5 2
6 3

If A is a row vector,

A =
 1 3 5 7 9

then fliplr(A) produces

 9 7 5 3 1

Limitations The array being operated on cannot have more than two dimensions. This
limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

See Also flipdim, flipud, rot90

flipud

2-853

2flipudPurpose Flip matrices up-down

Syntax B = flipud(A)

Description B = flipud(A) returns A with rows flipped in the up-down direction, that is,
about a horizontal axis.

If A is a column vector, then flipud(A) returns a vector of the same length with
the order of its elements reversed. If A is a row vector, then flipud(A) simply
returns A.

Examples If A is the 3-by-2 matrix,

A =
 1 4
 2 5
 3 6

then flipud(A) produces

 3 6
 2 5
 1 4

If A is a column vector,

A =
 3
 5
 7

then flipud(A) produces

A =
 7
 5
 3

Limitations The array being operated on cannot have more than two dimensions. This
limitation exists because the axis upon which to flip a multidimensional array
would be undefined.

flipud

2-854

See Also flipdim, fliplr, rot90

floor

2-855

2floorPurpose Round towards minus infinity

Syntax B = floor(A)

Description B = floor(A) rounds the elements of A to the nearest integers less than or
equal to A. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
 Columns 1 through 4
 -1.9000 -0.2000 3.4000 5.6000

 Columns 5 through 6
 7.0000 2.4000 + 3.6000i

floor(a)

ans =
 Columns 1 through 4
 -2.0000 -1.0000 3.0000 5.0000

 Columns 5 through 6
 7.0000 2.0000 + 3.0000i

See Also ceil, fix, round

flops

2-856

2flopsPurpose Count floating-point operations

Description This is an obsolete function. With the incorporation of LAPACK in MATLAB
version 6, counting floating-point operations is no longer practical.

flow

2-857

2flowPurpose A simple function of three variables

Syntax v = flow
v = flow(n)
v = flow(x,y,z)
[x,y,z,v] = flow(...)

Description flow, a function of three variables, generates fluid-flow data that is useful for
demonstrating slice, interp3, and other functions that visualize scalar
volume data.

v = flow produces a 50-by-25-by-25 array.

v = flow(n) produces a 2n-by-n-by-n array.

v = flow(x,y,z) evaluates the speed profile at the points x, y, and z.

[x,y,z,v] = flow(...) returns the coordinates as well as the volume data.

See Also slice, interp3

“Volume Visualization” for related functions

See Example — Slicing Fluid Flow Data for an example that uses flow.

fminbnd

2-858

2fminbnd Purpose Minimize a function of one variable on a fixed interval

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer of the
function that is described in fun in the interval x1 <= x <= x2. fun is a
function handle for either an M-file function or an anonymous function.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that describes
the exit condition of fminbnd:

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) displays
output only if the function does not converge.

MaxFunEvals Maximum number of function evaluations allowed

MaxIter Maximum number of iterations allowed

TolX Termination tolerance on x

fminbnd

2-859

[x,fval,exitflag,output] = fminbnd(...) returns a structure output that
contains information about the optimization:

Arguments fun is the function to be minimized. fun accepts a scalar x and returns a scalar
f, the objective function evaluated at x. The function fun can be specified as a
function handle for an M-file function

x = fminbnd(@myfun,x1,x2);

where myfun.m is an M-file function such as

function f = myfun(x)
f = ... % Compute function value at x.

or as a function handle for an anonymous function:

x = fminbnd(@(x) sin(x*x),x1,x2);

Other arguments are described in the syntax descriptions above.

Examples x = fminbnd(@cos,3,4) computes to a few decimal places and gives a
message on termination.

[x,fval,exitflag] = ...
 fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))

computes to about 12 decimal places, suppresses output, returns the
function value at x, and returns an exitflag of 1.

1 fminbnd converged to a solution x based on options.TolX.

0 Maximum number of function evaluations or iterations was
reached.

-1 Algorithm was terminated by the output function.

-2 Bounds are inconsistent (ax > bx).

output.algorithm Algorithm used

output.funcCount Number of function evaluations

output.iterations Number of iterations

output.message Exit message

π

π

fminbnd

2-860

The argument fun can also be a function handle for an anonymous function.
For example, to find the minimum of the function on the
interval (0,2), create an anonymous function f

f = @(x)x.^3-2*x-5;

Then invoke fminbnd with

x = fminbnd(f, 0, 2)

The result is

x =
 0.8165

The value of the function at the minimum is

y = f(x)

y =
 -6.0887

If fun is parameterized, you can use anonymous functions to capture the
problem-dependent parameters. For example, suppose you want to minimize
the objective function myfun defined by the following M-file function.

function f = myfun(x,a)
f = (x - a)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly to
fminbind. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.
a = 1.5; % define parameter first

2 Call fminbnd with a one-argument anonymous function that captures that
value of a and calls myfun with two arguments:
x = fminbnd(@(x) myfun(x,a),0,1)

Algorithm The algorithm is based on golden section search and parabolic interpolation. A
Fortran program implementing the same algorithm is given in [1].

f x() x 3 2x– 5–=

fminbnd

2-861

Limitations The function to be minimized must be continuous. fminbnd may only give local
solutions.

fminbnd often exhibits slow convergence when the solution is on a boundary of
the interval.

fminbnd only handles real variables.

See Also fminsearch, fzero, optimset, function_handle (@), anonymous functions

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1976.

fminsearch

2-862

2fminsearchPurpose Minimize a function of several variables

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as unconstrained
nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and finds a local minimum x of
the function described in fun. x0 can be a scalar, vector, or matrix. fun is a
function handle for either an M-file function or an anonymous function.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these options
structure fields:

Display Level of display. 'off' displays no output; 'iter' displays
output at each iteration; 'final' displays just the final
output; 'notify' (default) dislays output only if the
function does not converge.

FunValCheck Check whether objective function values are valid. 'on'
displays a warning when the objective function returns a
value that is complex or NaN. 'off' (the default) displays
no warning.

MaxFunEvals Maximum number of function evaluations allowed

MaxIter Maximum number of iterations allowed

OutputFcn Specify a user-defined function that the optimization
function calls at each iteration.

fminsearch

2-863

[x,fval] = fminsearch(...) returns in fval the value of the objective
function fun at the solution x.

[x,fval,exitflag] = fminsearch(...) returns a value exitflag that
describes the exit condition of fminsearch:

[x,fval,exitflag,output] = fminsearch(...) returns a structure output
that contains information about the optimization:

Arguments fun is the function to be minimized. It accepts an input x and returns a scalar
f, the objective function evaluated at x. The function fun can be specified as a
function handle for an M-file function

x = fminsearch(@myfun,x0,A,b)

where myfun is an M-file function such as

function f = myfun(x)
f = ... % Compute function value at x

or as a function handle for an anonymous function:

x = fminsearch(@(x)sin(x*x),x0,A,b);

Other arguments are described in the syntax descriptions above.

TolFun Termination tolerance on the function value

TolX Termination tolerance on x

1 fminsearch converged to a solution x.

 0 Maximum number of function evaluations or iterations was
reached.

-1 Algorithm was terminated by the output function.

output.algorithm Algorithm used

output.funcCount Number of function evaluations

output.iterations Number of iterations

output.message Exit message

fminsearch

2-864

Examples A classic test example for multidimensional minimization is the Rosenbrock
banana function

The minimum is at (1,1) and has the value 0. The traditional starting point is
(-1.2,1). The anonymous function shown here defines the function and
returns a function handle called banana:

banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Pass the function handle to fminsearch:

[x,fval] = fminsearch(banana,[-1.2, 1])

This produces

x =

 1.0000 1.0000

fval =

 8.1777e-010

This indicates that the minimizer was found to at least four decimal places
with a value near zero.

Move the location of the minimum to the point [a,a^2] by adding a second
parameter to the anonymous function:

banana = @(x,a)100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

[x,fval] = fminsearch(banana, [-1.2, 1], ...
optimset('TolX',1e-8), sqrt(2));

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy
higher than the default on x.

If fun is parameterized, you can use anonymous functions to capture the
problem-dependent parameters. For example, suppose you want to minimize
the objective function myfun defined by the following M-file function.

f x() 100 x2 x1
2–()

2
1 x1–()2+=

fminsearch

2-865

function f = myfun(x,a)
f = x(1)^2 + a*x(2)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly to
fminsearch. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.
a = 1.5; % define parameter first

2 Call fminsearch with a one-argument anonymous function that captures
that value of a and calls myfun with two arguments:
x = fminbnd(@(x) myfun(x,a),0,1)

Algorithm fminsearch uses the simplex search method of [1]. This is a direct search
method that does not use numerical or analytic gradients.

If n is the length of x, a simplex in n-dimensional space is characterized by the
n+1 distinct vectors that are its vertices. In two-space, a simplex is a triangle;
in three-space, it is a pyramid. At each step of the search, a new point in or near
the current simplex is generated. The function value at the new point is
compared with the function’s values at the vertices of the simplex and, usually,
one of the vertices is replaced by the new point, giving a new simplex. This step
is repeated until the diameter of the simplex is less than the specified
tolerance.

Limitations fminsearch can often handle discontinuity, particularly if it does not occur
near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, must only consist
of real numbers and must only return real numbers. When has complex
variables, they must be split into real and imaginary parts.

See Also fminbnd, optimset, function_handle (@), anonymous functions

References [1] Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions,” SIAM
Journal of Optimization, Vol. 9 Number 1, pp. 112-147, 1998.

x
f x() x

fopen

2-866

2fopenPurpose Open a file or obtain information about open files

Syntax fid = fopen(filename)
fid = fopen(filename, mode)
[fid,message] = fopen(filename, mode, machineformat)
fids = fopen('all')
[filename, mode, machineformat] = fopen(fid)

Description fid = fopen(filename) opens the file filename for read access. (On PCs,
fopen opens files for binary read access.)

fid is a scalar MATLAB integer, called a file identifier. You use the fid as the
first argument to other file input/output routines. If fopen cannot open the file,
it returns -1. Two file identifiers are automatically available and need not be
opened. They are fid=1 (standard output) and fid=2 (standard error).

fid = fopen(filename, mode) opens the file filename in the specified mode.
The mode argument can be any of the following:

filename can be a MATLABPATH relative partial pathname if the file is opened
for reading only. A relative path is always searched for first with respect to the

'r' Open file for reading (default).

'w' Open file, or create new file, for writing; discard existing
contents, if any.

'a' Open file, or create new file, for writing; append data to the
end of the file.

'r+' Open file for reading and writing.

'w+' Open file, or create new file, for reading and writing; discard
existing contents, if any.

'a+' Open file, or create new file, for reading and writing; append
data to the end of the file.

'A' Append without automatic flushing; used with tape drives.

'W' Write without automatic flushing; used with tape drives.

fopen

2-867

current directory. If it is not found, and reading only is specified or implied,
then fopen does an additional search of the MATLABPATH.

Files can be opened in binary mode (the default) or in text mode. In binary
mode, no characters are singled out for special treatment. In text mode on the
PC, the carriage return character preceding a newline character is deleted on
input and added before the newline character on output. To open in text mode,
add “t” to the end of the mode string, for example 'rt' and 'wt+'. (On UNIX,
text and binary mode are the same, so this has no effect. But on PC systems
this is critical.)

Note If the file is opened in update mode ('+'), an input command like
fread, fscanf, fgets, or fgetl cannot be immediately followed by an output
command like fwrite or fprintf without an intervening fseek or frewind.
The reverse is also true: that is, an output command like fwrite or fprintf
cannot be immediately followed by an input command like fread, fscanf,
fgets, or fgetl without an intervening fseek or frewind.

[fid,message] = fopen(filename, mode) opens a file as above. If it cannot
open the file, fid equals -1 and message contains a system-dependent error
message. If fopen successfully opens a file, the value of message is empty.

[fid,message] = fopen(filename, mode, machineformat) opens the
specified file with the specified mode and treats data read using fread or data
written using fwrite as having a format given by machineformat.
machineformat is one of the following strings:

'cray' or 'c' Cray floating point with big-endian byte
ordering

'ieee be' or 'b' IEEE floating point with big-endian byte
ordering

'ieee le' or 'l' IEEE floating point with little-endian byte
ordering

fopen

2-868

fids = fopen('all') returns a row vector containing the file identifiers of all
open files, not including 1 and 2 (standard output and standard error). The
number of elements in the vector is equal to the number of open files.

[filename, mode, machineformat] = fopen(fid) returns the filename,
mode string, and machineformat string associated with the specified file. An
invalid fid returns empty strings for all output arguments.

The 'W' and 'A' modes are designed for use with tape drives and do not
automatically perform a flush of the current output buffer after output
operations. For example, open a 1/4" cartridge tape on a SPARCstation for
writing with no autoflush:

fid = fopen('/dev/rst0','W')

Examples The example uses fopen to open a file and then passes the fid returned by
fopen to other file I/O functions to read data from the file and then close the
file.

fid=fopen('fgetl.m');
while 1
 tline = fgetl(fid);
 if ~ischar(tline), break, end
 disp(tline)
end
fclose(fid);

See Also fclose, ferror, fprintf, fread, fscanf, fseek, ftell, fwrite

'ieee-be.l64' or 's' IEEE floating point with big-endian byte
ordering and 64-bit long data type

'ieee-le.l64' or 'a' IEEE floating point with little-endian byte
ordering and 64-bit long data type

'native' or 'n' Numeric format of the machine on which
MATLAB is running (the default)

'vaxd' or 'd' VAX D floating point and VAX ordering

'vaxg' or 'g' VAX G floating point and VAX ordering

for

2-869

2forPurpose Repeat statements a specific number of times

Syntax for variable = expression
 statements
end

Description The general format is

for variable = expression
 statement
 ...
 statement
end

The columns of the expression are stored one at a time in the variable while
the following statements, up to the end, are executed.

In practice, the expression is almost always of the form scalar : scalar, in
which case its columns are simply scalars.

The scope of the for statement is always terminated with a matching end.

Examples Assume k has already been assigned a value. Create the Hilbert matrix, using
zeros to preallocate the matrix to conserve memory:

a = zeros(k,k) % Preallocate matrix
for m = 1:k
 for n = 1:k
 a(m,n) = 1/(m+n -1);
 end
end

Step s with increments of -0.1

for s = 1.0: -0.1: 0.0,..., end

Successively set e to the unit n-vectors:

for e = eye(n),..., end

The line

for V = A,..., end

for

2-870

has the same effect as

for k = 1:n, V = A(:,k);..., end

except k is also set here.

See Also end, while, break, continue, return, if, switch, colon

format

2-871

2formatPurpose Control display format for output

Graphical
Interface

As an alternative to format, use preferences. Select Preferences from the File
menu in the MATLAB desktop and use Command Window preferences.

Syntax format
format type
format('type')

Description Use the format function to control the output format of the numeric values
displayed in the Command Window. The format function affects only how
numbers are displayed, not how MATLAB computes or saves them. The
specified format applies only to the current session. To maintain a format
across sessions, instead use MATLAB preferences.

format by itself, changes the output format to the default type, short, which is
5-digit scaled, fixed-point values.

format type changes the format to the specified type. The table below
describes the allowable values for type and provides an example for pi, unless
otherwise noted. To see the current type file, use get(0,'Format'), or for
compact versus loose, use get(0,'FormatSpacing').

Value for type Result Example

+ +, -, blank +

bank Fixed dollars and cents 3.14

compact Suppresses excess line feeds
to show more output in a
single screen. Contrast with
loose.

theta = pi/2
theta=
 1.5708

hex Hexadecimal (hexadecimal
representation of a binary
double-precision number)

400921fb54442d18

format

2-872

format('type') is the function form of the syntax.

Examples Example 1
Change the format to long by typing

format long

View the result for the value of pi by typing

pi
ans =
 3.14159265358979

View the current format by typing

long Scaled fixed point format,
with 15 digits for double; 8
digits for single.

3.14159265358979

long e Floating point format, with
15 digits for double; 8 digits
for single.

3.141592653589793e+00

long g Best of fixed or floating
point, with 15 digits for
double; 8 digits for single.

3.14159265358979

loose Adds linefeeds to make
output more readable.
Contrast with compact.

theta = pi/2
theta=
 1.5708

rat Ratio of small integers 355/113

short Scaled fixed point format,
with 5 digits

3.1416

short e Floating point format, with
5 digits.

3.1416e+00

short g Best of fixed or floating
point, with 5 digits.

3.1416

Value for type Result Example

format

2-873

get(0,'Format')
ans =
 long

Set the format to short e by typing

format short e

or use the function form of the syntax

format('short','e')

Example 2
When the format is set to short, both pi and single(pi) display as 5-digit
values:

format short

pi
ans =
 3.1416

single(pi)
ans =
 3.1416

Now set format to long, and pi displays a 15-digit value while single(pi)
display an 8-digit value:

format long

pi
ans =
 3.14159265358979

single(pi)
ans =
 3.1415927

Example 3
Set the format to its default, and display the maximum values for integers and
real numbers in MATLAB:

format

2-874

format

intmax('uint64')
ans =
 18446744073709551615

realmax
ans =
 1.7977e+308

Now change the format to hexadecimal, and display these same values:

format hex

intmax('uint64')
ans =
 ffffffffffffffff

realmax
ans =
 7fefffffffffffff

The hexadecimal display corresponds to the internal representation of the
value. It is not the same as the hexadecimal notation in the C programming
language.

Algorithms If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats. The
function format + displays +, -, and blank characters for positive, negative, and
zero elements. format hex displays the hexadecimal representation of a binary
double-precision number. format rat uses a continued fraction algorithm to
approximate floating-point values by ratios of small integers. See rat.m for the
complete code.

See Also display, floor, fprintf, num2str, rat, sprintf, spy

fplot

2-875

2fplotPurpose Plot a function between specified limits

Syntax fplot(function,limits)
fplot(function,limits,LineSpec)
fplot(function,limits,tol)
fplot(function,limits,tol,LineSpec)
fplot(function,limits,n)
fplot(axes_handle,...)
[X,Y] = fplot(function,limits,...)
[...] = fplot(function,limits,tol,n,LineSpec,P1,P2,...)

Description fplot plots a function between specified limits. The function must be of the
form y = f(x), where x is a vector whose range specifies the limits, and y is a
vector the same size as x and contains the function’s value at the points in x
(see the first example). If the function returns more than one value for a given
x, then y is a matrix whose columns contain each component of f(x) (see the
second example).

fplot(function,limits) plots 'function' between the limits specified by
limits. limits is a vector specifying the x-axis limits ([xmin xmax]), or the x-
and y-axis limits, ([xmin xmax ymin ymax]).

function must be

• The name of an M-file function

• A string with variable x that may be passed to eval, such as 'sin(x)',
'diric(x,10)', or '[sin(x),cos(x)]'

• A function handle for an M-file function or an anonymous function (see
Function Handles and Anonymous Functions for more information)

The function f(x) must return a row vector for each element of vector x. For
example, if f(x) returns [f1(x),f2(x),f3(x)] then for input [x1;x2] the
function should return the matrix

f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)

fplot(function,limits,LineSpec) plots 'function' using the line
specification LineSpec.

fplot

2-876

fplot(function,limits,tol) plots 'function' using the relative error
tolerance tol (the default is 2e–3, i.e., 0.2 percent accuracy).

fplot(function,limits,tol,LineSpec) plots 'function' using the relative
error tolerance tol and a line specification that determines line type, marker
symbol, and color.

fplot(function,limits,n) with n >= 1 plots the function with a minimum of
n+1 points. The default n is 1. The maximum step size is restricted to be
(1/n)*(xmax-xmin).

fplot(fun,lims,...) accepts combinations of the optional arguments tol, n,
and LineSpec, in any order.

fplot(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

[X,Y] = fplot(function,limits,...) returns the abscissas and ordinates
for 'function' in X and Y. No plot is drawn on the screen; however, you can plot
the function using plot(X,Y).

[...] = fplot(function,limits,tol,n,LineSpec,P1,P2,...) enables you
to pass parameters P1, P2, etc. directly to the function 'function':

Y = function(X,P1,P2,...)

To use default values for tol, n, or LineSpec, you can pass in the empty matrix
([]).

Remarks fplot uses adaptive step control to produce a representative graph,
concentrating its evaluation in regions where the function’s rate of change is
the greatest.

Examples Plot the hyperbolic tangent function from -2 to 2:

fplot('tanh',[-2 2])

fplot

2-877

Create an M-file, myfun, that returns a two-column matrix:

function Y = myfun(x)
Y(:,1) = 200∗ sin(x(:))./x(:);
Y(:,2) = x(:).^2;

Create a function handle pointing to myfun:

fh = @myfun;

Plot the function with the statement

fplot(fh,[20 20])

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

fplot

2-878

Addition Examples
This example passes function handles to fplot, one created from a MATLAB
function and the other created from an anonymous function.

hmp = @humps;
subplot(2,1,1);fplot(hmp,[0 1])
sn = @(x) sin(1./x);
subplot(2,1,2);fplot(sn,[.01 .1])

−20 −15 −10 −5 0 5 10 15 20
−50

0

50

100

150

200

250

300

350

400

fplot

2-879

See Also eval, ezplot, feval, LineSpec, plot

“Function Plots” for related functions

Plotting Mathematical Functions for more examples

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
−1

−0.5

0

0.5

1

fprintf

2-880

2fprintfPurpose Write formatted data to file

Syntax count = fprintf(fid,format,A,...)

Description count = fprintf(fid,format,A,...) formats the data in the real part of
matrix A (and in any additional matrix arguments) under control of the
specified format string, and writes it to the file associated with file identifier
fid. fprintf returns a count of the number of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It can also be
1 for standard output (the screen) or 2 for standard error. See fopen for more
information.) Omitting fid causes output to appear on the screen.

Format String
The format argument is a string containing C language conversion
specifications. A conversion specification controls the notation, alignment,
significant digits, field width, and other aspects of output format. The format
string can contain escape characters to represent nonprinting characters such
as newline characters and tabs.

Conversion specifications begin with the % character and contain these optional
and required elements:

• Flags (optional)

• Width and precision fields (optional)

• A subtype specifier (optional)

• Conversion character (required)

You specify these elements in the following order:

%–12.5eStart of conversion specification

Field width

Conversion character

Flags

Precision

fprintf

2-881

Flags
You can control the alignment of the output using any of these optional flags.

Field Width and Precision Specifications
You can control the width and precision of the output by including these
options in the format string.

Conversion Characters
Conversion characters specify the notation of the output.

Character Description Example

A minus sign () Left-justifies the converted argument in
its field

%-5.2d

A plus sign (+) Always prints a sign character (+ or -) %+5.2d

Zero (0) Pad with zeros rather than spaces %05.2d

Character Description Example

Field width A digit string specifying the minimum
number of digits to be printed

%6f

Precision A digit string including a period (.)
specifying the number of digits to be
printed to the right of the decimal point

%6.2f

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in 3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

fprintf

2-882

Conversion characters %o, %u, %x, and %X support subtype specifiers. See
Remarks for more information.

Escape Characters

This table lists the escape character sequences you use to specify nonprinting
characters in a format specification.

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2]. Insignificant
zeros do not print.

%G Same as %g, but using an uppercase E

%i Decimal notation (signed)

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

Specifier Description

fprintf

2-883

Remarks The fprintf function behaves like its ANSI C language namesake with these
exceptions and extensions.

• If you use fprintf to convert a MATLAB double into an integer, and the
double contains a value that cannot be represented as an integer (for
example, it contains a fraction), MATLAB ignores the specified conversion
and outputs the value in exponential format. To successfully perform this
conversion, use the fix, floor, ceil, or round functions to change the value
in the double into a value that can be represented as an integer before
passing it to sprintf.

• The following nonstandard subtype specifiers are supported for the
conversion characters %o, %u, %x, and %X.

For example, to print a double value in hexadecimal, use the format '%bx'.

• The fprintf function is vectorized for nonscalar arguments. The function
recycles the format string through the elements of A (columnwise) until all
the elements are used up. The function then continues in a similar manner
through any additional matrix arguments.

\'' or ''
(two single
quotes)

Single quotation mark

%% Percent character

Character Description

b The underlying C data type is a double rather than an unsigned
integer. For example, to print a double-precision value in
hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned
integer.

fprintf

2-884

Note fprintf displays negative zero (-0) differently on some platforms, as
shown in the following table.

Examples The statements

x = 0:.1:1;
y = [x; exp(x)];
fid = fopen('exp.txt','w');
fprintf(fid,'%6.2f %12.8f\n',y);
fclose(fid)

create a text file called exp.txt containing a short table of the exponential
function:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

The command

fprintf('A unit circle has circumference %g radians.\n',2∗ pi)

displays a line on the screen:

A unit circle has circumference 6.283186 radians.

To insert a single quotation mark in a string, use two single quotation marks
together. For example,

fprintf(1,'It''s Friday.\n')

displays on the screen

Conversion Character

Platform %e or %E %f %g or %G

PC 0.000000e+000 0.000000 0

Others -0.000000e+00 -0.000000 -0

fprintf

2-885

It's Friday.

The commands

B = [8.8 7.7; 8800 7700]
fprintf(1,'X is %6.2f meters or %8.3f mm\n',9.9,9900,B)

display the lines

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

Explicitly convert MATLAB double-precision variables to integer values for
use with an integer conversion specifier. For instance, to convert signed 32-bit
data to hexadecimal format,

a = [6 10 14 44];
fprintf('%9X\n',a + (a<0)∗ 2^32)
 6
 A
 E
 2C

See Also fclose, ferror, fopen, fread, fscanf, fseek, ftell, fwrite, disp

References [1] Kernighan, B.W., and D.M. Ritchie, The C Programming Language, Second
Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI, 1430
Broadway, New York, NY 10018.

frame2im

2-886

2frame2imPurpose Convert movie frame to indexed image

Syntax [X,Map] = frame2im(F)

Description [X,Map] = frame2im(F) converts the single movie frame F into the indexed
image X and associated colormap Map. The functions getframe and im2frame
create a movie frame. If the frame contains true-color data, then Map is empty.

See Also getframe, im2frame, movie

“Bit-Mapped Images” for related functions

frameedit

2-887

2frameeditPurpose Create and edit print frames for Simulink and Stateflow block diagrams

Syntax frameedit
frameedit filename

Description frameedit starts the PrintFrame Editor, a graphical user interface you use to
create borders for Simulink and Stateflow block diagrams. With no argument,
frameedit opens the PrintFrame Editor window with a new file.

frameedit filename opens the PrintFrame Editor window with the specified
filename, where filename is a figure file (.fig) previously created and saved
using frameedit.

Remarks This illustrates the main features of the PrintFrame Editor.

frameedit

2-888

Closing the PrintFrame Editor
To close the PrintFrame Editor window, click the close box in the upper right
corner, or select Close from the File menu.

Use these buttons to create and edit borders.

Use the File menu for page setup, and saving and opening print frames. Change the information in a cell, and resize, add, and
remove cells.

Add and
remove
rows.

Zoom in or
out on
selected cell.

Use these
buttons to align
information
within a cell.

Get help for the PrintFrame Editor.

Use the list box and button to add
information in cells, such as text
or the date.

frameedit

2-889

Printing Simulink Block Diagrams with Print Frames
Select Print from the Simulink File menu. Check the Frame box and supply
the filename for the print frame you want to use. Click OK in the Print dialog
box.

Getting Help for the PrintFrame Editor
For further instructions on using the PrintFrame Editor, select PrintFrame
Editor Help from the Help menu in the PrintFrame Editor.

fread

2-890

2freadPurpose Read binary data from file

Syntax A = fread(fid)
A = fread(fid, count)
A = fread(fid, count, precision)
A = fread(fid, count, precision, skip)
A = fread(fid, count, precision, skip, machineformat)
[A, count] = fread(...)

Description A = fread(fid) reads data in binary format from the file specified by fid into
matrix A. Open the file using fopen before calling fread. The fid argument is
the integer file identifier obtained from the fopen operation. MATLAB reads
the file from beginning to end, and then positions the file pointer at the end of
the file (see feof for details).

A = fread(fid, count) reads the number of elements specified by count. At
the end of the fread, MATLAB sets the file pointer to the next byte to be read.
A subsequent fread will begin at the location of the file pointer. See “Specifying
the Number of Elements”, below.

Note In the following syntaxes, the count and skip arguments are optional.
For example, fread(fid, precision) is a valid syntax.

A = fread(fid, count, precision) reads the file according to the data
format specified by the string precision. This argument commonly contains a
data type specifier such as int or float, followed by an integer giving the size
in bits. See “Specifying Precision” and “Specifying Output Precision”, below.

A = fread(fid, count, precision, skip) includes an optional skip
argument that specifies the number of bytes to skip after each precision value
is read. If precision specifies a bit format like 'bitN' or 'ubitN', the skip
argument is interpreted as the number of bits to skip. See “Specifying a Skip
Value”, below.

A = fread(fid, count, precision, skip, machineformat) treats the data
read as having a format given by machineformat. You can obtain the

fread

2-891

machineformat argument from the output of the fopen function. See
“Specifying Machine Format”, below.

[A, count] = fread(...) returns the data read from the file in A, and the
number of elements successfully read in count.

Specifying the Number of Elements
Valid options for count are

Specifying Precision
Any of the strings in the following table, either the MATLAB version or their C
or Fortran equivalent, can be used for precision. If precision is not specified,
MATLAB uses the default, which is 'uchar'.

n Reads n elements into a column vector.

inf Reads to the end of the file, resulting in a column vector containing
the same number of elements as are in the file. If using inf results
in an “out of memory” error, specify a numeric count value.

[m,n] Reads enough elements to fill an m-by-n matrix, filling in elements in
column order, padding with zeros if the file is too small to fill the
matrix. n can be specified as inf, but m cannot.

MATLAB C or Fortran Interpretation

'schar' 'signed char' Signed character; 8 bits

'uchar' 'unsigned char' Unsigned character; 8 bits

'int8' 'integer*1' Integer; 8 bits

'int16' 'integer*2' Integer; 16 bits

'int32' 'integer*4' Integer; 32 bits

'int64' 'integer*8' Integer; 64 bits

'uint8' 'integer*1' Unsigned integer; 8 bits

'uint16' 'integer*2' Unsigned integer; 16 bits

fread

2-892

The following platform-dependent formats are also supported, but they are not
guaranteed to be the same size on all platforms.

The following formats map to an input stream of bits rather than bytes.

'uint32' 'integer*4' Unsigned integer; 32 bits

'uint64' 'integer*8' Unsigned integer; 64 bits

'float32' 'real*4' Floating-point; 32 bits

'float64' 'real*8' Floating-point; 64 bits

'double' 'real*8' Floating-point; 64 bits

MATLAB C or Fortran Interpretation

'char' 'char*1' Character; 8 bits

'short' 'short' Integer; 16 bits

'int' 'int' Integer; 32 bits

'long' 'long' Integer; 32 or 64 bits

'ushort' 'unsigned short' Unsigned integer; 16 bits

'uint' 'unsigned int' Unsigned integer; 32 bits

'ulong' 'unsigned long' Unsigned integer; 32 or 64 bits

'float' 'float' Floating-point; 32 bits

MATLAB C or Fortran Interpretation

'bitN' - Signed integer; N bits (1 ≤ N ≤ 64)

'ubitN' - Unsigned integer; N bits (1 ≤ N ≤ 64)

MATLAB C or Fortran Interpretation

fread

2-893

Specifying Output Precision
By default, numeric values are returned in class double arrays. To return
numeric values stored in classes other than double, create your precision
argument by first specifying your source format, then following it with the
characters “=>”, and finally specifying your destination format. You are not
required to use the exact name of a MATLAB class type for destination. (See
class for details). fread translates the name to the most appropriate MATLAB
class type. If the source and destination formats are the same, the following
shorthand notation can be used.

*source

which means

source=>source

For example, '*uint16' is the same as 'uint16=>uint16'.

This table shows some example precision format strings.

Specifying a Skip Value
When skip is used, the precision string can contain a positive integer
repetition factor of the form 'N*', which prefixes the source format
specification, such as '40*uchar'.

'uint8=>uint8' Read in unsigned 8-bit integers and save them in an
unsigned 8-bit integer array.

'*uint8' Shorthand version of the above.

'bit4=>int8' Read in signed 4-bit integers packed in bytes and
save them in a signed 8-bit array. Each 4-bit integer
becomes an 8-bit integer.

'double=>real*4' Read in doubles, convert, and save as a 32-bit
floating-point array.

fread

2-894

Note Do not confuse the asterisk (*) used in the repetition factor with the
asterisk used as precision format shorthand. The format string '40*uchar' is
equivalent to '40*uchar=>double', not '40*uchar=>uchar'.

When skip is specified, fread reads in, at most, a repetition factor number of
values (default is 1), skips the amount of input specified by the skip argument,
reads in another block of values, again skips input, and so on, until count
number of values have been read. If a skip argument is not specified, the
repetition factor is ignored. Use the repetition factor with the skip argument
to extract data in noncontiguous fields from fixed-length records.

Specifying Machine Format
machineformat is one of the following strings:

'cray' or 'c' Cray floating point with big-endian byte
ordering

'ieee be' or 'b' IEEE floating point with big-endian byte
ordering

'ieee le' or 'l' IEEE floating point with little-endian byte
ordering

'ieee-be.l64' or 's' IEEE floating point with big-endian byte
ordering and 64-bit long data type

'ieee-le.l64' or 'a' IEEE floating point with little-endian byte
ordering and 64-bit long data type

'native' or 'n' Numeric format of the machine on which
MATLAB is running (the default)

'vaxd' or 'd' VAX D floating point and VAX ordering

'vaxg' or 'g' VAX G floating point and VAX ordering

fread

2-895

Remarks If the input stream is bytes and fread reaches the end of file (see feof) in the
middle of reading the number of bytes required for an element, the partial
result is ignored. However, if the input stream is bits, then the partial result is
returned as the last value. If an error occurs before reaching the end of file, only
full elements read up to that point are used.

Examples Example 1
The file alphabet.txt contains the 26 letters of the English alphabet, all
capitalized. Open the file for read access with fopen, and read the first five
elements into output c. Because a precision has not been specified, MATLAB
uses the default precision of uchar, and the output is numeric:

fid = fopen('alphabet.txt', 'r');
c = fread(fid, 5)
c =
 65
 66
 67
 68
 69
fclose(fid);

This time, specify that you want each element read as an unsigned 8-bit integer
and output as a character. (Using a precision of 'char=>char' or '*char' will
produce the same result):

fid = fopen('alphabet.txt', 'r');
c = fread(fid, 5, 'uint8=>char')
c =
 A
 B
 C
 D
 E
fclose(fid);

When you leave out the optional count argument, MATLAB reads the file to
the end, A through Z:

fid = fopen('alphabet.txt', 'r');
c = fread(fid, '*char');

fread

2-896

fclose(fid);

sprintf(c)
ans =
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

The fopen function positions the file pointer at the start of the file. So the first
fread in this example reads the first five elements in the file, and then
repositions the file pointer at the beginninig of the next element. For this
reason, the next fread picks up where the previous fread left off, at the
character F.

fid = fopen('alphabet.txt', 'r');
c1 = fread(fid, 5, '*char');
c2 = fread(fid, 8, '*char');
c3 = fread(fid, 5, '*char');
fclose(fid);

sprintf('%c', c1, ' * ', c2, ' * ', c3)
ans =
 ABCDE * FGHIJKLM * NOPQR

Skip two elements between each read by specifying a skip argument of 2:

fid = fopen('alphabet.txt', 'r');
c = fread(fid, 'char', 2); % Skip 2 bytes per read
fclose(fid);

sprintf('%c', c)
ans =
 ADGJMPSVY

Example 2
This command displays the complete M-file containing this fread help entry:

type fread.m

To simulate this command using fread, enter the following:

fid = fopen('fread.m', 'r');
F = fread(fid, '*char')';
fclose(fid);

fread

2-897

In the example, the fread command assumes the default size, 'inf', and
precision '*uchar' (the same as 'char=>char'). fread reads the entire file. To
display the result as readable text, the column vector is transposed to a row
vector.

Example 3
As another example,

s = fread(fid, 120, '40*uchar=>uchar', 8);

reads in 120 characters in blocks of 40, each separated by 8 characters. Note
that the class type of s is 'uint8' since it is the appropriate class
corresponding to the destination format 'uchar'. Also, since 40 evenly divides
120, the last block read is a full block, which means that a final skip is done
before the command is finished. If the last block read is not a full block, then
fread does not finish with a skip.

See fopen for information about reading big and little-endian files.

Example 4
Invoke the fopen function with just an fid input argument to obtain the
machine format for the file. You can see that this file was written in IEEE
floating point with little-endian byte ordering ('ieee-le') format:

fid = fopen('A1.dat', 'r');

[fname, mode, mformat] = fopen(fid);
mformat
mformat =
 ieee-le

Use the MATLAB format function (not related to the machine format type) to
have MATLAB display output using hexadecimal:

format hex

fread

2-898

Now use the machineformat input with fread to read the data from the file
using the same format:

x = fread(fid, 6, 'uint64', 'ieee-le')
x =
 4260800000002000
 0000000000000000
 4282000000180000
 0000000000000000
 42ca5e0000258000
 42f0000464d45200
fclose(fid);

Change the machine format to IEEE floating point with big-endian byte
ordering ('ieee-be') and verify that you get different results:

fid = fopen('A1.dat', 'r');
x = fread(fid, 6, 'uint64', 'ieee-be')
x =
 4370000008400000
 0000000000000000
 4308000200100000
 0000000000000000
 4352c0002f0d0000
 43c022a6a3000000
fclose(fid);

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite, feof

freqspace

2-899

2freqspacePurpose Determine frequency spacing for frequency response

Syntax [f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,'meshgrid')
f = freqspace(N)
f = freqspace(N,'whole')

Description freqspace returns the implied frequency range for equally spaced frequency
responses. freqspace is useful when creating desired frequency responses for
various one- and two-dimensional applications.

[f1,f2] = freqspace(n) returns the two-dimensional frequency vectors f1
and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both f1 and f2 are [-n:2:n-2]/n.

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency
vectors f1 and f2 for an m-by-n matrix.

[x1,y1] = freqspace(...,'meshgrid') is equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

f = freqspace(N) returns the one-dimensional frequency vector f assuming
N evenly spaced points around the unit circle. For N even or odd, f is (0:2/N:1).
For N even, freqspace therefore returns (N+2)/2 points. For N odd, it returns
(N+1)/2 points.

f = freqspace(N,'whole') returns N evenly spaced points around the whole
unit circle. In this case, f is 0:2/N:2*(N-1)/N.

See Also meshgrid

frewind

2-900

2frewindPurpose Move the file position indicator to the beginning of an open file

Syntax frewind(fid)

Description frewind(fid) sets the file position indicator to the beginning of the file
specified by fid, an integer file identifier obtained from fopen.

Remarks Rewinding a fid associated with a tape device might not work even though
frewind does not generate an error message.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

fscanf

2-901

2fscanfPurpose Read formatted data from file

Syntax A = fscanf(fid,format)
[A,count] = fscanf(fid,format,size)

Description A = fscanf(fid,format) reads all the data from the file specified by fid,
converts it according to the specified format string, and returns it in matrix A.
Argument fid is an integer file identifier obtained from fopen. format is a
string specifying the format of the data to be read. See “Remarks” for details.

[A,count] = fscanf(fid,format,size) reads the amount of data specified
by size, converts it according to the specified format string, and returns it
along with a count of elements successfully read. size is an argument that
determines how much data is read. Valid options are

fscanf differs from its C language namesakes scanf() and fscanf() in an
important respect — it is vectorized in order to return a matrix argument. The
format string is cycled through the file until an end-of-file is reached or the
amount of data specified by size is read in.

Remarks When MATLAB reads a specified file, it attempts to match the data in the file
to the format string. If a match occurs, the data is written into the matrix in
column order. If a partial match occurs, only the matching data is written to
the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to be
matched and involve the character %, optional width fields, and conversion
characters, organized as shown below.

n Read n elements into a column vector.

inf Read to the end of the file, resulting in a column vector containing
the same number of elements as are in the file.

[m,n] Read enough elements to fill an m-by-n matrix, filling the matrix in
column order. n can be specified as inf, but m cannot.

fscanf

2-902

Add one or more of these characters between the % and the conversion
character:

Valid conversion characters are

If %s is used, an element read can use several MATLAB matrix elements, each
holding one character. Use %c to read space characters or %s to skip all white
space.

An asterisk (*) Skip over the matched value. If %*d, then the value that
matches d is ignored and is not stored.

A digit string Maximum field width. For example, %10d.

A letter The size of the receiving object, for example, h for short, as
in %hd for a short integer, or l for long, as in %ld for a long
integer, or %lg for a double floating-point number.

%c Sequence of characters; number specified by field width

%d Decimal numbers

%e, %f, %g Floating-point numbers

%i Signed integer

%o Signed octal integer

%s A series of non-white-space characters

%u Signed decimal integer

%x Signed hexadecimal integer

[...] Sequence of characters (scanlist)

%12e

Initial % character Field width Conversion
character

fscanf

2-903

Mixing character and numeric conversion specifications causes the resulting
matrix to be numeric and any characters read to appear as their ASCII values,
one character per MATLAB matrix element.

For more information about format strings, refer to the scanf() and fscanf()
routines in a C language reference manual.

Examples The example in fprintf generates an ASCII text file called exp.txt that looks
like

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

Read this ASCII file back into a two-column MATLAB matrix:

fid = fopen('exp.txt');
a = fscanf(fid,'%g %g',[2 inf]) % It has two rows now.
a = a';
fclose(fid)

See Also fgetl, fgets, fread, fprintf, fscanf, input, sscanf, textread

fseek

2-904

2fseekPurpose Set file position indicator

Syntax status = fseek(fid,offset,origin)

Description status = fseek(fid,offset,origin) repositions the file position indicator in
the file with the given fid to the byte with the specified offset relative to
origin.

For a file having n bytes, the bytes are numbered from 0 to n-1. The position
immediately following the last byte is the end-of-file, or eof, position. You
would seek to the eof position if you wanted to add data to the end of a file.

This figure represents a file having 12 bytes, numbered 0 through 11. The first
command shown seeks to the ninth byte of data in the file. The second
command seeks just past the end of the file data, to the eof position.

fseek does not seek beyond the end of file eof position. If you attempt to seek
beyond eof, MATLAB returns an error status.

Arguments

0 1 2 3 4 5 6 7 8 10

fseek(fid,0,'eof')fseek(fid,8,'bof')

EOFd

9

a t a i n f i l e

11 12

fid An integer file identifier obtained from fopen

offset A value that is interpreted as follows,

offset > 0 Move position indicator offset bytes toward the
end of the file.

offset = 0 Do not change position.

offset < 0 Move position indicator offset bytes toward the
beginning of the file.

origin A string whose legal values are

'bof' -1: Beginning of file

'cof' 0: Current position in file

fseek

2-905

Examples This example opens the file test1.dat, seeks to the 20th byte, reads fifty 32-bit
unsigned integers into variable A, and closes the file. It then opens a second file,
test2.dat, seeks to the end-of-file position, appends the data in A to the end of
this file, and closes the file.

fid = fopen('test1.dat', 'r');
fseek(fid, 19, 'bof');
A = fread(fid, 50, 'uint32');
fclose(fid);

fid = fopen('test2.dat', 'r+');
fseek(fid, 0, 'eof');
fwrite(fid, A, 'uint32');
fclose(fid);

See Also fopen, fclose, ferror, fprintf, fread, fscanf, ftell, fwrite

'eof' 1: End of file

status A returned value that is 0 if the fseek operation is successful and
-1 if it fails. If an error occurs, use the function ferror to get
more information.

ftell

2-906

2ftellPurpose Get file position indicator

Syntax position = ftell(fid)

Description position = ftell(fid) returns the location of the file position indicator for
the file specified by fid, an integer file identifier obtained from fopen. The
position is a nonnegative integer specified in bytes from the beginning of the
file. A returned value of -1 for position indicates that the query was
unsuccessful; use ferror to determine the nature of the error.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, fwrite

ftp

2-907

2ftpPurpose Connect to FTP server, creating an FTP object

Syntax f = ftp('host','username','password')

Description f = ftp('host','username','password') connects to the FTP server, host,
creating the FTP object, f. If a username and password are not required for an
anonymous connection, only use the host argument. Specify an alternate port
by separating it from host using a colon (:). After running ftp, perform file
operation functions on the FTP object, f, using methods such as cd and others
listed under “See Also.” When you’re finished using the server, run close
(ftp) to close the connection.

The ftp function is based on code from the Apache Jakarta Project.

Examples Connect Without Username
Connect to ftp.mathworks.com, which does not require a username or
password. Assign the resulting FTP object to tmw. You can access this FTP site
to experiment with the FTP functions.

tmw=ftp('ftp.mathworks.com')

MATLAB returns

tmw =
 FTP Object
 host: ftp.mathworks.com
 user: anonymous
 dir: /
 mode: binary

Connect To Specified Port
To connect to port 34, type

tmw=ftp('ftp.mathworks.com:34')

Connect With Username
Connect to ftp.testsite.com and assign the resulting FTP object to test.

test=ftp('ftp.testsite.com','myname','mypassword')

MATLAB returns

ftp

2-908

test =
 FTP Object
 host: ftp.testsite.com
 user: myname
 dir: /
 mode: binary
 myname@ftp.testsite.com
 /

See Also ascii (ftp), binary (ftp), cd (ftp), delete (ftp), dir (ftp), close (ftp),
mget (ftp), mkdir (ftp), mput (ftp), rename (ftp), rmdir (ftp)

full

2-909

2fullPurpose Convert sparse matrix to full matrix

Syntax A = full(S)

Description A = full(S) converts a sparse matrix S to full storage organization. If S is a
full matrix, it is left unchanged. If A is full, issparse(A) is 0.

Remarks Let X be an m-by-n matrix with nz = nnz(X) nonzero entries. Then full(X)
requires space to store m*n real numbers while sparse(X) requires space to
store nz real numbers and (nz+n) integers.

On most computers, a real number requires twice as much storage as an
integer. On such computers, sparse(X) requires less storage than full(X) if
the density, nnz/prod(size(X)), is less than one third. Operations on sparse
matrices, however, require more execution time per element than those on full
matrices, so density should be considerably less than two-thirds before sparse
storage is used.

Examples Here is an example of a sparse matrix with a density of about two-thirds.
sparse(S) and full(S) require about the same number of bytes of storage.

S = sparse(+(rand(200,200) < 2/3));
A = full(S);
whos
Name Size Bytes Class
A 200X200 320000 double array

 S 200X200 318432 double array (sparse)

See Also sparse

fullfile

2-910

2fullfilePurpose Build a full filename from parts

Syntax fullfile('dir1','dir2',...,'filename')
f = fullfile('dir1','dir2',...,'filename')

Description fullfile(dir1,dir2,...,filename) builds a full filename from the
directories and filename specified. This is conceptually equivalent to

f = [dir1 dirsep dir2 dirsep ... dirsep filename]

except that care is taken to handle the cases when the directories begin or end
with a directory separator.

Examples To create the full filename from a disk name, directories, and filename,

f = fullfile('C:','Applications','matlab','myfun.m')
f =
C:\Applications\matlab\myfun.m

The following examples both produce the same result on UNIX, but only the
second one works on all platforms.

fullfile(matlabroot,'toolbox/matlab/general/Contents.m')

fullfile(matlabroot,'toolbox','matlab','general','Contents.m')

See Also fileparts, genpath

func2str

2-911

2func2strPurpose Construct a function name string from a function handle

Syntax s = func2str(fhandle)

Description func2str(fhandle) constructs a string s that holds the name of the function
to which the function handle fhandle belongs.

When you need to perform a string operation, such as compare or display, on a
function handle, you can use func2str to construct a string bearing the
function name.

The func2str command does not operate on nonscalar function handles.
Passing a nonscalar function handle to func2str results in an error.

Examples Example 1
Convert a sin function handle to a string:

fhandle = @sin;

func2str(fhandle)
ans =
 sin

Example 2
The catcherr function shown here accepts function handle and data
arguments and attempts to evaluate the function through its handle. If the
function fails to execute, catcherr uses sprintf to display an error message
giving the name of the failing function. The function name must be a string for
sprintf to display it. The code derives the function name from the function
handle using func2str:

function catcherr(func, data)
try
 ans = func(data);
 disp('Answer is:');
 ans
catch
 disp(sprintf('Error executing function ''%s''\n', ...
 func2str(func)))
end

func2str

2-912

The first call to catcherr passes a handle to the round function and a valid
data argument. This call succeeds and returns the expected answer. The
second call passes the same function handle and an improper data type (a
MATLAB structure). This time, round fails, causing catcherr to display an
error message that includes the failing function name:

catcherr(@round, 5.432)
ans =
Answer is 5

xstruct.value = 5.432;
catcherr(@round, xstruct)
Error executing function "round"

See Also function_handle, str2func, functions

function

2-913

2functionPurpose Function M-files

Description You add new functions to the MATLAB vocabulary by expressing them in
terms of existing functions. The existing commands and functions that
compose the new function reside in a text file called an M-file.

M-files can be either scripts or functions. Scripts are simply files containing a
sequence of MATLAB statements. Functions make use of their own local
variables and accept input arguments.

The name of an M-file begins with an alphabetic character and has a filename
extension of .m. The M-file name, less its extension, is what MATLAB searches
for when you try to use the script or function.

A line at the top of a function M-file contains the syntax definition. The name
of a function, as defined in the first line of the M-file, should be the same as the
name of the file without the .m extension. For example, the existence of a file
on disk called stat.m with

function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/n));

defines a new function called stat that calculates the mean and standard
deviation of a vector. The variables within the body of the function are all local
variables.

A subfunction,visible only to the other functions in the same file, is created by
defining a new function with the function keyword after the body of the
preceding function or subfunction. For example, avg is a subfunction within the
file stat.m:

function [mean,stdev] = stat(x)
n = length(x);
mean = avg(x,n);
stdev = sqrt(sum((x-avg(x,n)).^2)/n);

function mean = avg(x,n)
mean = sum(x)/n;

function

2-914

Subfunctions are not visible outside the file where they are defined. Functions
normally return when the end of the function is reached. Use a return
statement to force an early return.

When MATLAB does not recognize a function by name, it searches for a file of
the same name on disk. If the function is found, MATLAB compiles it into
memory for subsequent use. The section “Determining Which Function Is
Called” in the MATLAB Programming documentation explains how MATLAB
interprets variable and function names that you enter, and also covers the
precedence used in function dispatching.

When you call an M-file function from the command line or from within
another M-file, MATLAB parses the function and stores it in memory. The
parsed function remains in memory until cleared with the clear command or
you quit MATLAB. The pcode command performs the parsing step and stores
the result on the disk as a P-file to be loaded later.

See Also nargin, nargout, pcode, varargin, varargout, what

function_handle (@)

2-915

2function_handle (@)Purpose MATLAB data type that is a handle to a function

Syntax handle = @functionname
handle = @(arglist)anonymous_function

Description handle = @functionname returns a handle to the specified MATLAB function.

A function handle is a MATLAB value that provides a means of calling a
function indirectly. You can pass function handles in calls to other functions
(often called function functions). You can also store function handles in data
structures for later use (for example, as Handle Graphics callbacks). A function
handle is one of the standard MATLAB data types.

At the time you create a function handle, the function you specify must be on
the MATLAB path and in the current scope. This condition does not apply
when you evaluate the function handle. You can, for example, execute a
subfunction from a separate (out-of-scope) M-file using a function handle as
long as the handle was created within the subfunction’s M-file (in-scope).

handle = @(arglist)anonymous_function constructs an anonymous function
and returns a handle to that function. The body of the function, to the right of
the parentheses, is a single MATLAB statement or command. arglist is a
comma-separated list of input arguments. Execute the function by calling it by
means of the function handle, handle.

Remarks The function handle is a standard MATLAB data type. As such, you can
manipulate and operate on function handles in the same manner as on other
MATLAB data types. This includes using function handles in structures and
cell arrays:

S.a = @sin; S.b = @cos; S.c = @tan;
C = {@sin, @cos, @tan};

However, standard matrices or arrays of function handles are not supported:

A = [@sin, @cos, @tan]; % This is not supported

For nonoverloaded functions, subfunctions, and private functions, a function
handle references just the one function specified in the @functionname syntax.
When you evaluate an overloaded function by means of its handle, the

function_handle (@)

2-916

arguments the handle is evaluated with determine the actual function that
MATLAB dispatches to.

Examples Example 1 — Constructing a Handle to a Named Function
The following example creates a function handle for the humps function and
assigns it to the variable fhandle.

fhandle = @humps;

Pass the handle to another function in the same way you would pass any
argument. This example passes the function handle just created to fminbnd,
which then minimizes over the interval [0.3, 1].

x = fminbnd(fhandle, 0.3, 1)
x =
 0.6370

The fminbnd function evaluates the @humps function handle. A small portion of
the fminbnd M-file is shown below. In line 1, the funfcn input parameter
receives the function handle @humps that was passed in. The statement, in line
113, evaluates the handle.

1 function [xf,fval,exitflag,output] = ...
 fminbnd(funfcn,ax,bx,options,varargin)
 .
 .
 .
113 fx = funfcn(x,varargin{:});

Example 2 — Constructing a Handle to an Anonymous Function

The statement below creates an anonymous function that finds the square of a
number. When you call this function, MATLAB assigns the value you pass in
to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

The @ operator constructs a function handle for this function, and assigns the
handle to the output variable sqr. As with any function handle, you execute the
function associated with it by specifying the variable that contains the handle,
followed by a comma-separated argument list in parentheses. The syntax is

fhandle(arg1, arg2, ..., argN)

function_handle (@)

2-917

To execute the sqr function defined above, type

a = sqr(5)
a =
 25

Because sqr is a function handle, you can pass it in an argument list to other
functions. The code shown here passes the sqr anonymous function to the
MATLAB quad function to compute its integral from zero to one:

quad(sqr, 0, 1)
ans =
 0.3333

See Also str2func, func2str, functions

functions

2-918

2functionsPurpose Return information about a function handle

Syntax S = functions(funhandle)

Description S = functions(funhandle) returns, in MATLAB structure S, the function
name, type, filename, and other information for the function handle stored in
the variable funhandle.

Caution The functions function is provided for querying and debugging
purposes. Because its behavior may change in subsequent releases, you should
not rely upon it for programming purposes.

Note functions does not operate on nonscalar function handles. Passing a
nonscalar function handle to functions results in an error.

Other Stuff The fields of the return structure are listed in the following table.

For handles to functions that overload one of the standard MATLAB data
types, like double or char, the structure returned by functions contains an
additional field named methods. The methods field is a substructure containing
one field name for each MATLAB class that overloads the function. The value
of each field is the path and name of the file that defines the method.

For example, to obtain information on a function handle for the floor function,
use

Field Name Field Description

function Function name.

type Function type. See the table in “Function Type” on
page 2-919.

file The file to be executed when the function handle is eval-
uated with a nonoverloaded data type.

functions

2-919

f = functions(@floor)
f =
 function: 'floor'
 type: 'simple'
 file: 'matlabroot\toolbox\matlab\elfun\floor.m

Individual fields of the structure are accessible using the dot selection notation:

f.type
ans =
 simple

Fields Returned by the Functions Command
The functions function returns a MATLAB structure with the fields function,
type, file, and for some overloaded functions, methods. This section describes
each of those fields.

Function Name. The function field is a character array that holds the name of
the function corresponding to the function handle.

Function Type. The type field is a one-word character array indicating what type
of function the handle represents.

The contents of the next two fields, file and methods, depend upon the
function type.

Function File. The file field is a character array that specifies the path and
name of the file that implements the default function. The default function is
the one function implementation that is not specialized to operate on any
particular data type. Unless the arguments in the function call specify a class
that has a specialized version of the function defined, it is the default function
that gets called.

Function Methods. The methods field exists only for functions of type overloaded.
This field is a separate MATLAB structure that identifies all M-files that
overload the function for any of the standard MATLAB data types.

The structure contains one field for each M-file that overloads the function. The
field names are the MATLAB classes that overload the function. Each field
value is a character array holding the path and name of the source file that
defines the method.

functions

2-920

Remarks For handles to functions that overload one of the MATLAB classes, like double
or char, the structure returned by functions contains an additional field
named methods. The methods field is a substructure containing one field name
for each MATLAB class that overloads the function. The value of each field is
the path and name of the file that defines the method.

Examples To obtain information on a function handle for the deblank function,

f = functions(@poly)
f =
 function: 'poly'
 type: 'simple'
 file: 'matlabroot\toolbox\matlab\polyfun\poly.m'

See Also function_handle

funm

2-921

2funmPurpose Evaluate general matrix function

Syntax F = funm(A,fun)
F = funm(A, fun, options)
[F, exitflag] = funm(...)
[F, exitflag, output] = funm(...)

Description F = funm(A,fun) evaluates the user-defined function fun at the square matrix
argument A. f = fun(x, k) must accept a vector x and an integer k, and return
a vector f of the same size of x, where f(i) is the kth derivative of the function
fun evaluated at x(i). The function represented by fun must have a Taylor
series with an infinite radius of convergence, except for fun = @log, which is
treated as a special case.

You can also use funm to evaluate the special functions listed in the following
table at the matrix A.

For matrix square roots, use sqrtm(A) instead. For matrix exponentials, which
of expm(A) or funm(A, @exp) is the more accurate depends on the matrix A.

Parameterizing Functions Called by Function Functions, in the online
MATLAB Mathematics documentation, explains how to provide additional
parameters to the function fun, if necessary.

Function Syntax for Evaluating Function at Matrix A

exp funm(A, @exp)

log funm(A, @log)

sin funm(A, @sin)

cos funm(A, @cos)

sinh funm(A, @sinh)

cosh funm(A, @cosh)

funm

2-922

F = funm(A, fun, options) sets the algorithm’s parameters to the values in
the structure options. The following table lists the fields of options.

[F, exitflag] = funm(...) returns a scalar exitflag that describes the exit
condition of funm. exitflag can have the following values:

• 0 — The algorithm was successful.

• 1 — One or more Taylor series evaluations did not converge. However, the
computed value of F might still be accurate.

Field Description Values

options.TolBlk Level of display 'off' (default), 'on',
'verbose'

options.TolTay Tolerance for blocking
Schur form

Positive scalar. The default
is eps.

options.MaxTerms Maximum number of
Tayor series terms

Positive integer. The default
is 250.

options.MaxSqrt When computing a
logarithm, maximum
number of square roots
computed in inverse
scaling and squaring
method.

Positive integer. The default
is 100.

options.Ord Specifies the ordering
of the Schur form T.

A vector of length
length(A). options.Ord(i)
is the index of the block into
which T(i,i) is placed. The
default is [].

funm

2-923

[F, exitflag, output] = funm(...) returns a structure output with the
following fields:

If the Schur form is diagonal then
output = struct('terms',ones(n,1),'ind',{1:n}).

Examples Example 1. The following command computes the matrix sine of the 3-by-3
magic matrix.

F=funm(magic(3), @sin)

F =

 -0.3850 1.0191 0.0162
 0.6179 0.2168 -0.1844
 0.4173 -0.5856 0.8185

Example 2. The statements

S = funm(X,@sin);
C = funm(X,@cos);

produce the same results to within roundoff error as

E = expm(i*X);
C = real(E);
S = imag(E);

Field Description

output.terms Vector for which output.terms(i) is the number of
Taylor series terms used when evaluating the ith block,
or, in the case of the logarithm, the number of square
roots.

output.ind Cell array for which the (i,j) block of the reordered
Schur factor T is T(output.ind{i}, output.ind{j}).

output.ord Ordering of the Schur form, as passed to ordschur

output.T Reordered Schur form

funm

2-924

In either case, the results satisfy S*S+C*C = I, where I = eye(size(X)).

Example 3.

To compute the function exp(x) + cos(x) at A with one call to funm, use

F = funm(A,@fun_expcos)

where fun_expcos is the following M-file function.

function f = fun_expcos(x, k)
% Return kth derivative of exp + cos at X.
 g = mod(ceil(k/2),2);
 if mod(k,2)
 f = exp(x) + sin(x)*(-1)^g;
 else
 f = exp(x) + cos(x)*(-1)^g;
 end

Algorithm The algorithm funm uses is described in [1].

See Also expm, logm, sqrtm, function_handle (@)

References [1] Davies, P. I. and N. J. Higham, “A Schur-Parlett algorithm for computing
matrix functions,” SIAM J. Matrix Anal. Appl., Vol. 25, Number 2, pp. 464-485,
2003.

[2] Golub, G. H. and C. F. Van Loan, Matrix Computation, Third Edition, Johns
Hopkins University Press, 1996, p. 384.

[3] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix, Twenty-Five Years Later” SIAM Review 20, Vol. 45,
Number 1, pp. 1-47, 2003.

fwrite

2-925

2fwritePurpose Write binary data to a file

Syntax count = fwrite(fid,A,precision)
count = fwrite(fid,A,precision,skip)

Description count = fwrite(fid,A,precision) writes the elements of matrix A to the
specified file, translating MATLAB values to the specified precision. The data
is written to the file in column order, and a count is kept of the number of
elements written successfully.

fid is an integer file identifier obtained from fopen, or 1 for standard output or
2 for standard error.

precision controls the form and size of the result. See fread for a list of
allowed precisions. For 'bitN' or 'ubitN' precisions, fwrite sets all bits in A
when the value is out of range.

count = fwrite(fid,A,precision,skip) includes an optional skip
argument that specifies the number of bytes to skip before each precision
value is written. With the skip argument present, fwrite skips and writes one
value, skips and writes another value, etc., until all of A is written. If precision
is a bit format like 'bitN' or 'ubitN', skip is specified in bits. This is useful
for inserting data into noncontiguous fields in fixed-length records.

Examples For example,

fid = fopen('magic5.bin','wb');
fwrite(fid,magic(5),'integer*4')

creates a 100-byte binary file containing the 25 elements of the 5-by-5 magic
square, stored as 4-byte integers.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell

fzero

2-926

2fzeroPurpose Find zero of a function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0, if x0 is a scalar. fun is a
function handle for either an M-file function or an anonymous function.The
value x returned by fzero is near a point where fun changes sign, or NaN if the
search fails. In this case, the search terminates when the search interval is
expanded until an Inf, NaN, or complex value is found.

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function fun, if necessary.

If x0 is a vector of length two, fzero assumes x0 is an interval where the sign
of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs if this is not
true. Calling fzero with such an interval guarantees fzero will return a value
near a point where fun changes sign.

x = fzero(fun,x0,options) minimizes with the optimization parameters
specified in the structure options. You can define these parameters using the
optimset function. fzero uses these options structure fields:

[x,fval] = fzero(...) returns the value of the objective function fun at the
solution x.

Display Level of display. 'off' displays no output; 'iter' displays
output at each iteration; 'final' displays just the final
output; 'notify' (default) dislays output only if the function
does not converge.

TolX Termination tolerance on x.

fzero

2-927

[x,fval,exitflag] = fzero(...) returns a value exitflag that describes
the exit condition of fzero:

[x,fval,exitflag,output] = fzero(...) returns a structure output that
contains information about the optimization:

Note For the purposes of this command, zeros are considered to be points
where the function actually crosses, not just touches, the x-axis.

Arguments fun is the function whose zero is to be computed. It accepts a vector x and
returns a scalar f, the objective function evaluated at x. The function fun can
be specified as a function handle for an M-file function

x = fzero(@myfun,x0);

where myfun is an M-file function such as

function f = myfun(x)
f = ... % Compute function value at x

1 Function converged to a solution x.

-1 Algorithm was terminated by the output function.

-3 NaN or Inf function value was encountered during
search for an interval containing a sign change.

-4 Complex function value was encountered during
search for an interval containing a sign change.

-5 fzero might have converged to a singular point.

output.algorithm Algorithm used

output.funcCount Number of function evaluations

output.intervaliterations Number of iterations taken to find an interval

output.iterations Number of zero-finding iterations

output.message Exit message

fzero

2-928

or as a function handle for an anonymous function:

x = fzero(@(x)sin(x*x),x0);

Other arguments are described in the syntax descriptions above.

Examples Example 1. Calculate by finding the zero of the sine function near 3.

x = fzero(@sin,3)
x =
 3.1416

Example 2. To find the zero of cosine between 1 and 2

x = fzero(@cos,[1 2])
x =

1.5708

Note that cos(1) and cos(2) differ in sign.

Example 3. To find a zero of the function

write an anonymous function f:

f = @(x)x.^3-2*x-5;

Then find the zero near 2:

z = fzero(f,2)
z =
 2.0946

Because this function is a polynomial, the statement roots([1 0 -2 -5]) finds
the same real zero, and a complex conjugate pair of zeros.

 2.0946
 -1.0473 + 1.1359i
 -1.0473 - 1.1359i

If fun is parameterized, you can use anonymous functions to capture the
problem-dependent parameters. For example, suppose you want to minimize
the objective function myfun defined by the following M-file function.

function f = myfun(x,a)
f = cos(a*x);

π

f x() x3 2x– 5–=

gallery

2-929

2gallery
Purpose Test matrices

Syntax [A,B,C,...] = gallery('tmfun',P1,P2,...)
gallery(3) a badly conditioned 3-by-3 matrix
gallery(5) an interesting eigenvalue problem

Description [A,B,C,...] = gallery('tmfun',P1,P2,...) returns the test matrices
specified by string tmfun. tmfun is the name of a matrix family selected from
the table below. P1, P2,... are input parameters required by the individual
matrix family. The number of optional parameters P1,P2,... used in the
calling syntax varies from matrix to matrix.The exact calling syntaxes are
detailed in the individual matrix descriptions below.

The gallery holds over fifty different test matrix functions useful for testing
algorithms and other purposes.

Test Matrices

cauchy chebspec chebvand chow

circul clement compar condex

cycol dorr dramadah fiedler

forsythe frank gearmat grcar

hanowa house invhess invol

ipjfact jordbloc kahan kms

krylov lauchli lehmer leslie

lesp lotkin minij moler

neumann orthog parter pei

poisson prolate randcolu randcorr

rando randhess randsvd redheff

riemann ris rosser smoke

gallery

2-930

cauchy—Cauchy matrix

C = gallery('cauchy',x,y) returns an n-by-n matrix,
C(i,j) = 1/(x(i)+y(j)). Arguments x and y are vectors of length n. If you
pass in scalars for x and y, they are interpreted as vectors 1:x and 1:y.

C = gallery('cauchy',x) returns the same as above with y = x. That is, the
command returns C(i,j) = 1/(x(i)+x(j)).

Explicit formulas are known for the inverse and determinant of a Cauchy
matrix. The determinant det(C) is nonzero if x and y both have distinct
elements. C is totally positive if 0 < x(1) <... < x(n) and
0 < y(1) < ... < y(n).

chebspec—Chebyshev spectral differentiation matrix

C = gallery('chebspec',n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (C^n = 0) and has the
null vector ones(n,1). The matrix C is similar to a Jordan block of size n with
eigenvalue zero.

For switch = 1, C is nonsingular and well-conditioned, and its eigenvalues have
negative real parts.

The eigenvector matrix of the Chebyshev spectral differentiation matrix is
ill-conditioned.

chebvand—Vandermonde-like matrix for the Chebyshev polynomials

C = gallery('chebvand',p) produces the (primal) Chebyshev Vandermonde
matrix based on the vector of points p, which define where the Chebyshev
polynomial is calculated.

toeppd tridiag triw vander

wathen wilk

Test Matrices (Continued)

gallery

2-931

C = gallery('chebvand',m,p) where m is scalar, produces a rectangular
version of the above, with m rows.

If p is a vector, then where is the Chebyshev
polynomial of degree i-1. If p is a scalar, then p equally spaced points on the
interval [0,1] are used to calculate C.

chow—Singular Toeplitz lower Hessenberg matrix

A = gallery('chow',n,alpha,delta) returns A such that
A = H(alpha) + delta*eye(n), where and argument n is
the order of the Chow matrix. Default value for scalars alpha and delta are
1 and 0, respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The rest of
the eigenvalues are equal to 4*alpha*cos(k*pi/(n+2))^2, k=1:n-p.

circul—Circulant matrix

C = gallery('circul',v) returns the circulant matrix whose first row is the
vector v.

A circulant matrix has the property that each row is obtained from the previous
one by cyclically permuting the entries one step forward. It is a special Toeplitz
matrix in which the diagonals “wrap around.”

If v is a scalar, then C = gallery('circul',1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root of unity,
then the inner product of v and is an eigenvalue of C and
w(n:-1:1) is an eigenvector.

clement—Tridiagonal matrix with zero diagonal entries

A = gallery('clement',n,sym) returns an n-by-n tridiagonal matrix with
zeros on its main diagonal and known eigenvalues. It is singular if order n is
odd. About 64 percent of the entries of the inverse are zero. The eigenvalues
include plus and minus the numbers n-1, n-3, n-5, ..., as well as (for odd n) a
final eigenvalue of 1 or 0.

C i j,() Ti 1– p j()()= Ti 1–

Hi j, α() α i j– 1+()=

w 1 t t2…t n 1–()[]=

gallery

2-932

Argument sym determines whether the Clement matrix is symmetric. For
sym = 0 (the default) the matrix is nonsymmetric, while for sym = 1, it is
symmetric.

compar—Comparison matrices

A = gallery('compar',A,1) returns A with each diagonal element replaced
by its absolute value, and each off-diagonal element replaced by minus the
absolute value of the largest element in absolute value in its row. However, if
A is triangular compar(A,1) is too.

gallery('compar',A) is diag(B) - tril(B,-1) - triu(B,1), where
B = abs(A). compar(A) is often denoted by M(A) in the literature.

gallery('compar',A,0) is the same as gallery('compar',A).

condex—Counter-examples to matrix condition number estimators

A = gallery('condex',n,k,theta) returns a “counter-example” matrix to a
condition estimator. It has order n and scalar parameter theta (default 100).

The matrix, its natural size, and the estimator to which it applies are specified
by k:

If n is not equal to the natural size of the matrix, then the matrix is padded out
with an identity matrix to order n.

cycol—Matrix whose columns repeat cyclically

A = gallery('cycol',[m n],k) returns an m-by-n matrix with cyclically
repeating columns, where one “cycle” consists of randn(m,k). Thus, the rank of
matrix A cannot exceed k, and k must be a scalar.

k = 1 4-by-4 LINPACK

k = 2 3-by-3 LINPACK

k = 3 arbitrary LINPACK (rcond) (independent of theta)

k = 4 n >= 4 LAPACK (RCOND) (default). It is the inverse of
this matrix that is a counter-example.

gallery

2-933

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery('cycol',n,k), where n is a scalar, is the same as
gallery('cycol',[n n],k).

dorr—Diagonally dominant, ill-conditioned, tridiagonal matrix

[c,d,e] = gallery('dorr',n,theta) returns the vectors defining an n-by-n,
row diagonally dominant, tridiagonal matrix that is ill-conditioned for small
nonnegative values of theta. The default value of theta is 0.01. The Dorr
matrix itself is the same as gallery('tridiag',c,d,e).

A = gallery('dorr',n,theta) returns the matrix itself, rather than the
defining vectors.

dramadah—Matrix of zeros and ones whose inverse has large integer entries

A = gallery('dramadah',n,k) returns an n-by-n matrix of 0’s and 1’s for
which mu(A) = norm(inv(A),'fro') is relatively large, although not
necessarily maximal. An anti-Hadamard matrix A is a matrix with elements
0 or 1 for which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of the
output matrix:

k = 1 Default. A is Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)^n, where c is a constant. The inverse of A has
integer entries.

k = 2 A is upper triangular and Toeplitz. The inverse of A has integer
entries.

k = 3 A has maximal determinant among lower Hessenberg (0,1)
matrices. det(A) = the nth Fibonacci number. A is Toeplitz. The
eigenvalues have an interesting distribution in the complex plane.

gallery

2-934

fiedler—Symmetric matrix

A = gallery('fiedler',c), where c is a length n vector, returns the n-by-n
symmetric matrix with elements abs(n(i)-n(j)). For scalar c,
A = gallery('fiedler',1:c).

Matrix A has a dominant positive eigenvalue and all the other eigenvalues are
negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic
Numerical Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel, and
Academic Press, New York, 1977, p. 159] and attributed to Fiedler. These
indicate that inv(A) is tridiagonal except for nonzero (1,n) and (n,1)
elements.

forsythe—Perturbed Jordan block

A = gallery('forsythe',n,alpha,lambda) returns the n-by-n matrix equal
to the Jordan block with eigenvalue lambda, excepting that A(n,1) = alpha.
The default values of scalars alpha and lambda are sqrt(eps) and 0,
respectively.

The characteristic polynomial of A is given by:

det(A-t*I) = (lambda-t)^N - alpha*(-1)^n.

frank—Matrix with ill-conditioned eigenvalues

F = gallery('frank',n,k) returns the Frank matrix of order n. It is upper
Hessenberg with determinant 1. If k = 1, the elements are reflected about the
anti-diagonal (1,n)—(n,1). The eigenvalues of F may be obtained in terms of
the zeros of the Hermite polynomials. They are positive and occur in reciprocal
pairs; thus if n is odd, 1 is an eigenvalue. F has floor(n/2) ill-conditioned
eigenvalues—the smaller ones.

gearmat—Gear matrix

A = gallery('gearmat',n,i,j) returns the n-by-n matrix with ones on the
sub- and super-diagonals, sign(i) in the (1,abs(i)) position, sign(j) in the

gallery

2-935

(n,n+1-abs(j)) position, and zeros everywhere else. Arguments i and j
default to n and -n, respectively.

Matrix A is singular, can have double and triple eigenvalues, and can be
defective.

All eigenvalues are of the form 2*cos(a) and the eigenvectors are of the form
[sin(w+a), sin(w+2*a), ..., sin(w+n*a)], where a and w are given in
Gear, C. W., “A Simple Set of Test Matrices for Eigenvalue Programs”, Math.
Comp., Vol. 23 (1969), pp. 119-125.

grcar—Toeplitz matrix with sensitive eigenvalues

A = gallery('grcar',n,k) returns an n-by-n Toeplitz matrix with -1s on the
subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The default is
k = 3. The eigenvalues are sensitive.

hanowa—Matrix whose eigenvalues lie on a vertical line in the complex plane

A = gallery('hanowa',n,d) returns an n-by-n block 2-by-2 matrix of the
form:

[d*eye(m) -diag(1:m)
diag(1:m) d*eye(m)]

Argument n is an even integer n=2*m. Matrix A has complex eigenvalues of the
form d ± k*i, for 1 <= k <= m. The default value of d is -1.

house—Householder matrix

[v,beta,s] = gallery('house',x,k) takes x, an n-element column vector,
and returns V and beta such that H*x = s*e1. In this expression, e1 is the first
column of eye(n), abs(s) = norm(x), and H = eye(n) - beta*V*V' is a
Householder matrix.

k determines the sign of s:

k = 0 sign(s) = -sign(x(1)) (default)

k = 1 sign(s) = sign(x(1))

k = 2 sign(s) = 1 (x must be real)

gallery

2-936

If x is complex, then sign(x) = x./abs(x) when x is nonzero.

If x = 0, or if x = alpha*e1 (alpha >= 0) and either k = 1 or k = 2, then V = 0,
beta = 1, and s = x(1). In this case, H is the identity matrix, which is not
strictly a Householder matrix.

invhess—Inverse of an upper Hessenberg matrix

A = gallery('invhess',x,y), where x is a length n vector and y is a length
n-1 vector, returns the matrix whose lower triangle agrees with that of
ones(n,1)*x' and whose strict upper triangle agrees with that of
[1 y]*ones(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i, and its
inverse is an upper Hessenberg matrix. Argument y defaults to -x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

invol—Involutory matrix

A = gallery('invol',n) returns an n-by-n involutory (A*A = eye(n)) and
ill-conditioned matrix. It is a diagonally scaled version of hilb(n).

B = (eye(n)-A)/2 and B = (eye(n)+A)/2 are idempotent (B*B = B).

ipjfact—Hankel matrix with factorial elements

[A,d] = gallery('ipjfact',n,k) returns A, an n-by-n Hankel matrix, and d,
the determinant of A, which is known explicitly. If k = 0 (the default), then the
elements of A are A(i,j) = (i+j)! If k = 1, then the elements of A are
A(i,j) = 1/(i+j).

Note that the inverse of A is also known explicitly.

jordbloc—Jordan block

A = gallery('jordbloc',n,lambda) returns the n-by-n Jordan block with
eigenvalue lambda. The default value for lambda is 1.

gallery

2-937

kahan—Upper trapezoidal matrix

A = gallery('kahan',n,theta,pert) returns an upper trapezoidal matrix
that has interesting properties regarding estimation of condition and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is n-by-n. The
useful range of theta is 0 < theta < pi, with a default value of 1.2.

To ensure that the QR factorization with column pivoting does not interchange
columns in the presence of rounding errors, the diagonal is perturbed by
pert*eps*diag([n:-1:1]). The default pert is 25, which ensures no
interchanges for gallery('kahan',n) up to at least n = 90 in IEEE arithmetic.

kms—Kac-Murdock-Szego Toeplitz matrix

A = gallery('kms',n,rho) returns the n-by-n Kac-Murdock-Szego Toeplitz
matrix such that A(i,j) = rho^(abs(i-j)), for real rho.

For complex rho, the same formula holds except that elements below the
diagonal are conjugated. rho defaults to 0.5.

The KMS matrix A has these properties:

• An LDL' factorization with L = inv(gallery('triw',n,-rho,1))', and
D(i,i) = (1-abs(rho)^2)*eye(n), except D(1,1) = 1.

• Positive definite if and only if 0 < abs(rho) < 1.

• The inverse inv(A) is tridiagonal.

krylov—Krylov matrix

B = gallery('krylov',A,x,j) returns the Krylov matrix

[x, Ax, A^2x, ..., A^(j-1)x]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x = ones(n,1), and j = n.

B = gallery('krylov',n) is the same as gallery('krylov',(randn(n)).

gallery

2-938

lauchli—Rectangular matrix

A = gallery('lauchli',n,mu) returns the (n+1)-by-n matrix

[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A'*A. Argument mu defaults to
sqrt(eps).

lehmer—Symmetric positive definite matrix

A = gallery('lehmer',n) returns the symmetric positive definite n-by-n
matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

• A is totally nonnegative.

• The inverse inv(A) is tridiagonal and explicitly known.

• The order n <= cond(A) <= 4*n*n.

leslie—

L = gallery('leslie',a,b) is the n-by-n matrix from the Leslie population
model with average birth numbers a(1:n) and survival rates b(1:n-1). It is
zero, apart from the first row (which contains the a(i)) and the first
subdiagonal (which contains the b(i)). For a valid model, the a(i) are
nonnegative and the b(i) are positive and bounded by 1, i.e., 0 < b(i) <= 1.

L = gallery('leslie',n) generates the Leslie matrix with a = ones(n,1),
b = ones(n-1,1).

lesp—Tridiagonal matrix with real, sensitive eigenvalues

A = gallery('lesp',n) returns an n-by-n matrix whose eigenvalues are real
and smoothly distributed in the interval approximately [-2*N-3.5, -4.5].

The sensitivities of the eigenvalues increase exponentially as the eigenvalues
grow more negative. The matrix is similar to the symmetric tridiagonal matrix

gallery

2-939

with the same diagonal entries and with off-diagonal entries 1, via a similarity
transformation with D = diag(1!,2!,...,n!).

lotkin—Lotkin matrix

A = gallery('lotkin',n) returns the Hilbert matrix with its first row
altered to all ones. The Lotkin matrix A is nonsymmetric, ill-conditioned, and
has many negative eigenvalues of small magnitude. Its inverse has integer
entries and is known explicitly.

minij—Symmetric positive definite matrix

A = gallery('minij',n) returns the n-by-n symmetric positive definite
matrix with A(i,j) = min(i,j).

The minij matrix has these properties:

• The inverse inv(A) is tridiagonal and equal to -1 times the second difference
matrix, except its (n,n) element is 1.

• Givens’ matrix, 2*A-ones(size(A)), has tridiagonal inverse and
eigenvalues 0.5*sec((2*r-1)*pi/(4*n))^2, where r=1:n.

• (n+1)*ones(size(A))-A has elements that are max(i,j) and a tridiagonal
inverse.

moler—Symmetric positive definite matrix

A = gallery('moler',n,alpha) returns the symmetric positive definite
n-by-n matrix U'*U, where U = gallery('triw',n,alpha).

For the default alpha = -1, A(i,j) = min(i,j)-2, and A(i,i) = i. One of the
eigenvalues of A is small.

neumann—Singular matrix from the discrete Neumann problem (sparse)

C = gallery('neumann',n) returns the sparse n-by-n singular, row diagonally
dominant matrix resulting from discretizing the Neumann problem with the
usual five-point operator on a regular mesh. Argument n is a perfect square
integer or a two-element vector. C is sparse and has a one-dimensional
null space with null vector ones(n,1).

n m2=

gallery

2-940

orthog—Orthogonal and nearly orthogonal matrices

Q = gallery('orthog',n,k) returns the kth type of matrix of order n, where
k > 0 selects exactly orthogonal matrices, and k < 0 selects diagonal scalings
of orthogonal matrices. Available types are:

parter—Toeplitz matrix with singular values near pi

C = gallery('parter',n) returns the matrix C such that
C(i,j) = 1/(i-j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values of C are
very close to pi.

k = 1 Q(i,j) = sqrt(2/(n+1)) * sin(i*j*pi/(n+1))
Symmetric eigenvector matrix for second difference matrix. This is
the default.

k = 2 Q(i,j) = 2/(sqrt(2*n+1)) * sin(2*i*j*pi/(2*n+1))
Symmetric.

k = 3 Q(r,s) = exp(2*pi*i*(r-1)*(s-1)/n) / sqrt(n)
Unitary, the Fourier matrix. Q^4 is the identity. This is essentially
the same matrix as fft(eye(n))/sqrt(n)!

k = 4 Helmert matrix: a permutation of a lower Hessenberg matrix,
whose first row is ones(1:n)/sqrt(n).

k = 5 Q(i,j) = sin(2*pi*(i-1)*(j-1)/n) +
cos(2*pi*(i-1)*(j-1)/n)
Symmetric matrix arising in the Hartley transform.

K = 6 Q(i,j) = sqrt(2/n)*cos((i-1/2)*(j-1/2)*pi/n)
Symmetric matrix arising as a discrete cosine transform.

k = -1 Q(i,j) = cos((i-1)*(j-1)*pi/(n-1))
Chebyshev Vandermonde-like matrix, based on extrema of T(n-1).

k = -2 Q(i,j) = cos((i-1)*(j-1/2)*pi/n))
Chebyshev Vandermonde-like matrix, based on zeros of T(n).

gallery

2-941

pei—Pei matrix

A = gallery('pei',n,alpha), where alpha is a scalar, returns the symmetric
matrix alpha*eye(n) + ones(n). The default for alpha is 1. The matrix is
singular for alpha equal to either 0 or -n.

poisson—Block tridiagonal matrix from Poisson's equation (sparse)

A = gallery('poisson',n) returns the block tridiagonal (sparse) matrix of
order n^2 resulting from discretizing Poisson's equation with the 5-point
operator on an n-by-n mesh.

prolate—Symmetric, ill-conditioned Toeplitz matrix

A = gallery('prolate',n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

If 0 < w < 0.5 then A is positive definite

• The eigenvalues of A are distinct, lie in (0,1), and tend to cluster around 0
and 1.

• The default value of w is 0.25.

randcolu — Random matrix with normalized cols and specified singular
values

A = gallery('randcolu',n) is a random n-by-n matrix with columns of unit
2-norm, with random singular values whose squares are from a uniform
distribution.

A'*A is a correlation matrix of the form produced by gallery('randcorr',n).

gallery('randcolu',x) where x is an n-vector (n > 1), produces a random
n-by-n matrix having singular values given by the vector x. The vector x must
have nonnegative elements whose sum of squares is n.

gallery('randcolu',x,m) where m >= n, produces an m-by-n matrix.

gallery('randcolu',x,m,k) provides a further option:

gallery

2-942

For more information, see:

[1] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

randcorr — Random correlation matrix with specified eigenvalues

gallery('randcorr',n) is a random n-by-n correlation matrix with random
eigenvalues from a uniform distribution. A correlation matrix is a symmetric
positive semidefinite matrix with 1s on the diagonal (see corrcoef).

gallery('randcorr',x) produces a random correlation matrix having
eigenvalues given by the vector x, where length(x) > 1. The vector x must
have nonnegative elements summing to length(x).

gallery('randcorr',x,k) provides a further option:

For more information, see:

[1] Bendel, R. B. and M. R. Mickey, “Population Correlation Matrices for
Sampling Experiments,” Commun. Statist. Simulation Comput., B7, 1978,
pp. 163-182.

[2] Davies, P. I. and N. J. Higham, “Numerically Stable Generation of
Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp. 640-651.

k = 0 diag(x) is initially subjected to a random two-sided orthogonal
transformation, and then a sequence of Givens rotations is applied
(default).

k = 1 The initial transformation is omitted. This is much faster, but the
resulting matrix may have zero entries.

k = 0 The diagonal matrix of eigenvalues is initially subjected to a
random orthogonal similarity transformation, and then a
sequence of Givens rotations is applied (default).

k = 1 The initial transformation is omitted. This is much faster, but the
resulting matrix may have some zero entries.

gallery

2-943

randhess—Random, orthogonal upper Hessenberg matrix

H = gallery('randhess',n) returns an n-by-n real, random, orthogonal
upper Hessenberg matrix.

H = gallery('randhess',x) if x is an arbitrary, real, length n vector with
n > 1, constructs H nonrandomly using the elements of x as parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

rando—Random matrix composed of elements -1, 0 or 1

A = gallery('rando',n,k) returns a random n-by-n matrix with elements
from one of the following discrete distributions:

Argument n may be a two-element vector, in which case the matrix is
n(1)-by-n(2).

randsvd—Random matrix with preassigned singular values

A = gallery('randsvd',n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and singular
values from the distribution mode. If n is a two-element vector, A is
n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper off-diagonals,
respectively, in A. If they are omitted, a full matrix is produced. If only kl is
present, ku defaults to kl.

Distribution mode can be:

k = 1 A(i,j) = 0 or 1 with equal probability (default).

k = 2 A(i,j) = -1 or 1 with equal probability.

k = 3 A(i,j) = -1, 0 or 1 with equal probability.

1 One large singular value.

2 One small singular value.

3 Geometrically distributed singular values (default).

gallery

2-944

Condition number kappa defaults to sqrt(1/eps). In the special case where
kappa < 0, A is a random, full, symmetric, positive definite matrix with
cond(A) = -kappa and eigenvalues distributed according to mode. Arguments
kl and ku, if present, are ignored.

A = gallery('randsvd',n,kappa,mode,kl,ku,method) specifies how the
computations are carried out. method = 0 is the default, while method = 1
uses an alternative method that is much faster for large dimensions, even
though it uses more flops.

redheff—Redheffer’s matrix of 1s and 0s

A = gallery('redheff',n) returns an n-by-n matrix of 0’s and 1’s defined by
A(i,j) = 1, if j = 1 or if i divides j, and A(i,j) = 0 otherwise.

The Redheffer matrix has these properties:

• (n-floor(log2(n)))-1 eigenvalues equal to 1

• A real eigenvalue (the spectral radius) approximately sqrt(n)

• A negative eigenvalue approximately -sqrt(n)

• The remaining eigenvalues are provably “small.”

• The Riemann hypothesis is true if and only if for every
epsilon > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside the unit
circle abs(Z) = 1,” and a proof of this conjecture, together with a proof that
some eigenvalue tends to zero as n tends to infinity, would yield a new proof of
the prime number theorem.

4 Arithmetically distributed singular values.

5 Random singular values with uniformly distributed logarithm.

< 0 If mode is -1, -2, -3, -4, or -5, then randsvd treats mode as abs(mode),
except that in the original matrix of singular values the order of the
diagonal entries is reversed: small to large instead of large to small.

1 One large singular value.

det A() O n
1
2
--- ε+

()=

gallery

2-945

riemann—Matrix associated with the Riemann hypothesis

A = gallery('riemann',n) returns an n-by-n matrix for which the Riemann
hypothesis is true if and only if

 for every .

The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)

where B(i,j) = i-1 if i divides j, and B(i,j) = -1 otherwise.

The Riemann matrix has these properties:

• Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, where m = n+1.

• i <= e(i) <= i+1 with at most m-sqrt(m) exceptions.

• All integers in the interval (m/3, m/2] are eigenvalues.

ris—Symmetric Hankel matrix

A = gallery('ris',n) returns a symmetric n-by-n Hankel matrix with
elements

A(i,j) = 0.5/(n-i-j+1.5)

The eigenvalues of A cluster around and . This matrix was invented
by F.N. Ris.

det A() O n!n
1
2
---– ε+

()=

ε 0>

π 2⁄ π 2⁄–

gallery

2-946

rosser—Classic symmetric eigenvalue test matrix

A = rosser returns the Rosser matrix. This matrix was a challenge for many
matrix eigenvalue algorithms. But the QR algorithm, as perfected by
Wilkinson and implemented in MATLAB, has no trouble with it. The matrix
is 8-by-8 with integer elements. It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

smoke—Complex matrix with a 'smoke ring' pseudospectrum

A = gallery('smoke',n) returns an n-by-n matrix with 1’s on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity along the
diagonal.

A = gallery('smoke',n,1) returns the same except that element A(n,1) is
zero.

The eigenvalues of gallery('smoke',n,1) are the nth roots of unity; those of
gallery('smoke',n) are the nth roots of unity times 2^(1/n).

toeppd—Symmetric positive definite Toeplitz matrix

A = gallery('toeppd',n,m,w,theta) returns an n-by-n symmetric, positive
semi-definite (SPD) Toeplitz matrix composed of the sum of m rank 2 (or, for
certain theta, rank 1) SPD Toeplitz matrices. Specifically,

T = w(1)*T(theta(1)) + ... + w(m)*T(theta(m))

where T(theta(k)) has (i,j) element cos(2*pi*theta(k)*(i-j)).

By default: m = n, w = rand(m,1), and theta = rand(m,1).

gallery

2-947

toeppen—Pentadiagonal Toeplitz matrix (sparse)

P = gallery('toeppen',n,a,b,c,d,e) returns the n-by-n sparse,
pentadiagonal Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1) = b,
P(1,1) = c, P(1,2) = d, and P(1,3) = e, where a, b, c, d, and e are scalars.

By default, (a,b,c,d,e) = (1,-10,0,10,1), yielding a matrix of Rutishauser.
This matrix has eigenvalues lying approximately on the line segment
2*cos(2*t) + 20*i*sin(t).

tridiag—Tridiagonal matrix (sparse)

A = gallery('tridiag',c,d,e) returns the tridiagonal matrix with
subdiagonal c, diagonal d, and superdiagonal e. Vectors c and e must have
length(d)-1.

A = gallery('tridiag',n,c,d,e), where c, d, and e are all scalars, yields the
Toeplitz tridiagonal matrix of order n with subdiagonal elements c, diagonal
elements d, and superdiagonal elements e. This matrix has eigenvalues

d + 2*sqrt(c*e)*cos(k*pi/(n+1))

where k = 1:n. (see [1].)

A = gallery('tridiag',n) is the same as
A = gallery('tridiag',n,-1,2,-1), which is a symmetric positive definite
M-matrix (the negative of the second difference matrix).

triw—Upper triangular matrix discussed by Wilkinson and others

A = gallery('triw',n,alpha,k) returns the upper triangular matrix with
ones on the diagonal and alphas on the first k >= 0 superdiagonals.

Order n may be a 2-element vector, in which case the matrix is n(1)-by-n(2)
and upper trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices, J. Reine
Angew. Math., 1954] shows that

cond(gallery('triw',n,2)) = cot(pi/(4*n))^2,

gallery

2-948

and, for large abs(alpha), cond(gallery('triw',n,alpha)) is approximately
abs(alpha)^n*sin(pi/(4*n-2)).

Adding -2^(2-n) to the (n,1) element makes triw(n) singular, as does adding
-2^(1-n) to all the elements in the first column.

vander—Vandermonde matrix

A = gallery('vander',c) returns the Vandermonde matrix whose second to
last column is c. The jth column of a Vandermonde matrix is given by
A(:,j) = C^(n-j).

wathen—Finite element matrix (sparse, random entries)

A = gallery('wathen',nx,ny) returns a sparse, random, n-by-n finite
element matrix where n = 3*nx*ny + 2*nx + 2*ny + 1.

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny grid of
8-node (serendipity) elements in two dimensions. A is symmetric, positive
definite for any (positive) values of the “density,” rho(nx,ny), which is chosen
randomly in this routine.

A = gallery('wathen',nx,ny,1) returns a diagonally scaled matrix such
that

0.25 <= eig(inv(D)*A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any densities
rho(nx,ny).

wilk—Various matrices devised or discussed by Wilkinson

[A,b] = gallery('wilk',n) returns a different matrix or linear system
depending on the value of n.

n = 3 Upper triangular system Ux=b illustrating inaccurate solution.

n = 4 Lower triangular system Lx=b, ill-conditioned.

gallery

2-949

See Also hadamard, hilb, invhilb, magic, wilkinson

References [1] The MATLAB gallery of test matrices is based upon the work of Nicholas J.
Higham at the Department of Mathematics, University of Manchester,
Manchester, England. Additional detail on these matrices is documented in
The Test Matrix Toolbox for MATLAB by N. J. Higham, September, 1995. This
report is available via anonymous ftp from The MathWorks at
ftp://ftp.mathworks.com/pub/contrib/linalg/testmatrix/testmatrix.p
s or on the Web at ftp://ftp.ma.man.ac.uk/pub/narep or
http://www.ma.man.ac.uk/MCCM/MCCM.html. Further background can be
found in the book Accuracy and Stability of Numerical Algorithms, Nicholas J.
Higham, SIAM, 1996.

[2] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford University
Press, London, 1965, p.308.

n = 5 hilb(6)(1:5,2:6)*1.8144. A symmetric positive definite matrix.

n = 21 W21+, a tridiagonal matrix. Eigenvalue problem. For more detail,
see [2].

gamma, gammainc, gammaln

2-950

2gamma, gammainc, gammalnPurpose Gamma functions

Syntax Y = gamma(A) Gamma function
Y = gammainc(X,A) Incomplete gamma function
Y = gammainc(X,A,tail) Tail of the incomplete gamma function
Y = gammaln(A) Logarithm of gamma function

Definition The gamma function is defined by the integral:

The gamma function interpolates the factorial function. For integer n:

gamma(n+1) = n! = prod(1:n)

The incomplete gamma function is:

For any a>=0, gammainc(x,a) approaches 1 as x approaches infinity. For
small x and a, gammainc(x,a) is approximately equal to x^a, so
gammainc(0,0) = 1.

Description Y = gamma(A) returns the gamma function at the elements of A. A must be real.

Y = gammainc(X,A) returns the incomplete gamma function of corresponding
elements of X and A. Arguments X and A must be real and the same size (or
either can be scalar).

Y = gammainc(X,A,tail) specifies the tail of the incomplete gamma function
when X is non-negative. The choices are for tail are 'lower' (the default) and
'upper'. The upper incomplete gamma function is defined as

1 - gammainc(x,a)

Note When X is negative, Y can be inaccurate for abs(X)>A+1.

Γ a() e t– ta 1– td
0

∞
∫=

P x a,() 1
Γ a()
------------ e t– ta 1– td

0

x

∫=

gamma, gammainc, gammaln

2-951

Y = gammaln(A) returns the logarithm of the gamma function,
gammaln(A) = log(gamma(A)). The gammaln command avoids the underflow
and overflow that may occur if it is computed directly using log(gamma(A)).

Algorithm The computations of gamma and gammaln are based on algorithms outlined in
[1]. Several different minimax rational approximations are used depending
upon the value of A. Computation of the incomplete gamma function is based
on the algorithm in [2].

References [1] Cody, J., An Overview of Software Development for Special Functions,
Lecture Notes in Mathematics, 506, Numerical Analysis Dundee, G. A. Watson
(ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical Functions,
National Bureau of Standards, Applied Math. Series #55, Dover Publications,
1965, sec. 6.5.

gca

2-952

2gcaPurpose Get current axes handle

Syntax h = gca

Description h = gca returns the handle to the current axes for the current figure. If no axes
exists, MATLAB creates one and returns its handle. You can use the statement

get(gcf,'CurrentAxes')

if you do not want MATLAB to create an axes if one does not already exist.

Current Axes
The current axes is the target for graphics output when you create axes
children. The current axes is typically the last axes used for plotting or the last
axes clicked on by the mouse. Graphics commands such as plot, text, and surf
draw their results in the current axes. Changing the current figure also
changes the current axes.

See Also axes, cla, gcf, findobj

figure CurrentAxes property

“Finding and Identifying Graphics Objects” for related functions

gcbf

2-953

2gcbfPurpose Get handle of figure containing object whose callback is executing

Syntax fig = gcbf

Description fig = gcbf returns the handle of the figure that contains the object whose
callback is currently executing. This object can be the figure itself, in which
case, gcbf returns the figure’s handle.

When no callback is executing, gcbf returns the empty matrix, [].

The value returned by gcbf is identical to the figure output argument
returned by gcbo.

See Also gcbo, gco, gcf, gca

gcbo

2-954

2gcboPurpose Return the handle of the object whose callback is currently executing

Syntax h = gcbo
[h, figure] = gcbo

Description h = gcbo returns the handle of the graphics object whose callback is executing.

[h, figure] = gcbo returns the handle of the current callback object and the
handle of the figure containing this object.

Remarks MATLAB stores the handle of the object whose callback is executing in the root
CallbackObject property. If a callback interrupts another callback, MATLAB
replaces the CallbackObject value with the handle of the object whose
callback is interrupting. When that callback completes, MATLAB restores the
handle of the object whose callback was interrupted.

The root CallbackObject property is read only, so its value is always valid at
any time during callback execution. The root CurrentFigure property, and the
figure CurrentAxes and CurrentObject properties (returned by gcf, gca, and
gco, respectively) are user settable, so they can change during the execution of
a callback, especially if that callback is interrupted by another callback.
Therefore, those functions are not reliable indicators of which object’s callback
is executing.

When you write callback routines for the CreateFcn and DeleteFcn of any
object and the figure ResizeFcn, you must use gcbo since those callbacks do not
update the root’s CurrentFigure property, or the figure’s CurrentObject or
CurrentAxes properties; they only update the root’s CallbackObject property.

When no callbacks are executing, gcbo returns [] (an empty matrix).

See Also gca, gcf, gco, rootobject

“Finding and Identifying Graphics Objects” for related functions

gcd

2-955

2gcdPurpose Greatest common divisor

Syntax G = gcd(A,B)
[G,C,D] = gcd(A,B)

Description G = gcd(A,B) returns an array containing the greatest common divisors of the
corresponding elements of integer arrays A and B. By convention, gcd(0,0)
returns a value of 0; all other inputs return positive integers for G.

[G,C,D] = gcd(A,B) returns both the greatest common divisor array G, and
the arrays C and D, which satisfy the equation: A(i).*C(i) + B(i).*D(i) =
G(i). These are useful for solving Diophantine equations and computing
elementary Hermite transformations.

Examples The first example involves elementary Hermite transformations.

For any two integers a and b there is a 2-by-2 matrix E with integer entries and
determinant = 1 (a unimodular matrix) such that:

E * [a;b] = [g,0],

where g is the greatest common divisor of a and b as returned by the command
[g,c,d] = gcd(a,b).

The matrix E equals:

c d
-b/g a/g

In the case where a = 2 and b = 4:

[g,c,d] = gcd(2,4)
g =
 2
c =
 1
d =
 0

gcd

2-956

So that

E =
1 0

 -2 1

In the next example, we solve for x and y in the Diophantine equation
30x + 56y = 8.

[g,c,d] = gcd(30,56)
g =
 2
c =
 -13
d =
 7

By the definition, for scalars c and d:

30(-13) + 56(7) = 2,

Multiplying through by 8/2:

30(-13*4) + 56(7*4) = 8

Comparing this to the original equation, a solution can be read by inspection:

x = (-13*4) = -52; y = (7*4) = 28

See Also lcm

References [1] Knuth, Donald, The Art of Computer Programming, Vol. 2, Addison-Wesley:
Reading MA, 1973. Section 4.5.2, Algorithm X.

gcf

2-957

2gcfPurpose Get current figure handle

Syntax h = gcf

Description h = gcf returns the handle of the current figure. The current figure is the
figure window in which graphics commands such as plot, title, and surf
draw their results. If no figure exists, MATLAB creates one and returns its
handle. You can use the statement

get(0,'CurrentFigure')

if you do not want MATLAB to create a figure if one does not already exist.

See Also clf, figure, gca

Root CurrentFigure property

“Finding and Identifying Graphics Objects” for related functions

gco

2-958

2gcoPurpose Return handle of current object

Syntax h = gco
h = gco(figure_handle)

Description h = gco returns the handle of the current object.

h = gco(figure_handle) returns the value of the current object for the figure
specified by figure_handle.

Remarks The current object is the last object clicked on, excluding uimenus. If the mouse
click did not occur over a figure child object, the figure becomes the current
object. MATLAB stores the handle of the current object in the figure’s
CurrentObject property.

The CurrentObject of the CurrentFigure does not always indicate the object
whose callback is being executed. Interruptions of callbacks by other callbacks
can change the CurrentObject or even the CurrentFigure. Some callbacks,
such as CreateFcn and DeleteFcn, and uimenu Callback, intentionally do not
update CurrentFigure or CurrentObject.

gcbo provides the only completely reliable way to retrieve the handle to the
object whose callback is executing, at any point in the callback function,
regardless of the type of callback or of any previous interruptions.

Examples This statement returns the handle to the current object in figure window 2:

h = gco(2)

See Also gca, gcbo, gcf

The root object description

“Finding and Identifying Graphics Objects” for related functions

genpath

2-959

2genpathPurpose Generate a path string

Syntax genpath
genpath directory
p = genpath('directory')

Description genpath returns a path string formed by recursively adding all the directories
below matlabroot/toolbox.

genpath directory returns a path string formed by recursively adding all the
directories below directory.

p = genpath('directory') returns the path string to variable, p.

Examples You generate a path that includes matlabroot/toolbox/images and all
directories below that with the following command:

p = genpath(fullfile(matlabroot,'toolbox','images'))

p =

matlabroot\toolbox\images;matlabroot\toolbox\images\images;
matlabroot\toolbox\images\images\ja;matlabroot\toolbox\images\
imdemos;matlabroot\toolbox\images\imdemos\ja;

genpath

2-960

You can also use genpath in conjunction with addpath to add subdirectories to
the path from the command line. The following example adds the /control
directory and its subdirectories to the current path.

% Display the current path
path

 MATLABPATH

 K:\toolbox\matlab\general
 K:\toolbox\matlab\ops
 K:\toolbox\matlab\lang
 K:\toolbox\matlab\elmat
 K:\toolbox\matlab\elfun
 :
 :
 :

% Use GENPATH to add /control and its subdirectories
addpath(genpath('K:/toolbox/control'))

% Display the new path
path

 MATLABPATH

 K:\toolbox\control
 K:\toolbox\control\ctrlutil
 K:\toolbox\control\control
 K:\toolbox\control\ctrlguis
 K:\toolbox\control\ctrldemos
 K:\toolbox\matlab\general
 K:\toolbox\matlab\ops
 K:\toolbox\matlab\lang
 K:\toolbox\matlab\elmat
 K:\toolbox\matlab\elfun
 :
 :
 :

genpath

2-961

See Also addpath, path, pathdef, pathsep, pathtool, rehash, restoredefaultpath,
rmpath, savepath

Search Path

genvarname

2-962

2genvarname Purpose Construct valid variable name from string

Syntax varname = genvarname(str)
varname = genvarname(str, exclusions)

Description varname = genvarname(str) constructs a string varname that is similar to or
the same as the str input, and can be used as a valid variable name. str can
be a single character array or a cell array of strings. If str is a cell array of
strings, genvarname returns a cell array of strings in varname. The strings in a
cell array returned by genvarname are guaranteed to be different from each
other.

varname = genvarname(str, exclusions) returns a valid variable name that
is different from any name listed in the exclusions input. The exclusions
input can be a single character array or a cell array of strings. Specify the
string 'who' for exclusions to create a variable name that will be unique in the
current MATLAB workapace (see “Example 4”, below).

Note genvarname returns a string that can be used as a variable name. It
does not create a variable in the MATLAB workspace. You cannot, therefore,
assign a value to the output of genvarname.

Remarks A valid MATLAB variable name is a character string of letters, digits, and
underscores, such that the first character is a letter, and the length of the
string is less than or equal to the value returned by the namelengthmax
function. Any string that excedes namelengthmax is truncated in the varname
output. See “Example 6”, below.

The variable name returned by genvarname is not guaranteed to be different
from other variable names currently in the MATLAB workspace unless you use
the exclusions input in the manner shown in “Example 4”, below.

If you use genvarname to generate a field name for a structure, MATLAB does
create a variable for the structure and field in the MATLAB workspace. See
“Example 3”, below.

genvarname

2-963

If the str input contains any whitespace characters, genvarname removes then
and capitalizes the next alphabetic character in str. If str contains any
nonalphanumeric characters, genvarname translates these characters into
their hexadecimal value.

Examples Example 1
Create four similar variable name strings that do not conflict with each other:

v = genvarname({'A', 'A', 'A', 'A'})
v =
 'A' 'A1' 'A2' 'A3'

Example 2
Read a column header hdr from worksheet trial2 in Excel spreadsheet
myproj_apr23:

[data hdr] = xlsread('myproj_apr23.xls', 'trial2');

Make a variable name from the text of the column header that will not conflict
with other names:

v = genvarname(['Column ' hdr{1,3}]);

Assign data taken from the spreadsheet to the variable in the MATLAB
workspace:

eval([v '= data(1:7, 3);']);

Example 3
Collect readings from an instrument once every minute over the period of an
hour into different fields of a structure. genvarname not only generates unique
fieldname strings, but also creates the structure and fields in the MATLAB
workspace:

for k = 1:60
record.(genvarname(['reading' datestr(clock, 'HHMMSS')])) ...
 = takeReading;
pause(60)
end

After the program ends, display the recorded data from the workspace:

genvarname

2-964

record
record =
 reading090446: 27.3960
 reading090546: 23.4890
 reading090646: 21.1140
 reading090746: 23.0730
 reading090846: 28.5650
 .
 .
 .

Example 4
Generate variable names that are unique in the MATLAB workspace by
putting the output from the who function in the exclusions list.

for k = 1:5
 t = clock;
 pause(uint8(rand * 10));
 v = genvarname('time_elapsed', who);
 eval([v ' = etime(clock,t)'])
 end

As this code runs, you can see that the variables created by genvarname are
unique in the workspace:

time_elapsed =
 5.0070
time_elapsed1 =
 2.0030
time_elapsed2 =
 7.0010
time_elapsed3 =
 8.0010
time_elapsed4 =
 3.0040

After the program completes, use the who function to view the workspace
variables:

who

genvarname

2-965

k time_elapsed time_elapsed2 time_elapsed4
t time_elapsed1 time_elapsed3 v

Example 5
If you try to make a variable name from a MATLAB keyword, genvarname
creates a variable name string that capitalizes the keyword and precedes it
with the letter x:

v = genvarname('global')
v =
 xGlobal

Example 6
If you enter a string that is longer than the value returned by the
namelengthmax function, genvarname truncates the resulting variable name
string:

namelengthmax
ans =
 63

vstr = genvarname(sprintf('%s%s', ...
 'This name truncates because it contains ', ...
 'more than the maximum number of characters'))
vstr =
ThisNameTruncatesBecauseItContainsMoreThanTheMaximumNumberOfCha

See Also isvarname, iskeyword, isletter, namelengthmax, who, regexp

get

2-966

2getPurpose Get object properties

Syntax get(h)
get(h,'PropertyName')
<m-by-n value cell array> = get(H,<property cell array>)
a = get(h)
a = get(0,'Factory')
a = get(0,'FactoryObjectTypePropertyName')
a = get(h,'Default')
a = get(h,'DefaultObjectTypePropertyName')

Description get(h) returns all properties of the graphics object identified by the handle h
and their current values.

get(h,'PropertyName') returns the value of the property 'PropertyName' of
the graphics object identified by h.

<m-by-n value cell array> = get(H,pn) returns n property values for m
graphics objects in the m-by-n cell array, where m = length(H) and n is equal
to the number of property names contained in pn.

a = get(h) returns a structure whose field names are the object’s property
names and whose values are the current values of the corresponding
properties. h must be a scalar. If you do not specify an output argument,
MATLAB displays the information on the screen.

a = get(0,'Factory') returns the factory-defined values of all user-settable
properties. a is a structure array whose field names are the object property
names and whose field values are the values of the corresponding properties. If
you do not specify an output argument, MATLAB displays the information on
the screen.

a = get(0,'FactoryObjectTypePropertyName') returns the factory-defined
value of the named property for the specified object type. The argument
FactoryObjectTypePropertyName is the word Factory concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

FactoryFigureColor a = get(h,'Default') returns all default values
currently defined on object h. a is a structure array whose field names are the

get

2-967

object property names and whose field values are the values of the
corresponding properties. If you do not specify an output argument, MATLAB
displays the information on the screen.

a = get(h,'DefaultObjectTypePropertyName') returns the factory-defined
value of the named property for the specified object type. The argument
DefaultObjectTypePropertyName is the word Default concatenated with the
object type (e.g., Figure) and the property name (e.g., Color).

DefaultFigureColor

Examples You can obtain the default value of the LineWidth property for line graphics
objects defined on the root level with the statement

get(0,'DefaultLineLineWidth')

ans =
 0.5000

To query a set of properties on all axes children, define a cell array of property
names:

props = {'HandleVisibility', 'Interruptible';
'SelectionHighlight', 'Type'};

output = get(get(gca,'Children'),props);

The variable output is a cell array of dimension
length(get(gca,'Children')−by−4.

For example, type

patch;surface;text;line
output = get(get(gca,'Children'),props)
output =

'on' 'on' 'on' 'line'
'on' 'off' 'on' 'text'
'on' 'on' 'on' 'surface'
'on' 'on' 'on' 'patch'

See Also findobj, gca, gcf, gco, set

Handle Graphics Properties

get

2-968

“Finding and Identifying Graphics Objects” for related functions

get (timer)

2-969

2get (timer)Purpose Display or get timer object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Description get(obj) displays all property names and their current values for the timer
object obj. obj must be a single timer object.

V = get(obj) returns a structure, V, where each field name is the name of a
property of obj and each field contains the value of that property. If obj is an
M-by-1 vector of timer objects, V is an M-by-1 array of structures.

V = get(obj,'PropertyName') returns the value, V, of the timer object
property specified in PropertyName.

If PropertyName is a 1-by-N or N-by-1 cell array of strings containing property
names, V is a 1-by-N cell array of values. If obj is a vector of timer objects, V is
an M-by-N cell array of property values where M is equal to the length of obj
and N is equal to the number of properties specified.

Examples t = timer;
get(t)

AveragePeriod: NaN
 BusyMode: 'drop'
 ErrorFcn: ''
 ExecutionMode: 'singleShot'
 InstantPeriod: NaN
 Name: 'timer-1'
 ObjectVisibility: 'on'
 Period: 1
 Running: 'off'
 StartDelay: 1
 StartFcn: ''
 StopFcn: ''
 Tag: ''
 TasksExecuted: 0
 TasksToExecute: Inf
 TimerFcn: ''
 Type: 'timer'

get (timer)

2-970

 UserData: []
get(t, {'StartDelay','Period'})
ans =

 [0] [1]

See Also timer, set

getappdata

2-971

2getappdataPurpose Get value of application-defined data

Syntax value = getappdata(h,name)
values = getappdata(h)

Description value = getappdata(h,name) gets the value of the application-defined data
with the name specified by name, in the object with the handle h. If the
application-defined data does not exist, MATLAB returns an empty matrix in
value.

value = getappdata(h) returns all application-defined data for the object
with handle h.

See Also setappdata, rmappdata, isappdata

getenv

2-972

2getenvPurpose Get environment variable

Syntax getenv 'name'
N = getenv('name')

Description getenv 'name' searches the underlying operating system's environment list
for a string of the form name=value, where name is the input string. If found,
MATLAB returns the string value. If the specified name cannot be found, an
empty matrix is returned.

N = getenv('name') returns value to the variable N.

Examples os = getenv('OS')

os =
Windows_NT

See Also computer, pwd, ver, path

getfield

2-973

2getfieldPurpose Get field of structure array

Syntax f = getfield(s,'field')
f = getfield(s,{i,j},'field',{k})

Description f = getfield(s,'field'), where s is a 1-by-1 structure, returns the contents
of the specified field. This is equivalent to the syntax f = s.field.

If s is a structure having dimensions greater than 1-by-1, getfield returns the
first of all output values requested in the call. That is, for structure array
s(m,n), getfield returns f = s(1,1).field.

f = getfield(s,{i,j},'field',{k}) returns the contents of the specified
field. This is equivalent to the syntax f = s(i,j).field(k). All subscripts
must be passed as cell arrays — that is, they must be enclosed in curly braces
(similar to{i,j} and {k} above). Pass field references as strings.

Remarks In many cases, you can use dynamic field names in place of the getfield and
setfield functions. Dynamic field names express structure fields as variable
expressions that MATLAB evaluates at run-time. See Technical Note 32236
for information about using dynamic field names versus the getfield and
setfield functions.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

Then the command f = getfield(mystr,{2,1},'name') yields

f =
 gertrude

To list the contents of all name (or other) fields, embed getfield in a loop.

for k = 1:2
 name{k} = getfield(mystr,{k,1},'name');
end
name

getfield

2-974

name =

 'alice' 'gertrude'

The following example starts out by creating a structure using the standard
structure syntax. It then reads the fields of the structure, using getfield with
variable and quoted field names and additional subscripting arguments.

class = 5; student = 'John_Doe';
grades(class).John_Doe.Math(10,21:30) = ...
 [85, 89, 76, 93, 85, 91, 68, 84, 95, 73];

Use getfield to access the structure fields.

getfield(grades,{class}, student, 'Math', {10,21:30})

ans =

 85 89 76 93 85 91 68 84 95 73

See Also setfield, fieldnames, isfield, orderfields, rmfield, dynamic field names

getframe

2-975

2getframePurpose Get movie frame

Syntax F = getframe
F = getframe(h)
F = getframe(h,rect)

Description getframe returns a movie frame. The frame is a snapshot (pixmap) of the
current axes or figure.

F = getframe gets a frame from the current axes.

F = getframe(h) gets a frame from the figure or axes identified by the handle
h.

F = getframe(h,rect) specifies a rectangular area from which to copy the
pixmap. rect is relative to the lower left corner of the figure or axes h, in pixel
units. rect is a four-element vector in the form [left bottom width height],
where width and height define the dimensions of the rectangle.

F = getframe(...) returns a movie frame, which is a structure having two
fields:

• cdata — The image data stored as a matrix of uint8 values. The dimensions
of F.cdata are height-by-width-by-3.

• colormap — The colormap stored as an n-by-3 matrix of doubles. F.colormap
is empty on true color systems.

To capture an image, use this approach:

F = getframe(gcf);
image(F.cdata)
colormap(F.colormap)

Remarks Usually, getframe is used in a for loop to assemble an array of movie frames
for playback using movie. For example,

for j = 1:n
plotting commands
F(j) = getframe;

end

getframe

2-976

movie(F)

Capture Regions
Note that F = getframe; returns the contents of the current axes, exclusive of
the axis labels, title, or tick labels. F = getframe(gcf); captures the entire
interior of the current figure window. To capture the figure window menu, use
the form F = getframe(h,rect) with a rectangle sized to include the menu.

Examples Make the peaks function vibrate.

Z = peaks; surf(Z)
axis tight
set(gca,'nextplot','replacechildren');
for j = 1:20

surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end
movie(F,20) % Play the movie twenty times

See Also frame2im, image, im2frame, movie

“Bit-Mapped Images” for related functions

getplottool

2-977

2getplottoolPurpose Utility function for creating and obtaining the figure components used for plot
editing.

Syntax c = getplottool(figure_handle,'figurepalette')
c = getplottool(figure_handle,'plotbrowser')
c = getplottool(figure_handle,'propertyeditor')

Description c = getplottool(figure_handle,'figurepalette') returns the Java figure
palette for the specified figure.

c = getplottool(figure_handle,'plotbrowser') returns the Java plot
browser for the specified figure.

c = getplottool(figure_handle,'propertyeditor') returns the Java
property editor for the specified figure.

In each case, getplottool creates the component if it does not already exist.
The component is not automatically shown. If you want to both create it and
show it, use showplottool.

See Also showplottool

ginput

2-978

2ginputPurpose Input data using the mouse

Syntax [x,y] = ginput(n)
[x,y] = ginput
[x,y,button] = ginput(...)

Description ginput enables you to select points from the figure using the mouse for cursor
positioning. The figure must have focus before ginput receives input.

[x,y] = ginput(n) enables you to select n points from the current axes and
returns the x- and y-coordinates in the column vectors x and y, respectively.
You can press the Return key to terminate the input before entering n points.

[x,y] = ginput gathers an unlimited number of points until you press the
Return key.

[x,y,button] = ginput(...) returns the x-coordinates, the y-coordinates,
and the button or key designation. button is a vector of integers indicating
which mouse buttons you pressed (1 for left, 2 for middle, 3 for right), or ASCII
numbers indicating which keys on the keyboard you pressed.

Remarks If you select points from multiple axes, the results you get are relative to those
axes’ coordinate systems.

Examples Pick 10 two-dimensional points from the figure window.

[x,y] = ginput(10)

Position the cursor with the mouse. Enter data points by pressing a mouse
button or a key on the keyboard. To terminate input before entering 10 points,
press the Return key.

See Also gtext

Interactive Plotting for an example

“Interactive User Input” for related functions

global

2-979

2globalPurpose Define a global variable

Syntax global X Y Z

Description global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own local
variables, which are separate from those of other functions, and from those of
the base workspace. However, if several functions, and possibly the base
workspace, all declare a particular name as global, they all share a single copy
of that variable. Any assignment to that variable, in any function, is available
to all the functions declaring it global.

If the global variable does not exist the first time you issue the global
statement, it is initialized to the empty matrix.

If a variable with the same name as the global variable already exists in the
current workspace, MATLAB issues a warning and changes the value of that
variable to match the global.

Remarks Use clear global variable to clear a global variable from the global
workspace. Use clear variable to clear the global link from the current
workspace without affecting the value of the global.

To use a global within a callback, declare the global, use it, then clear the global
link from the workspace. This avoids declaring the global after it has been
referenced. For example,

uicontrol('style','pushbutton','CallBack',...
'global MY_GLOBAL,disp(MY_GLOBAL),MY_GLOBAL = MY_GLOBAL+1,clear
MY_GLOBAL',...
'string','count')

There is no function form of the global command (i.e., you cannot use
parentheses and quote the variable names).

Examples Here is the code for the functions tic and toc (some comments abridged).
These functions manipulate a stopwatch-like timer. The global variable TICTOC
is shared by the two functions, but it is invisible in the base workspace or in
any other functions that do not declare it.

global

2-980

function tic
% TIC Start a stopwatch timer.
% TIC; any stuff; TOC
% prints the time required.
% See also: TOC, CLOCK.
global TICTOC
TICTOC = clock;

function t = toc
% TOC Read the stopwatch timer.
% TOC prints the elapsed time since TIC was used.
% t = TOC; saves elapsed time in t, does not print.
% See also: TIC, ETIME.
global TICTOC
if nargout < 1
 elapsed_time = etime(clock,TICTOC)
else
 t = etime(clock,TICTOC);
end

See Also clear, isglobal, who

gmres

2-981

2gmresPurpose Generalized Minimum Residual method (with restarts)

Syntax x = gmres(A,b)
gmres(A,b,restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol,maxit)
gmres(A,b,restart,tol,maxit,M)
gmres(A,b,restart,tol,maxit,M1,M2)
gmres(A,b,restart,tol,maxit,M1,M2,x0)
gmres(afun,b,restart,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = gmres(A,b,...)
[x,flag,relres] = gmres(A,b,...)
[x,flag,relres,iter] = gmres(A,b,...)
[x,flag,relres,iter,resvec] = gmres(A,b,...)

Description x = gmres(A,b) attempts to solve the system of linear equations A*x = b for
x. The n-by-n coefficient matrix A must be square and should be large and
sparse. The column vector b must have length n. A can be a function afun such
that afun(x) returns A*x. For this syntax, gmres does not restart; the
maximum number of iterations is min(n,10).

If gmres converges, a message to that effect is displayed. If gmres fails to
converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

gmres(A,b,restart) restarts the method every restart inner iterations. The
maximum number of outer iterations is min(n/restart,10). The maximum
number of total iterations is restart*min(n/restart,10). If restart is n or
[], then gmres does not restart and the maximum number of total iterations is
min(n,10).

gmres(A,b,restart,tol) specifies the tolerance of the method. If tol is [],
then gmres uses the default, 1e-6.

gmres(A,b,restart,tol,maxit) specifies the maximum number of outer
iterations, i.e., the total number of iterations does not exceed restart*maxit.
If maxit is [] then gmres uses the default, min(n/restart,10). If restart is n

gmres

2-982

or [], then the maximum number of total iterations is maxit (instead of
restart*maxit).

gmres(A,b,restart,tol,maxit,M) and
gmres(A,b,restart,tol,maxit,M1,M2) use preconditioner M or M = M1*M2 and
effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is [] then gmres
applies no preconditioner. M can be a function that returns M\x.

gmres(A,b,restart,tol,maxit,M1,M2,x0) specifies the first initial guess. If
x0 is [], then gmres uses the default, an all-zero vector.

gmres(afun,b,restart,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes
parameters to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = gmres(A,b,...) also returns a convergence flag:

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = gmres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = gmres(A,b,...) also returns both the outer and
inner iteration numbers at which x was computed, where
0 <= iter(1) <= maxit and 0 <= iter(2) <= restart.

[x,flag,relres,iter,resvec] = gmres(A,b,...) also returns a vector of
the residual norms at each inner iteration, including norm(b-A*x0).

flag = 0 gmres converged to the desired tolerance tol within maxit
outer iterations.

flag = 1 gmres iterated maxit times but did not converge.

flag = 2 Preconditioner M was ill-conditioned.

flag = 3 gmres stagnated. (Two consecutive iterates were the same.)

gmres

2-983

Examples Example 1.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = gmres(A,b,10,tol,maxit,M1,[],[]);
gmres(10) converged at iteration 2(10) to a solution with relative
residual 1.9e-013

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = [0;
 x(1:n-1)] + [((n-1)/2:-1:0)';
 (1:(n-1)/2)'] .*x + [x(2:n);
 0];

and this preconditioner backsolve function

function y = mfun(r,n)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

as inputs to gmres

x1 = gmres(@afun,b,10,tol,maxit,@mfun,[],[],21);

Note that both afun and mfun must accept the gmres extra input n=21.

Example 2.

load west0479
A = west0479
b = sum(A,2)
[x,flag] = gmres(A,b,5)

flag is 1 because gmres does not converge to the default tolerance 1e-6 within
the default 10 outer iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = gmres(A,b,5,1e-6,5,L1,U1);

gmres

2-984

flag1 is 2 because the upper triangular U1 has a zero on its diagonal, and
gmres fails in the first iteration when it tries to solve a system such as U1*y = r
for y using backslash.

[L2,U2] = luinc(A,1e-6);
tol = 1e-15;
[x4,flag4,relres4,iter4,resvec4] = gmres(A,b,4,tol,5,L2,U2);
[x6,flag6,relres6,iter6,resvec6] = gmres(A,b,6,tol,3,L2,U2);
[x8,flag8,relres8,iter8,resvec8] = gmres(A,b,8,tol,3,L2,U2);

flag4, flag6, and flag8 are all 0 because gmres converged when restarted at
iterations 4, 6, and 8 while preconditioned by the incomplete LU factorization
with a drop tolerance of 1e-6. This is verified by the plots of outer iteration
number against relative residual. A combined plot of all three clearly shows the
restarting at iterations 4 and 6. The total number of iterations computed may
be more for lower values of restart, but the number of length n vectors stored
is fewer, and the amount of work done in the method decreases proportionally.

See Also bicg, bicgstab, cgs, lsqr, luinc, minres, pcg, qmr, symmlq

@ (function handle), \ (backslash)

0 1 2 3 4

10
−10

10
0

gmres(4)

number of outer iterations
0 1 2

10
−10

10
0

gmres(6)

number of outer iterations

0 1

10
−10

10
0

gmres(8)

number of outer iterations
0 4 8 12 16 20

10
−10

10
0

number of inner iterations

gmres

2-985

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems”, SIAM J. Sci.
Stat. Comput., July 1986, Vol. 7, No. 3, pp. 856-869.

gplot

2-986

2gplotPurpose Plot set of nodes using an adjacency matrix

Syntax gplot(A,Coordinates)
gplot(A,Coordinates,LineSpec)

Description The gplot function graphs a set of coordinates using an adjacency matrix.

gplot(A,Coordinates) plots a graph of the nodes defined in Coordinates
according to the n-by-n adjacency matrix A, where n is the number of nodes.
Coordinates is an n-by-2 or an n-by-3 matrix, where n is the number of nodes
and each coordinate pair or triple represents one node.

gplot(A,Coordinates,LineSpec) plots the nodes using the line type, marker
symbol, and color specified by LineSpec.

Remarks For two-dimensional data, Coordinates(i,:) = [x(i) y(i)] denotes node i,
and Coordinates(j,:) = [x(j) y(j)] denotes node j. If node i and node j are
joined, A(i,j) or A(j,i) is nonzero; otherwise, A(i,j) and A(j,i) are zero.

Examples To draw half of a Bucky ball with asterisks at each node,

k = 1:30;
[B,XY] = bucky;
gplot(B(k,k),XY(k,:),'-*')
axis square

gplot

2-987

See Also LineSpec, sparse, spy

“Tree Operations” for related functions

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

gradient

2-988

2gradientPurpose Numerical gradient

Syntax FX = gradient(F)
[FX,FY] = gradient(F)
[Fx,Fy,Fz,...] = gradient(F)
[...] = gradient(F,h)
[...] = gradient(F,h1,h2,...)

Definition The gradient of a function of two variables, , is defined as

and can be thought of as a collection of vectors pointing in the direction of
increasing values of . In MATLAB, numerical gradients (differences) can be
computed for functions with any number of variables. For a function of
variables, ,

Description FX = gradient(F) where F is a vector returns the one-dimensional numerical
gradient of F. FX corresponds to , the differences in the direction.

[FX,FY] = gradient(F) where F is a matrix returns the and components
of the two-dimensional numerical gradient. FX corresponds to , the
differences in the (column) direction. FY corresponds to , the
differences in the (row) direction. The spacing between points in each
direction is assumed to be one.

[FX,FY,FZ,...] = gradient(F) where F has N dimensions returns the N
components of the gradient of F. There are two ways to control the spacing
between values in F:

• A single spacing value, h, specifies the spacing between points in every
direction.

• N spacing values (h1,h2,...) specifies the spacing for each dimension of F.
Scalar spacing parameters specify a constant spacing for each dimension.
Vector parameters specify the coordinates of the values along corresponding

F x y,()

F∇
x∂

∂Fî
y∂

∂Fĵ+=

F
N

F x y z …, , ,()

F∇
x∂

∂Fî
y∂

∂Fĵ
z∂

∂Fk̂ …+ + +=

F∂ x∂⁄ x

x y
F∂ x∂⁄

x F∂ y∂⁄
y

gradient

2-989

dimensions of F. In this case, the length of the vector must match the size of
the corresponding dimension.

[...] = gradient(F,h) where h is a scalar uses h as the spacing between
points in each direction.

[...] = gradient(F,h1,h2,...) with N spacing parameters specifies the
spacing for each dimension of F.

Examples The statements

v = -2:0.2:2;
[x,y] = meshgrid(v);
z = x .* exp(-x.^2 - y.^2);
[px,py] = gradient(z,.2,.2);
contour(v,v,z), hold on, quiver(v,v,px,py), hold off

produce

Given,

F(:,:,1) = magic(3); F(:,:,2) = pascal(3);

gradient(F)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

gradient

2-990

takes dx = dy = dz = 1.

[PX,PY,PZ] = gradient(F,0.2,0.1,0.2)

takes dx = 0.2, dy = 0.1, and dz = 0.2.

See Also del2, diff

graymon

2-991

2graymon Purpose Set default figure properties for grayscale monitors

Syntax graymon

Description graymon sets defaults for graphics properties to produce more legible displays
for grayscale monitors.

See Also axes, figure

“Color Operations” for related functions

grid

2-992

2gridPurpose Grid lines for two- and three-dimensional plots

Syntax grid on
grid off
grid minor
grid
grid(axes_handle,...)

Description The grid function turns the current axes’ grid lines on and off.

grid on adds major grid lines to the current axes.

grid off removes major and minor grid lines from the current axes.

grid toggles the major grid visibility state.

grid(axes_handle,...) uses the axes specified by axes_handle instead of the
current axes.

Algorithm grid sets the XGrid, YGrid, and ZGrid properties of the axes.

grid minor sets the XGridMinor, YGridMinor, and ZGridMinor properties of
the axes.

You can set the grid lines for just one axis using the set command and the
individual property. For example,

set(axes_handle,'XGrid','on')

turns on only x-axis grid lines.

Note that the grid line width is not affected by the axes LineWidth property.

See Also axes, set

The properties of axes objects

“Axes Operations” for related functions

griddata

2-993

2griddataPurpose Data gridding

Syntax ZI = griddata(x,y,z,XI,YI)
[XI,YI,ZI] = griddata(x,y,z,XI,YI)
[...] = griddata(...,method)
[...] = griddata(...,method,options)

Description ZI = griddata(x,y,z,XI,YI) fits a surface of the form z = f(x,y) to the data
in the (usually) nonuniformly spaced vectors (x,y,z). griddata interpolates
this surface at the points specified by (XI,YI) to produce ZI. The surface
always passes through the data points. XI and YI usually form a uniform grid
(as produced by meshgrid).

XI can be a row vector, in which case it specifies a matrix with constant
columns. Similarly, YI can be a column vector, and it specifies a matrix with
constant rows.

[XI,YI,ZI] = griddata(x,y,z,XI,YI) returns the interpolated matrix ZI as
above, and also returns the matrices XI and YI formed from row vector XI and
column vector yi. These latter are the same as the matrices returned by
meshgrid.

[...] = griddata(...,method) uses the specified interpolation method:

The method defines the type of surface fit to the data. The 'cubic' and 'v4'
methods produce smooth surfaces while 'linear' and 'nearest' have
discontinuities in the first and zero’th derivatives, respectively. All the
methods except 'v4' are based on a Delaunay triangulation of the data. If
method is [], then the default 'linear' method is used.

[...] = griddata(...,method,options) specifies a cell array of strings
options to be used in Qhull via delaunayn. If options is [], the default

'linear' Triangle-based linear interpolation (default)

'cubic' Triangle-based cubic interpolation

'nearest' Nearest neighbor interpolation

'v4' MATLAB 4 griddata method

griddata

2-994

delaunayn options are used. If options is {''}, no options are used, not even
the default.

Occasionally, griddata might return points on or very near the convex hull of
the data as NaNs. This is because roundoff in the computations sometimes
makes it difficult to determine if a point near the boundary is in the convex
hull.

Remarks XI and YI can be matrices, in which case griddata returns the values for the
corresponding points (XI(i,j),YI(i,j)). Alternatively, you can pass in the
row and column vectors xi and yi, respectively. In this case, griddata
interprets these vectors as if they were matrices produced by the command
meshgrid(xi,yi).

Algorithm The griddata(...,'v4') command uses the method documented in [3]. The
other griddata methods are based on a Delaunay triangulation of the data that
uses Qhull [2]. For information about Qhull, see http://www.qhull.org/. For
copyright information, see http://www.qhull.org/COPYING.html.

Examples Sample a function at 100 random points between ±2.0:

rand('seed',0)
x = rand(100,1)*4-2; y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

x, y, and z are now vectors containing nonuniformly sampled data. Define a
regular grid, and grid the data to it:

ti = -2:.25:2;
[XI,YI] = meshgrid(ti,ti);
ZI = griddata(x,y,z,XI,YI);

Plot the gridded data along with the nonuniform data points used to generate
it:

mesh(XI,YI,ZI), hold
plot3(x,y,z,'o'), hold off

griddata

2-995

See Also delaunay, griddata3, griddatan, interp2, meshgrid

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

[3] Sandwell, David T., “Biharmonic Spline Interpolation of GEOS-3 and
SEASAT Altimeter Data”, Geophysical Research Letters, 2, 139-142,1987.

[4] Watson, David E., Contouring: A Guide to the Analysis and Display of
Spatial Data, Tarrytown, NY: Pergamon (Elsevier Science, Inc.): 1992.

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

griddata3

2-996

2griddata3Purpose Data gridding and hypersurface fitting for 3-D data

Syntax w = griddata3(x,y,z,v,xi,yi,zi)
w = griddata3(x,y,z,v,xi,yi,zi,method)
w = griddata3(x,y,z,v,xi,yi,zi,method,options)

Description w = griddata3(x, y, z, v, xi, yi, zi) fits a hypersurface of the form
 to the data in the (usually) nonuniformly spaced vectors (x, y, z,

v). griddata3 interpolates this hypersurface at the points specified by
(xi,yi,zi) to produce w. w is the same size as xi, yi, and zi.

(xi,yi,zi) is usually a uniform grid (as produced by meshgrid) and is where
griddata3 gets its name.

w = griddata3(x,y,z,v,xi,yi,zi,method) defines the type of surface that is
fit to the data, where method is either:

If method is [], the default 'linear' method is used.

w = griddata3(x,y,z,v,xi,yi,zi,method,options) specifies a cell array of
strings options to be used in Qhull via delaunayn.

If options is [], the default options are used. If options is {''}, no options are
used, not even the default.

Algorithm The griddata3 methods are based on a Delaunay triangulation of the data that
uses Qhull [2]. For information about Qhull, see http://www.qhull.org/. For
copyright information, see http://www.qhull.org/COPYING.html.

See Also delaunayn, griddata, griddatan, meshgrid

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

'linear' Tesselation-based linear interpolation (default)

'nearest' Nearest neighbor interpolation

w f x y z, ,()=

griddata3

2-997

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

griddatan

2-998

2griddatanPurpose Data gridding and hypersurface fitting (dimension >= 2)

Syntax yi = griddatan(X,y,xi)
yi = griddatan(x,y,z,v,xi,yi,zi,method)
yi = griddatan(x,y,z,v,xi,yi,zi,method,options)

Description yi = griddatan(X, y, xi) fits a hyper-surface of the form to the
data in the (usually) nonuniformly-spaced vectors (X, y). griddatan
interpolates this hyper-surface at the points specified by xi to produce yi. xi
can be nonuniform.

X is of dimension m-by-n, representing m points in n-dimensional space. y is of
dimension m-by-1, representing m values of the hyper-surface (X). xi is a vector
of size p-by-n, representing p points in the n-dimensional space whose surface
value is to be fitted. yi is a vector of length p approximating the values (xi).
The hypersurface always goes through the data points (X,y). xi is usually a
uniform grid (as produced by meshgrid).

yi = griddatan(x,y,z,v,xi,yi,zi,method) defines the type of surface fit to
the data, where 'method' is one of:

All the methods are based on a Delaunay tessellation of the data.

If method is [], the default 'linear' method is used.

yi = griddatan(x,y,z,v,xi,yi,zi,method,options) specifies a cell array of
strings options to be used in Qhull via delaunayn.

If options is [], the default options are used. If options is {''}, no options are
used, not even the default.

Algorithm The griddatan methods are based on a Delaunay triangulation of the data that
uses Qhull [2]. For information about Qhull, see http://www.qhull.org/. For
copyright information, see http://www.qhull.org/COPYING.txt.

See Also delaunayn, griddata, griddata3, meshgrid

'linear' Tessellation-based linear interpolation (default)

'nearest' Nearest neighbor interpolation

y f X()=

f

f

griddatan

2-999

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, "The Quickhull Algorithm for
Convex Hulls," ACM Transactions on Mathematical Software, Vol. 22, No. 4,
Dec. 1996, p. 469-483. Available in HTML format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
and in PostScript format at ftp://geom.umn.edu/pub/software/qhull-96.ps.

[2] National Science and Technology Research Center for Computation and
Visualization of Geometric Structures (The Geometry Center), University of
Minnesota. 1993.

gsvd

2-1000

2gsvdPurpose Generalized singular value decomposition

Syntax [U,V,X,C,S] = gsvd(A,B)
[U,V,X,C,S] = gsvd(A,B,0)
sigma = gsvd(A,B)

Description [U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a (usually)
square matrix X, and nonnegative diagonal matrices C and S so that

A = U*C*X'
B = V*S*X'
C'*C + S'*S = I

A and B must have the same number of columns, but may have different
numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, V is n-by-n and
X is p-by-q where q = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sqrt(diag(C'*C)./diag(S'*S)).

The nonzero elements of S are always on its main diagonal. If m >= p the
nonzero elements of C are also on its main diagonal. But if m < p, the nonzero
diagonal of C is diag(C,p-m). This allows the diagonal elements to be ordered
so that the generalized singular values are nondecreasing.

gsvd(A,B,0), with three input arguments and either m or n >= p, produces the
“economy-sized” decomposition where the resulting U and V have at most p
columns, and C and S have at most p rows. The generalized singular values are
diag(C)./diag(S).

When B is square and nonsingular, the generalized singular values, gsvd(A,B),
are equal to the ordinary singular values, svd(A/B), but they are sorted in the
opposite order. Their reciprocals are gsvd(B,A).

In this formulation of the gsvd, no assumptions are made about the individual
ranks of A or B. The matrix X has full rank if and only if the matrix [A;B] has
full rank. In fact, svd(X) and cond(X) are are equal to svd([A;B]) and
cond([A;B]). Other formulations, eg. G. Golub and C. Van Loan [1], require
that null(A) and null(B) do not overlap and replace X by inv(X) or inv(X').

Note, however, that when null(A) and null(B) do overlap, the nonzero
elements of C and S are not uniquely determined.

gsvd

2-1001

Examples Example 1. The matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)

A =
 1 6 11
 2 7 12
 3 8 13
 4 9 14
 5 10 15

B =
 8 1 6
 3 5 7
 4 9 2

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal V, a 3-by-3 nonsingular X,

X =
 2.8284 -9.3761 -6.9346
 -5.6569 -8.3071 -18.3301
 2.8284 -7.2381 -29.7256

and

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807
 0 0 0
 0 0 0

S =
 1.0000 0 0
 0 0.9489 0
 0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.

gsvd

2-1002

The economy sized decomposition,

[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
 0.5700 -0.6457 -0.4279
 -0.7455 -0.3296 -0.4375
 -0.1702 -0.0135 -0.4470
 0.2966 0.3026 -0.4566
 0.0490 0.6187 -0.4661

C =
 0.0000 0 0
 0 0.3155 0
 0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained with the
full decomposition.

The generalized singular values are the ratios of the diagonal elements of C and
S.

sigma = gsvd(A,B)

sigma =
 0.0000
 0.3325
 5.0123

These values are a reordering of the ordinary singular values

svd(A/B)

ans =
 5.0123
 0.3325
 0.0000

Example 2. The matrices have at least as many columns as rows.

A = reshape(1:15,3,5)
B = magic(5)

gsvd

2-1003

A =

1 4 7 10 13
 2 5 8 11 14
 3 6 9 12 15

B =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal V, a 5-by-5 nonsingular X
and

C =
 0 0 0.0000 0 0
 0 0 0 0.0439 0
 0 0 0 0 0.7432

S =
 1.0000 0 0 0 0
 0 1.0000 0 0 0
 0 0 1.0000 0 0
 0 0 0 0.9990 0
 0 0 0 0 0.6690

In this situation, the nonzero diagonal of C is diag(C,2). The generalized
singular values include three zeros.

sigma = gsvd(A,B)

gsvd

2-1004

sigma =
 0
 0
 0.0000
 0.0439
 1.1109

Reversing the roles of A and B reciprocates these values, producing two
infinities.

gsvd(B,A)

ans =
 1.0e+016 *

 0.0000
 0.0000
 4.4126
 Inf
 Inf

Algorithm The generalized singular value decomposition uses the C-S decomposition
described in [1], as well as the built-in svd and qr functions. The C-S
decomposition is implemented in a subfunction in the gsvd M-file.

Diagnostics The only warning or error message produced by gsvd itself occurs when the two
input arguments do not have the same number of columns.

See Also qr, svd

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

gtext

2-1005

2gtextPurpose Mouse placement of text in two-dimensional view

Syntax gtext('string')
gtext({'string1','string2','string3',...})
gtext({'string1';'string2';'string3';...})
h = gtext(...)

Description gtext displays a text string in the current figure window after you select a
location with the mouse.

gtext('string') waits for you to press a mouse button or keyboard key while
the pointer is within a figure window. Pressing a mouse button or any key
places 'string' on the plot at the selected location.

gtext({'string1','string2','string3',...}) places all strings with one
click, each on a separate line.

gtext({'string1';'string2';'string3';...}) places one string per click,
in the sequence specified.

h = gtext(...) returns the handle to a text graphics object that is placed on
the plot at the location you select.

Remarks As you move the pointer into a figure window, the pointer becomes crosshairs
to indicate that gtext is waiting for you to select a location. gtext uses the
functions ginput and text.

Examples Place a label on the current plot:

gtext('Note this divergence!')

See Also ginput, text

“Annotating Plots” for related functions

guidata

2-1006

2guidataPurpose Store or retrieve application data

Syntax guidata(object_handle, data)
data = guidata(object_handle)

Description guidata(object_handle,data) stores the variable data in the figure's
application data. If object_handle is not a figure handle, then the object’s
parent figure is used. data can be any MATLAB variable, but is typically a
structure, which enables you to add new fields as required.

Note that there can be only one variable stored in a figure’s application data at
any time. Subsequent calls to guidata(object_handle,data) overwrite the
previously created version of data. See the Examples section for information on
how to use this function.

data = guidata(object_handle) returns previously stored data, or an empty
matrix if nothing has been stored.

guidata provides application developers with a convenient interface to a
figure's application data:

• You do not need to create and maintain a hard-coded property name for the
application data throughout your source code.

• You can access the data from within a subfunction callback routine using the
component's handle (which is returned by gcbo), without needing to find the
figure's handle.

guidata is particularly useful in conjunction with guihandles, which creates a
structure in the figure’s application data containing the handles of all the
components in a GUI.

Examples In this example, guidata is used to save a structure on a GUI figure’s
application data from within the initialization section of the application M-file.
This structure is initially created by guihandles and then used to save
additional data as well.

% create structure of handles
handles = guihandles(figure_handle);
% add some additional data
handles.numberOfErrors = 0;

guidata

2-1007

% save the structure
guidata(figure_handle,handles)

You can recall the data from within a subfunction callback routine and then
save the structure again:

% get the structure in the subfunction
handles = guidata(gcbo);
handles.numberOfErrors = handles.numberOfErrors + 1;
% save the changes to the structure
guidata(gcbo,handles)

See Also guide, guihandles, getappdata, setappdata

guide

2-1008

2guidePurpose Start the GUI Layout Editor

Syntax guide
guide('filename.fig')
guide(figure_handles)

Description guide displays the GUI Layout Editor open to a new untitled FIG-file.

guide('filename.fig') opens the FIG-file named filename.fig. You can
specify the path to a file not on your MATLAB path.

guide('figure_handles') opens FIG-files in the Layout Editor for each
existing figure listed in figure_handles. MATLAB copies the contents of each
figure into the FIG-file, with the exception of axes children (image, light, line,
patch, rectangle, surface, and text objects), which are not copied.

See Also inspect

Creating GUIs

hadamard

2-1009

2hadamard
Purpose Hadamard matrix

Syntax H = hadamard(n)

Description H = hadamard(n) returns the Hadamard matrix of order n.

Definition Hadamard matrices are matrices of 1’s and -1’s whose columns are orthogonal,

H'*H = n*I

where [n n] = size(H) and I = eye(n,n).

They have applications in several different areas, including combinatorics,
signal processing, and numerical analysis, [1], [2].

An n-by-n Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This
function handles only the cases where n, n/12, or n/20 is a power of 2.

Examples The command hadamard(4) produces the 4-by-4 matrix:

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

See Also compan, hankel, toeplitz

References [1] Ryser, H. J., Combinatorial Mathematics, John Wiley and Sons, 1963.

[2] Pratt, W. K., Digital Signal Processing, John Wiley and Sons, 1978.

hankel

2-1010

2hankelPurpose Hankel matrix

Syntax H = hankel(c)
H = hankel(c,r)

Description H = hankel(c) returns the square Hankel matrix whose first column is c and
whose elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and whose
last row is r. If the last element of c differs from the first element of r, the last
element of c prevails.

Definition A Hankel matrix is a matrix that is symmetric and constant across the
anti-diagonals, and has elements h(i,j) = p(i+j-1), where vector
p = [c r(2:end)] completely determines the Hankel matrix.

Examples A Hankel matrix with anti-diagonal disagreement is

c = 1:3; r = 7:10;
h = hankel(c,r)
h =
 1 2 3 8
 2 3 8 9
 3 8 9 10

p = [1 2 3 8 9 10]

See Also hadamard, toeplitz

hdf

2-1011

2hdfPurpose HDF interface

Syntax hdf*(functstr,param1,param2,...)

Description MATLAB provides a set of low-level functions that enable you to access the
HDF4 library developed and supported by the National Center for
Supercomputing Applications (NCSA). For information about HDF, see the
NCSA HDF Web page at http://hdf.ncsa.uiuc.edu.

The following table lists all the HDF4 application programming interfaces
(APIs) supported by MATLAB with the name of the MATLAB function used to
access the API. To use these functions, you must be familiar with the HDF
library.

Application
Programming
Interface

Description MATLAB
Function

Annotations Stores, manages, and retrieves text
used to describe an HDF file or any of
the data structures contained in the file.

hdfan

General Raster
Images

Stores, manages, and retrieves raster
images, their dimensions and palettes.
It can also manipulate unattached
palettes.

Note: Use the MATLAB functions
imread and imwrite with HDF raster
image formats.

hdfdf24
hdfdfr8

HDF-EOS Provides functions to read HDF-EOS
grid (GD), point (PT), and swath (SW)
data.

hdfgd
hdfpt
hdfsw

HDF Utilities Provides functions to open and close
HDF files and handle errors.

hdfh
hdfhd
hdfhe

hdf

2-1012

See Also hdf5read, hdfread, hdfinfo, imread

MATLAB HDF
Utilities

Provides utility functions that help you
work with HDF files in the MATLAB
environment.

hdfml

Scientific Data Stores, manages, and retrieves
multidimensional arrays of character or
numeric data, along with their
dimensions and attributes.

hdfsd

V Groups Creates and retrieves groups of other
HDF data objects, such as raster
images or V data.

hdfv

V Data Stores, manages, and retrieves
multivariate data stored as records in a
table.

hdfvf
hdfvh
hdfvs

Application
Programming
Interface

Description MATLAB
Function

hdf5

2-1013

2hdf5Purpose HDF5 data type classes

Syntax hdf5*(...)

Description MATLAB provides a set of classes to represent HDF5 data types. MATLAB
defines a general HDF5 data type class, with subclasses for individual HDF5
data types. The following figure illustrates these classes and subclasses. For
more information about a specific class, see the sections that follow. To learn
more about the HDF5 data types in general, see the NCSA HDF Web page at
http://hdf.ncsa.uiuc.edu. For information about using these classes, see
“Remarks” on page 2-1019.

h5array
The HDF5 h5array class associates a name with an array. The following are
the data members of the h5array class.

The following are the methods of the h5array class. This table shows the
function calling syntax. You can also access methods using subscripted

Data Members

Data Multidimensional array

Name Text string specifying the name of the object

hdf5

h5array h5stringh5compound h5enum h5vlen

hdf5

2-1014

reference (dot notation). For an example of the syntax, see “HDF5 Enumerated
Object Example” on page 2-1021.

h5compound
The HDF5 h5compound class associates a name with a structure, where you can
define the field names in the structure and their values. The following are the
data members of the h5compound class.

Methods Description Syntax

hdf5.h5array Constructs object of class h5array. arr = hdf5.h5array;
arr = hdf5.h5array(data)

where arr is an h5array object and
data can be numeric, a cell array, or an
HDF5 data type.

setData Sets the value of the object’s Data
member.

setData(arr, data)

where arr is an h5array object and
data can be numeric, a cell array, or an
HDF5 data type.

setName Sets the value of the object’s Name
member.

setName(arr, name)

where arr is an h5array object and
name is a string or cell array.

Data Members

Data Multidimensional array.

MemberNames Text string specifying the names of fields in the structure

Name Text string specifying the name of the object

hdf5

2-1015

The following are the methods of the h5compound class.

Methods Description Syntax

hdf5.h5compound Constructs object of class
h5compound.

C = hdf5.h5compound;
C = hdf5.h5compound(mName1,mName2,...)

where C is an h5compound object and mName1
and mName2 are text strings that specify field
names. The constructor creates a
corresponding data field for every member
name.

addMember Creates a new field in the
structure.

addMember(C, mName)

where mName is a text string that specifies the
name of the field. This method automatically
creates a corresponding data field for the
new member name.

setMember Sets the value of the Data
element associated with a
particular field.

setData(C, mName, mData)

where C is an h5compound object, mName is the
name of a field in the object, and mdata is the
value you want to assign to the field. mData
can be numeric or an HDF5 data type.

setMemberNames Specifies the names of
fields in the structure.

setData(C, mName1, mName2,...)

where C is an h5compound object and mName1
and mName2 are text strings that specify field
names. The constructor creates a
corresponding data field for every member
name.

setName Sets the value of the
object’s Name member.

setName(C, name)

where arr is an h5compound object and name
is a string or cell array.

hdf5

2-1016

h5enum
The HDF5 h5enum class defines an enumerated types, where you can specify
the enumerations (text strings) and the values the represent. The following are
the data members of the h5enum class.

The following are the methods of the h5enum class.

Data Members

Data Multidimensional array

EnumNames Text string specifying the enumerations, that is, the text
strings that represent values.

EnumValues The values associated with enumerations

Name Text string specifying the name of the object

Methods Description Syntax

hdf5.h5enum Constructs object of class
h5enum.

E = hdf5.h5enum;
E = hdf5.h5enum(eNames, eVals)

where E is an h5enum object, eNames is a
cell array of strings, and eVals is vector of
integers. eNames and eVals must have the
same number of elements.

defineEnum Defines the set of
enumerations with the integer
values they represent.

detineEnum(E, eNames, eVals)

where E is an h5enum object, eNames is a
cell array of strings, and eVals is vector of
integers. eNames and eVals must have the
same number of elements.

getString Returns data as
enumeration's values, not
integer values

enumdata = getString(E)

where enumdata is a cell array of strings
and E is an h5enum object.

hdf5

2-1017

h5string
The HDF5 h5string class associates a name with an text string and provides
optional padding behavior. The following are the data members of the
h5string class.

setData Sets the value of the object’s
Data member.

setData(E, eData)

where E is an h5enum object and eData is a
vector of integers.

setEnumNames Specifies the enumerations. setEnumNames(E, eNames)

where E is an h5enum object and eNames is
a cell array of strings.

setEnumValues Specifies the value associated
with each enumeration.

setEnumValues(E, eVals)

where E is an h5enum object and eVals is a
vector of integers.

setName Sets the value of the object’s
Name member.

setName(E, name)

where E is an h5enum object and name is a
string or cell array.

Methods Description Syntax

Data Members

Data Text string

Length Scalar value

Name Text string specifying the name of the object

Padding Type of padding to use: 'spacepad', 'nullterm', or
'nullpad'

hdf5

2-1018

The following are the methods of the h5string class.

Methods Description Syntax

hdf5.h5string Constructs object of class
h5string.

str = hdf5.h5string;
str = hdf5.h5string(data)
str = hdf5.h5string(data, padType)

where str is an h5string object, data is a
text string, and padType is a text string
specifying one of the supported pad types.

setData Sets the value of the object’s
Data member.

setData(str, data)

where str is an h5string object and data
is a text string.

setLength Sets the value of the object’s
Length member.

setLength(str, lenVal)

where str is an h5string object and
lenVal is a scalar.

setName Sets the value of the object’s
Name member.

setName(str, name)

where str is an h5string object and name
is a string or cell array.

setPadding Specifies the value of the
object’s Padding member.

setData(str, padType)

where str is an h5string object and
padType is a text string specifying one of
the supported pad types.

hdf5

2-1019

h5vlen
The HDF5 h5vlen class associates a name with an array. The following are the
data members of the h5vlen class.

The following are the methods of the h5vlen class.

Remarks The hdf5read function uses the HDF5 data type classes when the data it is
reading from the HDF5 file cannot be represented in the workspace using a
native MATLAB data type. For example, if an HDF5 file contains a data set
made up of an enumerated data type which cannot be represented in MATLAB,
hdf5read uses the HDF5 h5enum class to represent the data. An h5enum object
has data members that store the enumerations (text strings), their
corresponding values, and the enumerated data.

Data Members

Data Multidimensional array

Name Text string specifying the name of the object

Methods Description Syntax

hdf5.h5vlen Constructs object of class h5vlen. V = hdf5.h5vlen;
V = hdf5.h5vlen(data)

where V is h5vlen object and data can
be a scalar, vector, text string, cell
array, or an HDF5 data type.

setData Sets the value of the object’s Data
member.

setData(V, data)

where V is h5vlen object and data can
be a scalar, vector, text string, cell
array, or an HDF5 data type.

setName Sets the value of the object’s Name
member.

setName(V, name)

where name is a string or cell array.

hdf5

2-1020

You might also need to use these HDF5 data type classes when using the
hdf5write function to write data from the MATLAB workspace to an HDF5
file. By default, hdf5write can convert most MATLAB data to appropriate
HDF5 data types. However, if this default data type mapping is not suitable,
you can create HDF5 data types directly.

 Examples HDF5 Array Object Example

1 Create an array in the MATLAB workspace.
data = magic(5);

2 Create an HDF5 h5array object, passing the MATLAB array as the only
argument to the constructor.
dset = hdf5.h5array(data)

hdf5.h5array:

 Name: ''
 Data: [5x5 double]

3 Assign a name to the object.

dset.setName('my numeric array data set')

HDF5 Compound Object Example

1 Create several variables in the MATLAB workspace.
data = magic(5);
str = 'a text string';

2 Create an HDF5 h5compound object, specifying member names. The method
creates corresponding Data fields for each member name.
dset2 = hdf5.h5compound('temp1','temp2','temp3')

Adding member "temp1"
Adding member "temp2"
Adding member "temp3"

hdf5.h5compound:

 Name: ''

hdf5

2-1021

 Data: {[] [] []}
 MemberNames: {'temp1' 'temp2' 'temp3'}

3 Set the values of the members.
setMember(dset2,'temp1',89)
setMember(dset2,'temp2',95)
setMember(dset2,'temp3',108)

dset2

hdf5.h5compound:

 Name: ''
 Data: {[89] [95] [108]}
 MemberNames: {'temp1' 'temp2' 'temp3'}

HDF5 Enumerated Object Example

1 Create an HDF5 h5enum object.

enum_obj = hdf5.h5enum;

2 Define the enumerations and their corresponding values. The values must
be integers.

enum_obj.defineEnum({'RED' 'GREEN' 'BLUE'}, uint8([1 2 3]));

enum_obj now contains the definition of the enumeration that associates the
names RED, GREEN, and BLUE with the numbers 1, 2, and 3.

3 Add enumerated data to the object.

enum_obj.setData(uint8([2 1 3 3 2 3 2 1]));

4 Use the h5enum getString method to read the data as enumerated values,
rather than integers.
vals = enum_obj.getString

vals =

 Columns 1 through 7

 'GREEN' 'RED' 'BLUE' 'BLUE' 'GREEN' 'BLUE' 'GREEN'

hdf5

2-1022

 Column 8

 'RED'

HDF5 h5string Object Example
Create an HDF5 string object.

hdf5.h5vlen({0 [0 1] [0 2] [0:10]})

hdf5.h5vlen:

 Name: ''
 Data: [0 0 1 0 2 0 1 2 3 4 5 6 7 8 9 10]

HDF5 h5string Object Example
Create an HDF5 h5vlen object.

hdf5.h5vlen({0 [0 1] [0 2] [0:10]})

hdf5.h5vlen:

 Name: ''
 Data: [0 0 1 0 2 0 1 2 3 4 5 6 7 8 9 10]

See Also hdf5read, hdf5write

hdf5info

2-1023

2hdf5infoPurpose Return information about an HDF5 file

Syntax fileinfo = hdf5info(filename)
fileinfo = hdf5info(filename,'ReadAttributes',BOOL)

Description S = hdf5info(filename) returns a structure fileinfo whose fields contain
information about the contents of the HDF5 file filename. filename is a string
that specifies the name of the HDF5 file.

S = hdf5info(...,'ReadAttributes',BOOL) specifies whether hdf5info
returns the values of the attributes or just information describing the
attributes. By default, hdf5info reads in attribute values (BOOL = true).

Examples To find out about the contents of the HDF5 file, look at the GroupHierarchy
field returned by hdf5info.

fileinfo = hdf5info('example.h5')

fileinfo =

 Filename: 'example.h5'
 LibVersion: '1.4.5'
 Offset: 0
 FileSize: 8172
 GroupHierarchy: [1x1 struct]

To probe further into the hierarchy, keep examining the Groups field.

toplevel = fileinfo.GroupHierarchy

toplevel =

 Filename: [1x64 char]
 Name: '/'
 Groups: [1x2 struct]
 Datasets: []
 Datatypes: []
 Links: []
 Attributes: [1x2 struct]

hdf5info

2-1024

See also hdf5read, hdf5write, hdfinfo

hdf5read

2-1025

2hdf5readPurpose Read data from an HDF5 file

Syntax data = hdf5read(filename,datasetname)
attr = hdf5read(filename,attributename)
[data, attr] = hdf5read(...,'ReadAttributes',BOOL)
data = hdf5read(hinfo)

Description data = hdf5read(filename,datasetname) reads all the data in the data set
datasetname that is stored in the HDF5 file filename and returns it in the
variable data. To determine the names of data sets in an HDF5 file, use the
hdf5info function.

The return value, data, is a multidimensional array. hdf5read maps HDF5
data types to native MATLAB data types, whenever possible. If it cannot
represent the data using MATLAB data types, hdf5read uses one of the HDF5
data type objects. For example, if an HDF5 file contains a data set made up of
an enumerated data type, hdf5read uses the hdf5.h5enum object to represent
the data in the MATLAB workspace. The hdf5.h5enum object has data
members that store the enumerations (names), their corresponding values, and
the enumerated data. For more information about the HDF5 data type objects,
see the hdf5 reference page.

attr = hdf5read(filename,attributename) reads all the metadata in the
attribute attributename, stored in the HDF5 file filename, and returns it in
the variable attr. To determine the names of attributes in an HDF5 file, use
the hdf5info function.

[data,attr] = hdf5read(...,'ReadAttributes',BOOL) reads all the data as
well as all of the associated attribute information contained within that data
set. By default, BOOL is false.

data = hdf5read(hinfo) reads all of the data in the data set specified in the
structure hinfo and returns it in the variable data. The hinfo structure is
extracted from the output returned by hdf5info which specifies an HDF5 file
and a specific data set.

Examples Read a data set specified by an hinfo structure. Use hdf5info to get
information about the HDF5 file.

hdf5read

2-1026

hinfo = hdf5info('example.h5');

Use hdf5read to read the data set specified by the info structure.

dset = hdf5read(hinfo.GroupHierarchy.Groups(2).Datasets(1));

See Also hdf5, hdf5info, hdf5write

hdf5write

2-1027

2hdf5writePurpose Write a Hierarchical Data Format (HDF) Version 5 file

Syntax hdf5write(filename,location,dataset)
hdf5write(filename,details,dataset)
hdf5write(filename,details1,dataset1,details2,dataset2,...)
hdf5write(filename,...,'WriteMode',mode,...)

Description hdf5write(filename,location,dataset) writes the data dataset to the
HDF5 file named filename. If filename does not exist, hdf5write creates it. If
filename exists, hdf5write overwrites the existing file, by default, but you can
also append data to an existing file using an optional syntax.

location defines where to write the data set in the file. HDF5 files are
organized in a hierarchical structure similar to a UNIX directory structure.
location is a string that resembles a UNIX path.

hdf5write maps the data in dataset to HDF5 data types according to rules
outlined below.

hdf5write(filename,details,dataset) writes dataset to filename using
the values in the details structure. For a data set, the details structure can
contain the following fields.

Field Name Description Data Type

Location Location of the data set in the file Character array

Name Name to attach to the data set String

hdf5write

2-1028

hdf5write(filename,details,attribute) writes the metadata attribute
to filename using the values in the details structure. For an attribute, the
details structure can contain following fields.

hdf5write(filename, details1, dataset1, details2, dataset2,...)
writes multiple data sets and associated attributes to filename in one
operation. Each data set and attribute must have an associated details
structure.

hdf5write(filename,...,'WriteMode',mode,...) specifies whether
hdf5write overwrites the existing file (the default) or appends data sets and
attributes to the file. Possible values for mode are 'overwrite' and 'append'.

Data Type
Mappings

If the data being written to the file is composed of HDF5 objects, hdf5write
uses the same data type when writing to the file. For HDF5.h5enum objects, the
size and dimensions of the data set in the HDF5 file, called the dataspace in
HDF5 terminology, is the same as the object's Data field.

Field Name Description Data Type

AttachedTo Location of the object this attribute
modifies

Structure array

AttachType String that identifies what kind of
object this attribute modifies; possible
values are 'group' and 'dataset'

String

Name Name to attach to the data set Character array

Field Name Description Data Type

AttachedTo Location of the object this attribute
modifies

Structure array

AttachType String that identifies what kind of
object this attribute modifies. Possible
values are 'group' and 'dataset'

String

Name Name to attach to the data set Character array

hdf5write

2-1029

If the data in the workspace that is being written to the file is a MATLAB data
type, hdf5write uses the following rules when translating MATLAB data into
HDF5 data objects.

Examples Write a 5-by-5 data set of uint8 values to the root group.

hdf5write('myfile.h5', '/dataset1', uint8(magic(5)))

Write a 2-by-2 string data set in a subgroup.

dataset = {'north', 'south'; 'east', 'west'};
hdf5write('myfile2.h5', '/group1/dataset1.1', dataset);

Write a data set and attribute to an existing group.

dset = single(rand(10,10));
dset_details.Location = '/group1/dataset1.2';

MATLAB
Data Type

HDF5 Data Set or Attribute

Numeric Corresponding HDF5 native datatype. For example, if the
workspace data type is uint8, the hdf5write function
writes the data to the file as 8-bit integers. The size of the
HDF5 dataspace is the same size as the MATLAB array.

String Single, null-terminated string

Cell array
of strings

Multiple, null-terminated strings, each the same length.
Length is determined by the length of the longest string in
the cell array. The size of the HDF5 dataspace is the same
size as the cell array.

Cell array
of numeric
data

Numeric array, the same dimensions as the cell array.
The elements of the array must have all have the same
size and type. The data type is determined by the first
element in the cell array.

Structure
array

HDF5 compound type. Individual fields in the structure
employ the same data translation rules for individual
data types. For example, a cell array of strings becomes a
multiple, null-terminated strings.

hdf5write

2-1030

dset_details.Name = 'Random';

attr = 'Some random data';
attr_details.AttachedTo = '/group1/dataset1.2';
attr_details.AttachType = 'dataset';

hdf5write('myfile2.h5', dset_details, dset, ...
 attr_details, attr, 'WriteMode', 'append');

Write a data set using objects.

dset = hdf5.h5array(magic(5));
hdf5write('myfile3.h5', '/g1/objects', dset);

See Also hdf5, hdf5read, hdf5info

hdfinfo

2-1031

2hdfinfoPurpose Return information about an HDF or HDF-EOS file

Syntax S = hdfinfo(filename)
S = hdfinfo(filename,mode)

Description S = hdfinfo(filename) returns a structure S whose fields contain
information about the contents of an HDF or HDF-EOS file. filename is a
string that specifies the name of the HDF file.

S = hdfinfo(filename,mode) reads the file as an HDF file, if mode is 'hdf',
or as an HDF-EOS file, if mode is 'eos'. If mode is 'eos', only HDF-EOS data
objects are queried. To retrieve information on the entire contents of a file
containing both HDF and HDF-EOS objects, mode must be 'hdf'.

Note hdfinfo can be used on Version 4.x HDF files or Version 2.x HDF-EOS
files.

hdfinfo

2-1032

The set of fields in the returned structure S depends on the individual file.
Fields that can be present in the S structure are shown in the following table.

Those fields in the table above that contain structure arrays are further
described in the tables shown below.

HDF Object Fields

Mode Field Name Description Return Type

HDF Attributes Attributes of the data set Structure array

Description Annotation description Cell array

Filename Name of the file String

Label Annotation label Cell array

Raster8 Description of 8-bit raster
images

Structure array

Raster24 Description of 24-bit raster
images

Structure array

SDS Description of scientific data
sets

Structure array

Vdata Description of Vdata sets Structure array

Vgroup Description of Vgroups Structure array

EOS Filename Name of the file String

Grid Grid data Structure array

Point Point data Structure array

Swath Swath data Structure array

hdfinfo

2-1033

Fields Common to Returned Structure Arrays
Structure arrays returned by hdfinfo contain some common fields. These are
shown in the table below. Not all structure arrays will contain all of these
fields.

Fields Specific to Certain Structures
Structure arrays returned by hdfinfo also contain fields that are unique to
each structure. These are shown in the tables below.

Common Fields

Field Name Description Data Type

Attributes Data set attributes. Contains fields
Name and Value.

Structure array

Description Annotation description Cell array

Filename Name of the file String

Label Annotation label Cell array

Name Name of the data set String

Rank Number of dimensions of the data set Double

Ref Data set reference number Double

Type Type of HDF or HDF-EOS object String

Fields of the Attribute Structure

Field Name Description Data Type

Name Attribute name String

Value Attribute value or description Numeric or string

hdfinfo

2-1034

Fields of the Raster8 and Raster24 Structures

Field Name Description Data Type

HasPalette 1 (true) if the image has an associated palette,
otherwise 0 (false) (8-bit only)

Logical

Height Height of the image, in pixels Number

Interlace Interlace mode of the image (24-bit only) String

Name Name of the image String

Width Width of the image, in pixels Number

Fields of the SDS Structure

Field Name Description Data Type

DataType Data precision String

Dims Dimensions of the data set. Contains fields
Name, DataType, Size, Scale, and Attributes.
Scale is an array of numbers to place along
the dimension and demarcate intervals in the
data set.

Structure
array

Index Index of the SDS Number

Fields of the Vdata Structure

Field Name Description Data Type

DataAttributes Attributes of the entire data set.
Contains fields Name and Value.

Structure array

Class Class name of the data set String

Fields Fields of the Vdata. Contains fields
Name and Attributes.

Structure array

hdfinfo

2-1035

NumRecords Number of data set records Double

IsAttribute 1 (true) if Vdata is an attribute,
otherwise 0 (false)

Logical

Fields of the Vgroup Structure

Field Name Description Data Type

Class Class name of the data set String

Raster8 Description of the 8-bit raster image Structure array

Raster24 Description of the 24-bit raster image Structure array

SDS Description of the Scientific Data sets Structure array

Tag Tag of this Vgroup Number

Vdata Description of the Vdata sets Structure array

Vgroup Description of the Vgroups Structure array

Fields of the Grid Structure

Field Name Description Data Type

Columns Number of columns in the grid Number

DataFields Description of the data fields in each Grid field
of the grid. Contains fields Name, Rank, Dims,
NumberType, FillValue, and TileDims.

Structure
array

LowerRight Lower right corner location, in meters Number

Origin
Code

Origin code for the grid Number

PixRegCode Pixel registration code Number

Fields of the Vdata Structure

Field Name Description Data Type

hdfinfo

2-1036

Examples To retrieve information about the file example.hdf,

Projection Projection code, zone code, sphere code, and
projection parameters of the grid. Contains
fields ProjCode, ZoneCode, SphereCode, and
ProjParam.

Structure

Rows Number of rows in the grid Number

UpperLeft Upper left corner location, in meters Number

Fields of the Point Structure

Field Name Description Data Type

Level Description of each level of the point. Contains
fields Name, NumRecords, FieldNames,
DataType, and Index.

Structure

Fields of the Swath Structure

Field Name Description Data Type

DataFields Data fields in the swath. Contains
fields Name, Rank, Dims, NumberType,
and FillValue.

Structure
array

GeolocationFields Geolocation fields in the swath.
Contains fields Name, Rank, Dims,
NumberType, and FillValue.

Structure
array

IdxMapInfo Relationship between indexed
elements of the geolocation mapping.
Contains fields Map and Size.

Structure

MapInfo Relationship between data and
geolocation fields. Contains fields Map,
Offset, and Increment.

Structure

Fields of the Grid Structure

Field Name Description Data Type

hdfinfo

2-1037

fileinfo = hdfinfo('example.hdf')

fileinfo =
 Filename: 'example.hdf'
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

And to retrieve information from this about the scientific data set in
example.hdf,

sds_info = fileinfo.SDS

sds_info =
 Filename: 'example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 0

See Also hdfread, hdf

hdfread

2-1038

2hdfreadPurpose Extract data from an HDF or HDF-EOS file

Syntax data = hdfread(filename, dataset)
data = hdfread(hinfo)
data = hdfread(...,param1,value1,param2,value2,...)
[data,map] = hdfread(...)

Description data = hdfread(filename, dataset) returns all the data in the
specified data set dataset from the HDF or HDF-EOS file filename. To
determine the names of the data sets in an HDF file, use the hdfinfo
function. The information returned by hdfinfo contains structures
describing the data sets contained in the file. You can extract one
of these structures and pass it directly to hdfread. Note hdfread
can be used on Version 4.x HDF files or Version 2.x HDF-EOS files.

data = hdfread(hinfo) returns all the data in the data set specified in the
structure hinfo. The hinfo structure can be extracted from the data returned
by the hdfinfo function.

data = hdfread(...,param1,value1,param2,value2,...) returns subsets
of the data according to the specified parameter and value pairs. See the tables
below to find the valid parameters and values for different types of data sets.

[data,map] = hdfread(...) returns the image data and the colormap map for
an 8-bit raster image.

Subsetting
Parameters

The following tables show the subsetting parameters that can be used with the
hdfread function for certain types of HDF data. These data types are

• HDF Scientific Data (SD)

• HDF Vdata (V)

• HDF-EOS Grid Data

• HDF-EOS Point Data

• HDF-EOS Swath Data

Note the following:

hdfread

2-1039

• If a parameter requires multiple values, the values must be stored in a cell
array. For example, the 'Index' parameter requires three values: start,
stride, and edge. Enclose these values in curly braces as a cell array.
hdfread(dataset_name, 'Index', {start,stride,edge})

• All values that are indices are 1-based.

Subsetting Parameters for HDF Scientific Data (SD) Data Sets
When you are working with HDF SD files, hdfread supports the parameters
listed in this table.

For example, this code reads the data set Example SDS from the HDF file
example.hdf. The 'Index' parameter specifies that hdfread start reading
data at the beginning of each dimension, read until the end of each dimension,
but only read every other data value in the first dimension.

hdfread('example.hdf','Example SDS', ...
 'Index', {[], [2 1], []})

Parameter Description

'Index' Three-element cell array, {start,stride,edge}, specifying
the location, range, and values to be read from the data set

• start — A 1-based array specifying the position in the file
to begin reading

Default: 1, start at the first element of each dimension.
The values specified must not exceed the size of any
dimension of the data set.

• stride — A 1-based array specifying the interval
between the values to read

Default: 1, read every element of the data set.

• edge — A 1-based array specifying the length of each
dimension to read

Default: An array containing the lengths of the
corresponding dimensions

hdfread

2-1040

Subsetting Parameters for HDF Vdata Sets
When you are working with HDF Vdata files, hdfread supports these
parameters.

For example, this code reads the Vdata set Example Vdata from the HDF file
example.hdf.

hdfread('example.hdf', 'Example Vdata', 'FirstRecord', 400,
'NumRecords', 50)

Subsetting Parameters for HDF-EOS Grid Data
When you are working with HDF-EOS grid data, hdfread supports three types
of parameters:

• Required parameters

• Optional parameters

• Mutually exclusive parameters — You can only specify one of these
parameters in a call to hdfread, and you cannot use these parameters in
combination with any optional parameter.

Parameter Description

'Fields' Text string specifying the name of the data set field to be
read from. When specifying multiple field names, use a
comma-separated list.

'FirstRecord' 1-based number specifying the record from which to
begin reading

'NumRecords' Number specifying the total number of records to read

hdfread

2-1041

Parameter Description

Required Parameter

'Fields' String naming the data set field to be read. You can specify only one
field name for a Grid data set.

Mutually Exclusive Optional Parameters

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

• start — An array specifying the position in the file to begin
reading

Default: 1, start at the first element of each dimension. The values
must not exceed the size of any dimension of the data set.

• stride — An array specifying the interval between the values to
read

Default: 1, read every element of the data set.

• edge — An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

'Interpolate' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude points that define a region for bilinear
interpolation. Each element is an N-length vector specifying
longitude and latitude coordinates.

'Pixels' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. Each element
is an N-length vector specifying longitude and latitude coordinates.
This region is converted into pixel rows and columns with the origin
in the upper left corner of the grid.

Note: This is the pixel equivalent of reading a 'Box' region.

hdfread

2-1042

For example,

hdfread(grid_dataset, 'Fields', fieldname, ...
 'Vertical', {dimension, [min, max]})

'Tile' Vector specifying the coordinates of the tile to read, for HDF-EOS
Grid files that support tiles

Optional Parameters

'Box' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. longitude
and latitude are each two-element vectors specifying longitude and
latitude coordinates.

'Time' Two-element cell array, [start stop], where start and stop are
numbers that specify the start and end-point for a period of time

'Vertical' Two-element cell array, {dimension, range}

• dimension — String specifying the name of the data set field to be
read from. You can specify only one field name for a Grid data set.

• range — Two-element array specifying the minimum and
maximum range for the subset. If dimension is a dimension name,
then range specifies the range of elements to extract. If dimension
is a field name, then range specifies the range of values to extract.

'Vertical' subsetting can be used alone or in conjunction with
'Box' or 'Time'. To subset a region along multiple dimensions,
vertical subsetting can be used up to eight times in one call to
hdfread.

Parameter Description

hdfread

2-1043

Subsetting Parameters for HDF-EOS Point Data
When you are working with HDF-EOS Point data, hdfread has two required
parameters and three optional parameters.

For example,

hdfread(point_dataset, 'Fields', {field1, field2}, ...
'Level', level, 'RecordNumbers', [1:50, 200:250])

Subsetting Parameters for HDF-EOS Swath Data
When you are working with HDF-EOS Swath data, hdfread supports three
types of parameters:

• Required parameters

• Optional parameters

• Mutually exclusive

Parameter Description

Required Parameters

'Fields' String naming the data set field to be read. For
multiple field names, use a comma-separated list.

'Level' 1-based number specifying which level to read from in
an HDF-EOS Point data set

Optional Parameters

'Box' Two-element cell array, {longitude,latitude},
specifying the longitude and latitude coordinates that
define a region. longitude and latitude are each
two-element vectors specifying longitude and latitude
coordinates.

'RecordNumbers' Vector specifying the record numbers to read

'Time' Two-element cell array, [start stop], where start
and stop are numbers that specify the start and
endpoint for a period of time

hdfread

2-1044

You can only use one of the mutually exclusive parameters in a call to hdfread,
and you cannot use these parameters in combination with any optional
parameter.

Parameter Description

Required Parameter

'Fields' String naming the data set field to be read. You can specify only one
field name for a Swath data set.

Mutually Exclusive Optional Parameters

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

• start — An array specifying the position in the file to begin reading

Default: 1, start at the first element of each dimension. The values
must not exceed the size of any dimension of the data set.

• stride — An array specifying the interval between the values to
read

Default: 1, read every element of the data set.

• edge — An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

'Time' Three-element cell array, {start, stop, mode}, where start and
stop specify the beginning and the endpoint for a period of time, and
mode is a string defining the criterion for the inclusion of a cross track
in a region. The cross track is within a region if any of these
conditions is met:

• Its midpoint is within the box (mode='midpoint').

• Either endpoint is within the box (mode='endpoint').

• Any point is within the box (mode='anypoint').

hdfread

2-1045

For example,

hdfread('example.hdf',swath_dataset, 'Fields', fieldname, ...
'Time', {start, stop, 'midpoint'})

Optional Parameters

'Box' Three-element cell array, {longitude, latitude, mode} specifying
the longitude and latitude coordinates that define a region.
longitude and latitude are two-element vectors that specify
longitude and latitude coordinates. mode is a string defining the
criterion for the inclusion of a cross track in a region. The cross track
is within a region if any of these conditions is met:

• Its midpoint is within the box (mode='midpoint').

• Either endpoint is within the box (mode='endpoint').

• Any point is within the box (mode='anypoint').

'ExtMode' String specifying whether geolocation fields and data fields must be in
the same swath (mode='internal'), or can be in different swaths
(mode='external')

Note: mode is only used when extracting a time period or a region.

'Vertical' Two-element cell array, {dimension, range}

• dimension is a string specifying either a dimension name or field
name to subset the data by.

• range is a two-element vector specifying the minimum and
maximum range for the subset. If dimension is a dimension name,
then range specifies the range of elements to extract. If dimension
is a field name, then range specifies the range of values to extract.

'Vertical' subsetting can be used alone or in conjunction with 'Box'
or 'Time'. To subset a region along multiple dimensions, vertical
subsetting can be used up to eight times in one call to hdfread.

Parameter Description

hdfread

2-1046

Examples Importing a Data Set by Name
When you know the name of the data set, you can refer to the data set by name
in the hdfread command. To read a data set named 'Example SDS', use

data = hdfread('example.hdf', 'Example SDS')

Importing a Data Set Using the Hinfo Structure
When you don’t know the name of the data set, follow this procedure.

1 Use hdfinfo first to retrieve information on the data set.
fileinfo = hdfinfo('example.hdf')
fileinfo =

 Filename: 'N:\toolbox\matlab\demos\example.hdf'
 SDS: [1x1 struct]
 Vdata: [1x1 struct]

2 Extract the structure containing information about the particular data set
you want to import from fileinfo.
sds_info = fileinfo.SDS
sds_info =

 Filename: 'N:\toolbox\matlab\demos\example.hdf'
 Type: 'Scientific Data Set'
 Name: 'Example SDS'
 Rank: 2
 DataType: 'int16'
 Attributes: []
 Dims: [2x1 struct]
 Label: {}
 Description: {}
 Index: 0

3 Pass this structure to hdfread to import the data in the data set.
data = hdfread(sds_info)

Importing a Subset of a Data Set
You can check the size of the information returned as follows.

sds_info.Dims.Size

hdfread

2-1047

ans =
 16
ans =
 5

Using hdfread parameter/value pairs, you can read a subset of the data in the
data set. This example specifies a starting index of [3 3], an interval of 1
between values ([] meaning the default value of 1), and a length of 10 rows and
2 columns.

data = hdfread(sds_info, 'Index', {[3 3],[],[10 2]});

data(:,1)
ans =
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

data(:,2)
ans =
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17

hdfread

2-1048

Importing Fields from a Vdata Set
This example retrieves information from example.hdf first, and then reads two
fields of the data, Idx and Temp.

info = hdfinfo('example.hdf');

data = hdfread(info.Vdata,...
 'Fields',{'Idx','Temp'})

data =
 [1x10 int16]
 [1x10 int16]

index = data{1,1};
temp = data{2,1};

temp(1:6)
ans =
 0 12 3 5 10 -1

See Also hdfinfo, hdf

hdftool

2-1049

2hdftoolPurpose Browse and import data from HDF or HDF-EOS files

Syntax hdftool
hdftool(filename)
h = hdfinfo(...)

Description hdftool starts the HDF Import Tool, a graphical user interface used to browse
the contents of HDF and HDF-EOS files and import data and data subsets from
these files. When you use hdftool without an argument, the tool displays the
Choose an HDF file dialog box. Select an HDF or HDF-EOS file to start the
HDF Import Tool.

hdftool(filename) opens the HDF or HDF-EOS file filename in the HDF
Import Tool.

h = hdftool(...) returns a handle h to the HDF Import Tool. To close the tool
from the command line, use dispose(h).

You can run only one instance of the HDF Import Tool during a MATLAB
session; however, you can open multiple files.

Using the HDF Import Tool, HDF-EOS files can be viewed as either HDF-EOS
files or as HDF files. HDF files can only be viewed as HDF files.

Example hdftool('example.hdf');

See Also hdf, hdfinfo, hdfread, uiimport

help

2-1050

2helpPurpose Display help for MATLAB functions in Command Window

Syntax help
help /
help functionname
help toolboxname
help toolboxname/functionname
help classname.methodname
help classname
help syntax
t = help('topic')

Description help lists all primary help topics in the Command Window. Each main help
topic corresponds to a directory name on the MATLAB search path.

help / lists all operators and special characters, along with their descriptions.

help functionname displays M-file help, which is a brief description and the
syntax for functionname, in the Command Window. The output includes a link
to doc functionname, which displays the reference page in the Help browser,
often providing additional information. Output also includes see also links,
which display help in the Command Window for related functions. If
functionname is overloaded, that is, appears in multiple directories on the
search path, help displays the M-file help for the first functionname found on
the search path, and displays a hyperlinked list of the overloaded functions and
their directories. If functionname is also the name of a toolbox, help also
displays the list of subdirectories and functions in the toolbox.

help toolboxname displays the contents file for the specified directory named
toolboxname. It is not necessary to give the full pathname of the directory; the
last component, or the last several components, are sufficient. If toolboxname
is also a function name, help also displays the M-file help for the function
toolboxname.

help toolboxname/functionname displays the M-file help for functionname,
which resides in the toolboxname directory. Use this form to get direct help for
an overloaded function.

help

2-1051

help classname.methodname displays help for the method, methodname, of the
fully qualified class, classname. If you do not know the fully qualified class for
the method, use class(obj), where methodname is of the same class as the
object obj.

help classname displays help for the fully qualified class, classname.

help syntax displays M-file help describing the syntax used in MATLAB
commands and functions.

t = help('topic') returns the help text for topic as a string, with each line
separated by /n, where topic is any allowable argument for help.

Note M-file help displayed in the Command Window uses all uppercase
characters for the function and variable names to make them stand out from
the rest of the text. When typing function names, however, use lowercase
characters. Some functions for interfacing to Java do use mixed case; the
M-file help accurately reflects that and you should use mixed case when
typing them. For example, the javaObject function uses mixed case.

Remarks To prevent long descriptions from scrolling off the screen before you have time
to read them, enter more on, and then enter the help statement.

Creating Online Help for Your Own M-Files
The MATLAB help system, like MATLAB itself, is highly extensible. You can
write help descriptions for your own M-files and toolboxes using the same
self-documenting method that MATLAB M-files and toolboxes use.

The help function lists all help topics by displaying the first line (the H1 line)
of the contents files in each directory on the MATLAB search path. The
contents files are the M-files named Contents.m within each directory.

Typing help topic, where topic is a directory name, displays the comment
lines in the Contents.m file located in that directory. If a contents file does not
exist, help displays the H1 lines of all the files in the directory.

Typing help topic, where topic is a function name, displays help for the
function by listing the first contiguous comment lines in the M-file topic.m.

help

2-1052

Create self-documenting online help for your own M-files by entering text on
one or more contiguous comment lines, beginning with the second line of the
file (first line if it is a script). For example, the function soundspeed.m, begins
with

function c=soundspeed(s,t,p)
% soundspeed computes the speed of sound in water
% where c is the speed of sound in water in m/s

t = 0:.1:35;

When you execute help soundspeed, MATLAB displays

soundspeed computes the speed of sound in water
where c is the speed of sound in water in m/s

These lines are the first block of contiguous comment lines. After the first
contiguous comment lines, enter an executable statement or blank line, which
effectively ends the help section. Any later comments in the M-file do not
appear when you type help for the function.

The first comment line in any M-file (the H1 line) is special. It should contain
the function name and a brief description of the function. The lookfor function
searches and displays this line, and help displays these lines in directories that
do not contain a Contents.m file. For the soundspeed example, the H1 line is

% soundspeed computes speed of sound in water

Use the Help Report to help you create and manage M-file help for your own
files.

Creating Contents Files for Your Own M-File Directories
A Contents.m file is provided for each M-file directory included with the
MATLAB software. If you create directories in which to store your own M-files,
it is a good practice to create Contents.m files for them too. Use the Contents
Report to help you create and maintain your own Contents.m files.

Examples help close displays help for the close function.

help database/close displays help for the close function in the Database
Toolbox.

help

2-1053

help datafeed displays help for the Datafeed Toolbox

help database lists the functions in the Database Toolbox and displays help
for the database function, because there is a function and a toolbox called
database.

help general lists all functions in the directory
$matlabroot/toolbox/matlab/general. This illustrates how to specify a
relative partial pathname, rather than a full pathname.

help embedded.fi.lsb displays help for the lsb method of the fi class in the
Fixed-Point Toolbox. Running a = fi(pi); class(a), for example, returns
embedded.fi, which is the fully qualified class for the lsb method.

help embedded.fi displays help for the fi class in the Fixed-Point Toolbox.
This is actually the help for the class’s object constructor, in this case, fi.

t = help(close') gets help for the function close and stores it as a string
in t.

See Also class, doc, docsearch, helpbrowser, helpwin, lookfor, more, partialpath,
path, what, which, whos

helpbrowser

2-1054

2helpbrowserPurpose Display Help browser for access to full online documentation and demos

Graphical
Interface

As an alternative to the helpbrowser function, select Help from the Desktop
menu or click the help button on the toolbar in the MATLAB desktop.

Syntax helpbrowser

Description helpbrowser displays the Help browser, providing direct access to a
comprehensive library of online documentation, including reference pages and
user guides. If the Help browser was previously opened in the current session,
helpbrowser shows the last page viewed; otherwise it shows the Begin Here
page. For details, see the Help Browser documentation.

helpbrowser

2-1055

See Also doc, docopt, docsearch, help, helpdesk, helpwin, lookfor, web

Tabs in Help Navigator pane provide different ways to find information.

Drag the separator bar to adjust the width of the panes.

View documentation in the display pane.

Use the close box
to hide the pane.

Click refresh button to remove highlighted search hits.

Use Find to go to the specified
word on the current page.

helpdesk

2-1056

2helpdeskPurpose Display Help browser

Syntax helpdesk

Description helpdesk displays the Help browser and shows the “Begin Here” page. In
previous releases, helpdesk displayed the Help Desk, which was the precursor
to the Help browser. In a future release, the helpdesk function will be phased
out—use the doc or helpbrowser function instead.

See Also doc, helpbrowser

helpdlg

2-1057

2helpdlgPurpose Create a help dialog box

Syntax helpdlg
helpdlg('helpstring')
helpdlg('helpstring','dlgname')
h = helpdlg(...)

Description helpdlg creates a help dialog box or brings the named help dialog box to the
front.

helpdlg displays a dialog box named 'Help Dialog' containing the string
'This is the default help string.'

helpdlg('helpstring') displays a dialog box named 'Help Dialog'
containing the string specified by 'helpstring'.

helpdlg('helpstring','dlgname') displays a dialog box named 'dlgname'
containing the string 'helpstring'.

h = helpdlg(...) returns the handle of the dialog box.

Remarks MATLAB wraps the text in 'helpstring' to fit the width of the dialog box. The
dialog box remains on your screen until you press the OK button or the Return
key. After you press the button, the help dialog box disappears.

Examples The statement

helpdlg('Choose 10 points from the figure','Point Selection');

displays this dialog box:

helpdlg

2-1058

See Also dialog, errordlg, questdlg, warndlg

“Predefined Dialog Boxes” for related functions

helpwin

2-1059

2helpwinPurpose Provide access to and display M-file help for all functions

Syntax helpwin
helpwin topic

Description helpwin lists topics for groups of functions in the Help browser. It shows brief
descriptions of the topics and provides links to access M-file help for the
functions, displayed in the Help browser. You cannot follow links in the
helpwin list of functions if MATLAB is busy (for example, running a program).

helpwin topic displays help information for the topic in the Help browser. If
topic is a directory, it displays all functions in the directory. The directory
name cannot include spaces. If topic is a function, helpwin displays M-file help
for that function in the Help browser. From the page, you can access a list of
directories (Default Topics link) as well as the reference page help for the
function (Go to online doc link). You cannot follow links in the helpwin list of
functions if MATLAB is busy (for example, running a program).

Examples Typing

helpwin datafun

displays the functions in the datafun directory and a brief description of each.

Typing

helpwin fft

displays the M-file help for the fft function in the Help browser.

See Also doc, docopt, help, helpbrowser, lookfor, web

hess

2-1060

2hessPurpose Hessenberg form of a matrix

Syntax [P,H] = hess(A)
H = hess(A)
[AA,BB,Q,Z] = HESS(A,B)

Description H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix P so
that A = P*H*P' and P'*P = eye(size(A)).

[AA,BB,Q,Z] = HESS(A,B) for square matrices A and B, produces an upper
Hessenberg matrix AA, an upper triangular matrix BB, and unitary matrices Q
and Z such that Q*A*Z = AA and Q*B*Z = BB.

Definition A Hessenberg matrix is zero below the first subdiagonal. If the matrix is
symmetric or Hermitian, the form is tridiagonal. This matrix has the same
eigenvalues as the original, but less computation is needed to reveal them.

Examples H is a 3-by-3 eigenvalue test matrix:

H =
 -149 -50 -154
 537 180 546
 -27 -9 -25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
 -149.0000 42.2037 -156.3165
 -537.6783 152.5511 -554.9272
 0 0.0728 2.4489

Algorithm Inputs of Type Double
For inputs of type double, hess uses the following LAPACK routines to
compute the Hessenberg form of a matrix:

hess

2-1061

Inputs of Type Single
For inputs of type single, hess uses the following LAPACK routines to
compute the Hessenberg form of a matrix:

See Also eig, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

Matrix A Routine

Real symmetric DSYTRD
DSYTRD, DORGTR, (with output P)

Real nonsymmetric DGEHRD
DGEHRD, DORGHR (with output P)

Complex Hermitian ZHETRD
ZHETRD, ZUNGTR (with output P)

Complex non-Hermitian ZGEHRD
ZGEHRD, ZUNGHR (with output P)

Matrix A Routine

Real symmetric SSYTRD
SSYTRD, DORGTR, (with output P)

Real nonsymmetric SGEHRD
SGEHRD, SORGHR (with output P)

Complex Hermitian CHETRD
CHETRD, CUNGTR (with output P)

Complex non-Hermitian CGEHRD
CGEHRD, CUNGHR (with output P)

hex2dec

2-1062

2hex2decPurpose Hexadecimal to decimal number conversion

Syntax d = hex2dec('hex_value')

Description d = hex2dec('hex_value') converts hex_value to its floating-point integer
representation. The argument hex_value is a hexadecimal integer stored in a
MATLAB string. The value of hex_value must be smaller than hexadecimal
10,000,000,000,000.

If hex_value is a character array, each row is interpreted as a hexadecimal
string.

Examples hex2dec('3ff')

ans =

 1023

For a character array S,

S =
0FF
2DE
123

hex2dec(S)

ans =

255
734
291

See Also dec2hex, format, hex2num, sprintf

hex2num

2-1063

2hex2numPurpose Convert IEEE hexadecimal string to double precision number

Syntax n = hex2num(S)

Description n = hex2num(S), where S is a 16 character string representing a hexadecimal
number, returns the IEEE double-precision floating-point number n that it
represents. Fewer than 16 characters are padded on the right with zeros. If S
is a character array, each row is interpreted as a double-precision number.

NaNs, infinities and denorms are handled correctly.

Example hex2num('400921fb54442d18')

returns Pi.

hex2num('bff')

returns

ans =

 -1

See Also num2hex, hex2dec, sprintf, format

hgexport

2-1064

2hgexportPurpose Export figure

Syntax hgexport(fig, 'filename')
hgexport(fig, '-clipboard')

Description hgexport(h,filename) writes figure h to the file filename.

hgexport(fig,'-clipboard') writes figure h to the Windows clipboard.

The format in which the figure is exported is determined by which renderer you
use. The Painters renderer generates a metafile. The ZBuffer and OpenGL
renderers generate a bitmap.

See Also print

hggroup

2-1065

2hggroupPurpose Create hggroup object

Syntax h = hggroup
h = hggroup(...,'PropertyName',propertyvalue)

Description An hggroup object can be the parent of any axes children, including other
hggroup objects. You can use hggroup objects to form a group of objects that can
be treated as a single object with respect to the following cases:

• Visible — Setting the hggroup object’s Visible property also sets each child
object’s Visible property to the same value.

• Selectable — Setting each hggroup child object’s HitTest property to off
enables you to select all children by clicking any child object.

• Current object — Setting each hggroup child object’s HitTest property to off
enables the hggroup object to become the current object when any child
object is picked. See the next section for an example.

Examples This example defines a callback for the ButtonDownFcn property of an hggroup
object. In order for the hggroup to receive the mouse button down event that
executes the ButtonDownFcn callback, the HitTest properties of all the line
objects must be set to off. The event is then passed up the hierarchy to the
hggroup.

The following function creates a random set of lines that are parented to an
hggroup object. The subfunction set_lines defines a callback that executes
when the mouse button is pressed over any of the lines. The callback simply
increases the widths of all the lines by 1 with each button press.

Note If you are using the MATLAB help browser, you can run this example
or open it in the MATLAB editor.

function doc_hggroup
hg = hggroup('ButtonDownFcn',@set_lines);
hl = line(randn(5),randn(5),'HitTest','off','Parent',hg);

function set_lines(cb,eventdata)
hl = get(cb,'Children');% cb is handle of hggroup object

hggroup

2-1066

lw = get(hl,'LineWidth');% get current line widths
set(hl,{'LineWidth'},num2cell([lw{:}]+1,[5,1])')

Note that selecting any one of the lines selects all the lines. (To select an object,
enable plot edit mode by selecting Plot Edit from the Tools menu.)

Instance Diagram for This Example
The following diagram shows in object hierarchy created by this example.

See Also hgtransform

See Group Objects for more information and examples.

See Function Handle Callbacks for information on how to use function handles
to define callbacks.

Hggroup
Properties

Setting Default Properties
You can set default hggroup properties on the axes, figure, and root levels.

set(0,'DefaultHggroupProperty',PropertyValue...)
set(gcf,'DefaultHggroupProperty',PropertyValue...)
set(gca,'DefaultHggroupProperty',PropertyValue...)

where Property is the name of the hggroup property whose default value you
want to set and PropertyValue is the value you are specifying. Use set and get
to access the hggroup properties.

Axes

Hggroup

Line Line LineLineLine

hggroup

2-1067

Property Name Property Description Property Value

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
hggroup object children (useful for
animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Hggroup object children are
highlighted when selected (Selected
property set to on).

Values: on, off
Default: on

Visible Makes the hggroup children visible or
invisible

Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the hggroup
object’s handle is visible to other
functions

Values: on, callback, off
Default: on

HitTest Determines whether the hggroup
object can become the current object
(see the figure CurrentObject
property)

Values: on, off
Default: on

General Information About the Hggroup Object

Children Any axes child can be the child of an
hggroup object.

Values: handles of objects

Parent The parent of an hggroup object can be
an axes, hggroup, or hgtransform
object.

Value: object handle

Selected Indicates whether the hggroup object
is in a selected state

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

hggroup

2-1068

Type The type of graphics object (read only) Value: the string 'hggroup'

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BeingDeleted Query this property to see if object is
being deleted.

Values: on | off
Read only

BusyAction Specifies how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Defines callback routine that executes
when mouse button is pressed over the
hggroup object’s children

Value: string or function handle
Default: '' (empty string)

CreateFcn Defines callback routine that executes
when hggroup object is created

Value: string or function handle
Default: '' (empty string)

DeleteFcn Defines callback routine that executes
when hggroup object is deleted (via
close or delete)

Value: string or function handle
Default: '' (empty string)

Interruptible Determines whether callback routine
can be interrupted

Value: on, off
Default: on (can be interrupted)

UIContextMenu Associates a context menu with the
hggroup object

Value: handle of a
Uicontextmenu

Property Name Property Description Property Value

Hggroup Properties

2-1069

2Hggroup PropertiesModifying
Properties

You can set and query graphics object properties using the set and get
commands.

To change the default values of properties, see Setting Default Property
Values.

See Group Objects for general information on this type of object.

Hggroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine whether objects are in the process of being
deleted. MATLAB sets the BeingDeleted property to on when the object’s
delete function callback is called (see the DeleteFcn property). It remains set
to on while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callbacks. If
there is a callback function executing, callbacks invoked subsequently always
attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

Hggroup Properties

2-1070

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is over the children of the hggroup object.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the hggroup object. An array containing the handles of all objects
parented to the hggroup object (whether visible or not).

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not appear in the hggroup Children property unless you
set the Root ShowHiddenHandles property to on:

set(0,'ShowHiddenHandles','on')

Clipping {on} | off

Clipping mode. MATLAB clips stairs plots to the axes plot box by default. If you
set Clipping to off, lines might be displayed outside the axes plot box.

CreateFcn string or function handle

Callback executed during object creation. This property defines a callback
routine that executes when MATLAB creates an hggroup object. You must
define this property as a default value for hggroup objects. For example, the
statement

set(0,'DefaultStairsCreateFcn',@myCreateFcn)

defines a default value on the Root level that applies to every hggroup object
created in a MATLAB session. Whenever you create an hggroup object, the
function associated with the function handle @myCreateFcn executes.

Hggroup Properties

2-1071

MATLAB executes the callback after setting all the hggroup object’s properties.
Setting the CreateFcn property on an existing hggroup object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
hggroup object is deleted (e.g., this might happen when you issue a delete
command on the hggroup object, its parent axes, or the figure containing it).
MATLAB executes the callback before destroying the object’s properties so the
callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase hggroup child objects. Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects are redrawn
is necessary to improve performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

• none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

• xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage

Hggroup Properties

2-1072

the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if
the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

• background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (e.g., performing an XOR of a pixel
color with that of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the hggroup object.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might

Hggroup Properties

2-1073

potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility
When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility
When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Overriding Handle Visibility
You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Pickable by mouse click. HitTest determines whether the hggroup object can
become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click on the hggroup child
objects. Note that to pick the hggroup object, its children must have their
HitTest property set to off.

If the hggroup object’s HitTest is off, clicking it picks the object behind it.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an hggroup object callback can be interrupted by callbacks invoked
subsequently.

Hggroup Properties

2-1074

Only callbacks defined for the ButtonDownFcn property are affected by the
Interruptible property. MATLAB checks for events that can interrupt a
callback only when it encounters a drawnow, figure, getframe, or pause
command in the routine. See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from an hggroup property. Note that MATLAB
does not save the state of variables or the display (e.g., the handle returned by
the gca or gcf command) when an interruption occurs.

Parent axes handle

Parent of hggroup object. This property contains the handle of the hggroup
object’s parent object. The parent of an hggroup object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
handles at the corners and midpoints of hggroup child objects if the
SelectionHighlight property is also on (the default).

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing selection handles on the
hggroup child objects. When SelectionHighlight is off, MATLAB does not
draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create an hggroup object and set the Tag property:

t = hggroup('Tag','group1')

Hggroup Properties

2-1075

When you want to access the object, you can use findobj to find its handle. For
example,

h = findobj('Tag','group1');

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For hggroup objects, Type is 'hggroup'. The following
statement finds all the hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the hggroup object. Assign this property the
handle of a uicontextmenu object created in the hggroup object’s figure. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the hggroup object.

UserData array

User-specified data. This property can be any data you want to associate with
the hggroup object (including cell arrays and structures). The hggroup object
does not set values for this property, but you can access it using the set and
get functions.

Visible {on} | off

Visibility of hggroup object and its children. By default, hggroup object
visibility is on. This means all children of the hggroup are visible unless the
child object’s Visible property is set to off. Setting an hggroup object’s
Visible property to off also makes its children invisible.

hgload

2-1076

2hgloadPurpose Load Handle Graphics object hierarchy from a file

Syntax h = hgload('filename')
[h,old_props] = hgload(...,property_structure)
h = hgload(...,'all')

Description h = hgload('filename') loads Handle Graphics objects and its children if
any from the FIG-file specified by filename and returns handles to the
top-level objects. If filename contains no extension, then MATLAB adds the
.fig extension.

[h,old_prop_values] = hgload(...,property_structure) overrides the
properties on the top-level objects stored in the FIG-file with the values in
property_structure, and returns their previous values in old_prop_values.

property_structure must be a structure having field names that correspond
to property names and values that are the new property values.

old_prop_values is a cell array equal in length to h, containing the old values
of the overridden properties for each object. Each cell contains a structure
having field names that are property names, each of which contains the
original value of each property that has been changed. Any property specified
in property_structure that is not a property of a top-level object in the
FIG-file is not included in old_prop_values.

hgload(...,'all') overrides the default behavior, which does not reload
nonserializable objects saved in the file. These objects include the default
toolbars and default menus.

Nonserializable objects (such as the default toolbars and the default menus)
are normally not reloaded because they are loaded from different files at figure
creation time. This allows revisions of the default menus and toolbars to occur
without affecting existing FIG-files. Passing the string all to hgload ensures
that any nonserializable objects contained in the file are also reloaded.

Note that, by default, hgsave excludes nonserializable objects from the FIG-file
unless you use the all flag.

See Also hgsave, open

“Figure Windows” for related functions

hgsave

2-1077

2hgsavePurpose Saves a Handle Graphics object hierarchy to a file

Syntax hgsave('filename')
hgsave(h,'filename')
hgsave(...,'all')
hgsave(...,'-v6')

Description hgsave('filename') saves the current figure to a file named filename.

hgsave(h,'filename') saves the objects identified by the array of handles h to
a file named filename. If you do not specify an extension for filename, then
MATLAB adds the extension .fig. If h is a vector, none of the handles in h may
be ancestors or descendents of any other handles in h.

hgsave(...,'all') overrides the default behavior, which does not save
nonserializable objects. Nonserializable objects include the default toolbars
and default menus. This allows revisions of the default menus and toolbars to
occur without affecting existing FIG-files and also reduces the size of FIG-files.
Passing the string all to hgsave ensures that nonserializable objects are also
saved.

Note: the default behavior of hgload is to ignore nonserializable objects in the
file at load time. This behavior can be overwritten using the all argument with
hgload.

hgsave(...,'-v6') saves the FIG-file in a format that can be loaded by
versions prior to MATLAB 7.

Full Backward Compatibility
When creating a figure you want to save and use in a MATLAB version prior
to MATLAB 7, use the 'v6' option with the plotting function and the '-v6'
option for hgsave. Check the reference page for the plotting function you are
using for more information.

See Plot Objects and Backward Compatibility for more information.

See Also hgload, open, save

“Figure Windows” for related functions

hgtransform

2-1078

2hgtransformPurpose Create an hgtransform graphics object

Syntax h = hgtransform
h = hgtransform('PropertyName',PropertyValue,...)

Description h = hgtransform creates an hgtransform object and returns its handle.

h = hgtransform('PropertyName',PropertyValue,...) creates an
hgtransform object with the property value settings specified in the argument
list.

Hgtransform objects can contain other objects and thereby enable you to treat
the hgtransform and its children as a single entity with respect to visibility,
size, orientation, etc. You can group objects together by parenting them to a
single hgtransform object (i.e., setting the object’s Parent property to the
hgtransform object’s handle). For example,

h = hgtransform;
surface('Parent',h,...)

The primary advantage of parenting objects to an hgtransform object is that it
provides the ability to perform transformations (e.g., translation, scaling,
rotation, etc.) on the child objects in unison.

An hgtransform object can be the parent of any number of axes children
including other hgtransform objects.

The parent of an hgtransform object is either an axes object or another
hgtransform.

Although you cannot see an hgtransform object, setting its Visible property to
off makes all its children invisible as well.

Note Many plotting functions clear the axes (i.e., remove axes children)
before drawing the graph. Clearing the axes also deletes any hgtransform
objects in the axes.

hgtransform

2-1079

More Information

• The references in the “See Also” section for information on types of
transforms

• The “Examples” section provides examples that illustrate the use of
transforms.

Examples Transforming a Group of Objects
This example shows how to create a 3-D star with a group of surface objects
parented to a single hgtransform object. The hgtransform object is then rotated
about the z-axis while its size is scaled.

Note If you are using the MATLAB help browser, you can run this example
or open it in the MATLAB editor.

1 Create an axes and adjust the view. Set the axes limits to prevent auto limit
selection during scaling.
ax = axes('XLim',[-1.5 1.5],'YLim',[-1.5 1.5],...

'ZLim',[-1.5 1.5]);
view(3); grid on; axis equal

2 Create the objects you want to parent to the hgtransform object.
[x y z] = cylinder([.2 0]);
h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');
h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

3 Create an hgtransform object and parent the surface objects to it.
t = hgtransform('Parent',ax);
set(h,'Parent',t)

4 Select a renderer and show the objects.
set(gcf,'Renderer','opengl')
drawnow

hgtransform

2-1080

5 Initialize the rotation and scaling matrix to the identity matrix (eye).
Rz = eye(4);
Sxy = Rz;

6 Form the z-axis rotation matrix and the scaling matrix. Rotate 360 degrees
(2*pi radians) and scale by using the increasing values of r.
for r = 1:.1:2*pi

% Z-axis rotation matrix
Rz = makehgtform('zrotate',r);
% Scaling matrix
Sxy = makehgtform('scale',r/4);
% Concatenate the transforms and
% set the hgtransform Matrix property

 set(t,'Matrix',Rz*Sxy)
 drawnow
end
pause(1)

7 Reset to the original orientation and size using the identity matrix.

set(t,'Matrix',eye(4))

Transforming Objects Independently
This example creates two hgtransform objects to illustrate how each can be
transformed independently within the same axes. One of the hgtransform
objects has been moved (by translation) away from the origin.

Note If you are using the MATLAB help browser, you can run this example
or open it in the MATLAB editor.

1 Create and set up the axes object that will be the parent of both hgtransform
objects. Set the limits to accommodate the translated object.
ax = axes('XLim',[-2 1],'YLim',[-2 1],'ZLim',[-1 1]);
view(3); grid on; axis equal

2 Create the surface objects to group.
[x y z] = cylinder([.3 0]);

hgtransform

2-1081

h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');
h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

3 Create the hgtransform objects and parent them to the same axes.
t1 = hgtransform('Parent',ax);
t2 = hgtransform('Parent',ax);

4 Set the renderer to use OpenGL.
set(gcf,'Renderer','opengl')

5 Parent the surfaces to hgtransform t1, then copy the surface objects and
parent the copies to hgtransform t2.
set(h,'Parent',t1)
h2 = copyobj(h,t2);

6 Translate the second hgtransform object away from the first hgtransform
object and display the result.
Txy = makehgtform('translate',[-1.5 -1.5 0]);
set(t2,'Matrix',Txy)
drawnow

7 Rotate both hgtransform objects in opposite directions. Hgtransform t2 has
already been translated away from the origin, so to rotate it about its z-axis
you must first translate it to its original position. You can do this with the
identity matrix (eye).

% rotate 5 times (2pi radians = 1 rotation)
for r = 1:.1:20*pi

% Form z-axis rotation matrix
Rz = makehgtform('zrotate',r);
% Set transforms for both hgtransform objects
set(t1,'Matrix',Rz)
set(t2,'Matrix',Txy*inv(Rz)*I)
drawnow

end

hgtransform

2-1082

See Also hggroup, makehgtform

For more information about transforms, see Tomas Moller and Eric Haines,
Real-Time Rendering, A K Peters, Ltd., 1999.

See Group Objects for more information and examples.

Setting Default
Properties

You can set default hgtransform properties on the axes, figure, and root levels:

set(0,'DefaultHgtransformPropertyName',propertyvalue,...)
set(gcf,'DefaultHgtransformPropertyName',propertyvalue,...)
set(gca,'DefaultHgtransformPropertyName',propertyvalue,...)

where PropertyName is the name of the hgtransform property and
propertyvalue is the value you are specifying. Use set and get to access
hgtransform properties.

Property List The following table lists all hgtransform properties and provides a brief
description of each. The property names link to expanded descriptions of the
properties.

Property Name Property Description Property Value

Specifying a Transformation Matrix

Matrix Applies the transformation matrix
to the hgtransform object and
objects parented to it

Value: 4-by-4 transform
matrix
Default: identity matrix

General Information About Hgtransform Object

Children Handles of the axes children objects
that are parented to the
hgtransform object

Value: vector of handles

Parent Handle of the axes, hggroup, or
hgtransform object containing the
hgtransform object

Value: scalar handle

Selected Currently not implemented Values: on, off
Default: on

hgtransform

2-1083

Tag User-specified label Value: any string
Default: '' (empty string)

Type Type of graphics object (read only) Value: the string
'hgtransform'

UserData User-specified data Value: any array
Default: [] (empty matrix)

Visible Makes hgtransform (and all its
Children) visible or invisible

Values: on, off
Default: on

Controlling Callback Routine Execution

BeingDeleted Query to see whether object is being
deleted.

Values: on | off
Read only

BusyAction Specifies how to handle events that
interrupt executing callback
routines

Values: cancel, queue
Default: queue

ButtonDownFcn Defines a callback that executes
when a button is pressed over the
hgtransform object

Value: string or function
handle
Default: an empty string

CreateFcn Defines a callback that executes
when an hgtransform object is
created

Value: string or function
handle
Default: an empty string

DeleteFcn Defines a callback that executes
when an hgtransform object is
deleted

Value: string or function
handle
Default: an empty string

Interruptible Controls whether an executing
callback can be interrupted

Values: on, off Default: on

UIContextMenu Associates a context menu with the
hgtransform object

Value: handle of a
uicontextmenu

HandleVisibility Controls access to hgtransform
object’s handle

Values: on, callback, off
Default: on

Property Name Property Description Property Value

Hgtransform Properties

2-1084

2Hgtransform PropertiesModifying
Properties

You can set and query graphics object properties using the set and get
commands.

To change the default values of properties, see Setting Default Property
Values.

See Group Objects for general information on this type of object.

Hgtransform
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine whether objects are in the process of being
deleted. MATLAB sets the BeingDeleted property to on when the object’s
delete function callback is called (see the DeleteFcn property). It remains set
to on while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions might not need to perform
actions on objects if the objects are going to be deleted, and therefore can check
the object’s BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
functions. If there is a callback executing, callbacks invoked subsequently
always attempt to interrupt it.

If the Interruptible property of the object whose callback is executing is set
to on (the default), then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

Hgtransform Properties

2-1085

ButtonDownFcn string or function handle

Button press callback function. A callback that executes whenever you press a
mouse button while the pointer is within the extent of the hgtransform object,
but not over another graphics object. The extent of an hgtransform object is the
smallest rectangle that encloses all the children. Note that you cannot execute
the hgtransform object’s button down function if it has no children.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callbacks.

Children array of graphics object handles

Children of the hgtransform object. An array containing the handles of all
graphics objects parented to the hgtransform object (whether visible or not).

The graphics objects that can be children of an hgtransform are images, lights,
lines, patches, rectangles, surfaces, and text. You can change the order of the
handles and thereby change the stacking of the objects on the display.

Note that if a child object’s HandleVisibility property is set to callback or
off, its handle does not show up in the hgtransform Children property unless
you set the Root ShowHiddenHandles property to on.

Clipping {on} | off

This property has no effect on hgtransform objects.

CreateFcn string or function handle

Callback executed during object creation. This property defines a callback
routine that executes when MATLAB creates an hgtransform object. You must
define this property as a default value for hgtransform objects. For example,
the statement

set(0,'DefaultHgtransformCreateFcn',@myCreateFcn)

Hgtransform Properties

2-1086

defines a default value on the root level that applies to every hgtransform
object created in a MATLAB session. Whenever you create an hgtransform
object, the function associated with the function handle @myCreateFcn
executes.

MATLAB executes the callback after setting all the hgtransform object’s
properties. Setting the CreateFcn property on an existing hgtransform object
has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Callback executed during object deletion. A callback that executes when the
hgtransform object is deleted (e.g., this might happen when you issue a delete
command on the hgtransform object, its parent axes, or the figure containing
it). MATLAB executes the callback before destroying the object’s properties so
the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is accessible only
through the Root CallbackObject property, which can be queried using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

See the BeingDeleted property for related information.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase hgtransform child objects (light objects have no erase mode). Alternative
erase modes are useful for creating animated sequences, where control of the
way individual objects are redrawn is necessary to improve performance and
obtain the desired effect.

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are rendered
correctly. This mode produces the most accurate picture, but is the slowest.
The other modes are faster, but do not perform a complete redraw and are
therefore less accurate.

Hgtransform Properties

2-1087

• none — Do not erase objects when they are moved or destroyed. While the
objects are still visible on the screen after erasing with EraseMode none, you
cannot print these objects because MATLAB stores no information about
their former locations.

• xor— Draw and erase the object by performing an exclusive OR (XOR) with
each pixel index of the screen behind it. Erasing the object does not damage
the color of the objects behind it. However, the color of the erased object
depends on the color of the screen behind it and it is correctly colored only
when it is over the axes background color (or the figure background color if
the axes Color property is set to none). That is, it isn’t erased correctly if
there are objects behind it.

• background — Erase the graphics objects by redrawing them in the axes
background color, (or the figure background color if the axes Color property
is set to none). This damages other graphics objects that are behind the
erased object, but the erased object is always properly colored.

Set the axes background color with the axes Color property. Set the figure
background color with the figure Color property.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB can
mathematically combine layers of colors (e.g., performing an XOR operation on
a pixel color and the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

You can use the MATLAB getframe command or other screen capture
applications to create an image of a figure containing nonnormal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally accessing the hgtransform object.

• on — Handles are always visible when HandleVisibility is on.

Hgtransform Properties

2-1088

• callback — Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by callback
routines, but not from within functions invoked from the command line. This
provides a means to protect GUIs from command-line users, while allowing
callback routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles invisible at all times.
This might be necessary when a callback invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string) and so
temporarily hides its own handles during the execution of that function.

Functions Affected by Handle Visibility
When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

Properties Affected by Handle Visibility
When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Overriding Handle Visibility
You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties). See also findall.

Handle Validity
Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties and pass it to any function that operates on handles.

HitTest {on} | off

Pickable by mouse click. HitTest determines whether the hgtransform object
can become the current object (as returned by the gco command and the figure
CurrentObject property) as a result of a mouse click within the limits of the
hgtransform object. If HitTest is off, clicking the hgtransform picks the object
behind it.

Hgtransform Properties

2-1089

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an hgtransform object callback can be interrupted by callbacks
invoked subsequently. Only callbacks defined for the ButtonDownFcn property
are affected by the Interruptible property. MATLAB checks for events that
can interrupt a callback only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property for related
information.

Setting Interruptible to on allows any graphics object’s callback to interrupt
callback routines originating from an hgtransform property. Note that
MATLAB does not save the state of variables or the display (e.g., the handle
returned by the gca or gcf command) when an interruption occurs.

Matrix 4-by-4 matrix

Transformation matrix applied to hgtransform object and its children. The
hgtransform object applies the transformation matrix to all its children.

See Group Objects for more information and examples.

Parent figure handle

Parent of hgtransform object. This property contains the handle of the
hgtransform object’s parent object. The parent of an hgtransform object is the
axes, hggroup, or hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When you set this property to on, MATLAB displays selection
handles on all child objects of the hgtransform if the SelectionHighlight
property is also on (the default).

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing selection handles on the
objects parented to the hgtransform. When SelectionHighlight is off,
MATLAB does not draw the handles.

Hgtransform Properties

2-1090

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callbacks.

For example, you might create an hgtransform object and set the Tag property:

t = hgtransform('Tag','subgroup1')

When you want to access the hgtransform object to add another object, you can
use findobj to find the hgtransform object’s handle. The following statement
adds a line to subgroup1 (assuming x and y are defined).

line('XData',x,'YData',y,'Parent',findobj('Tag','subgroup1'))

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For hgtransform objects, Type is set to 'hgtransform'. The
following statement finds all the hgtransform objects in the current axes.

t = findobj(gca,'Type','hgtransform');

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the hgtransform object. Assign this property the
handle of a uicontextmenu object created in the hgtransform object’s figure.
Use the uicontextmenu function to create the context menu. MATLAB displays
the context menu whenever you right-click over the extent of the hgtransform
object.

UserData array

User-specified data. This property can be any data you want to associate with
the hgtransform object (including cell arrays and structures). The hgtransform
object does not set values for this property, but you can access it using the set
and get functions.

Visible {on} | off

Visibility of hgtransform object and its children. By default, hgtransform object
visibility is on. This means all children of the hgtransform are visible unless

Hgtransform Properties

2-1091

the child object’s Visible property is set to off. Setting an hgtransform object’s
Visible property to off also makes its children invisible.

hidden

2-1092

2hiddenPurpose Remove hidden lines from a mesh plot

Syntax hidden on
hidden off
hidden

Description Hidden line removal draws only those lines that are not obscured by other
objects in the field of view.

hidden on turns on hidden line removal for the current graph so lines in the
back of a mesh are hidden by those in front. This is the default behavior.

hidden off turns off hidden line removal for the current graph.

hidden toggles the hidden line removal state.

Algorithm hidden on sets the FaceColor property of a surface graphics object to the
background Color of the axes (or of the figure if axes Color is none).

Examples Set hidden line removal off and on while displaying the peaks function.

mesh(peaks)
hidden off
hidden on

See Also shading, mesh

The surface properties FaceColor and EdgeColor

“Creating Surfaces and Meshes” for related functions

hilb

2-1093

2hilbPurpose Hilbert matrix

Syntax H = hilb(n)

Description H = hilb(n) returns the Hilbert matrix of order n.

Definition The Hilbert matrix is a notable example of a poorly conditioned matrix [1]. The
elements of the Hilbert matrices are .

Examples Even the fourth-order Hilbert matrix shows signs of poor conditioning.

cond(hilb(4)) =
1.5514e+04

Note See the M-file for a good example of efficient MATLAB programming
where conventional for loops are replaced by vectorized statements.

See Also invhilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

H i j,() 1 i j 1–+()⁄=

hist

2-1094

2histPurpose Histogram plot

Syntax n = hist(Y)
n = hist(Y,x)
n = hist(Y,nbins)
[n,xout] = hist(...)
hist(...)
hist(axes_handle,...)

Description A histogram shows the distribution of data values.

n = hist(Y) bins the elements in vector Y into 10 equally spaced containers
and returns the number of elements in each container as a row vector. If Y is
an m-by-p matrix, hist treats the columns of Y as vectors and returns a 10-by-p
matrix n. Each column of n contains the results for the corresponding column
of Y.

n = hist(Y,x) where x is a vector, returns the distribution of Y among
length(x) bins with centers specified by x. For example, if x is a 5-element
vector, hist distributes the elements of Y into five bins centered on the x-axis
at the elements in x. Note: use histc if it is more natural to specify bin edges
instead of centers.

n = hist(Y,nbins) where nbins is a scalar, uses nbins number of bins.

[n,xout] = hist(...) returns vectors n and xout containing the frequency
counts and the bin locations. You can use bar(xout,n) to plot the histogram.

hist(...) without output arguments produces a histogram plot of the output
described above. hist distributes the bins along the x-axis between the
minimum and maximum values of Y.

hist(axes_handle,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

Remarks All elements in vector Y or in one column of matrix Y are grouped according to
their numeric range. Each group is shown as one bin.

hist

2-1095

The histogram’s x-axis reflects the range of values in Y. The histogram’s y-axis
shows the number of elements that fall within the groups; therefore, the y-axis
ranges from 0 to the greatest number of elements deposited in any bin.

The histogram is created with a patch graphics object. If you want to change
the color of the graph, you can set patch properties. See the “Example” section
for more information. By default, the graph color is controlled by the current
colormap, which maps the bin color to the first color in the colormap.

Examples Generate a bell-curve histogram from Gaussian data.

x = 2.9:0.1:2.9;
y = randn(10000,1);
hist(y,x)

Change the color of the graph so that the bins are red and the edges of the bins
are white.

h = findobj(gca,'Type','patch');
set(h,'FaceColor','r','EdgeColor','w')

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

400

hist

2-1096

See Also bar, ColorSpec, histc, patch, rose, stairs

“Specialized Plotting” for related functions

Histograms for examples

−3 −2 −1 0 1 2 3
0

50

100

150

200

250

300

350

400

histc

2-1097

2histcPurpose Histogram count

Syntax n = histc(x,edges)
n = histc(x,edges,dim)
[n,bin] = histc(...)

Description n = histc(x,edges) counts the number of values in vector x that fall between
the elements in the edges vector (which must contain monotonically
nondecreasing values). n is a length(edges) vector containing these counts.

n(k) counts the value x(i) if edges(k) <= x(i) < edges(k+1). The last bin
counts any values of x that match edges(end). Values outside the values in
edges are not counted. Use -inf and inf in edges to include all non-NaN values.

For matrices, histc(x,edges) returns a matrix of column histogram counts.
For N-D arrays, histc(x,edges) operates along the first nonsingleton
dimension.

n = histc(x,edges,dim) operates along the dimension dim.

[n,bin] = histc(...) also returns an index matrix bin. If x is a vector,
n(k) = sum(bin==k). bin is zero for out of range values. If x is an M-by-N matrix,
then

for j=1:N, n(k,j) = sum(bin(:,j)==k); end

To plot the histogram, use the bar command.

See Also hist

“Specialized Plotting” for related functions

hold

2-1098

2hold Purpose Hold current graph in the figure

Syntax hold on
hold off
hold all
hold
hold(axes_handle,...)

Description The hold function determines whether new graphics objects are added to the
graph or replace objects in the graph.

hold on retains the current plot and certain axes properties so that
subsequent graphing commands add to the existing graph.

hold off resets axes properties to their defaults before drawing new plots.
hold off is the default.

hold all holds the plot and the current line color and line style so that
subsequent plotting commands do not reset the ColorOrder and
LineStyleOrder property values to the beginning of the list. Plotting
commands continue cyclicing through the predefined colors and linestyles from
where the last plot stopped in the list.

hold toggles the hold state between adding to the graph and replacing the
graph.

hold(axes_handle,...) applies the hold to the axes identified by the handle
axes_handle.

Remarks Test the hold state using the ishold function.

Although the hold state is on, some axes properties change to accommodate
additional graphics objects. For example, the axes’ limits increase when the
data requires them to do so.

The hold function sets the NextPlot property of the current figure and the
current axes. If several axes objects exist in a figure window, each axes has its
own hold state. hold also creates an axes if one does not exist.

hold on sets the NextPlot property of the current figure and axes to add.

hold

2-1099

hold off sets the NextPlot property of the current axes to replace.

hold toggles the NextPlot property between the add and replace states.

See Also axis, cla, ishold, newplot

The NextPlot property of axes and figure graphics objects.

“Basic Plots and Graphs” for related functions

home

2-1100

2homePurpose Move the cursor to the upper left corner of the Command Window

Syntax home

Description home moves the cursor to the upper-left corner of the Command Window. You
can use the scroll bar to see the history of previous functions.

Examples Use home in an M-file to return the cursor to the upper-left corner of the screen.

See Also clc

horzcat

2-1101

2horzcatPurpose Horizontal concatenation

Syntax C = horzcat(A1,A2,...)

Description C = horzcat(A1,A2,...) horizontally concatenates matrices A1, A2, and so
on. All matrices in the argument list must have the same number of rows.

horzcat concatenates N-dimensional arrays along the second dimension. The
first and remaining dimensions must match.

MATLAB calls C = horzcat(A1,A2,...) for the syntax C = [A1 A2 ...] when
any of A1, A2, etc., is an object.

Examples Create a 3-by-5 matrix, A, and a 3-by-3 matrix, B. Then horizontally
concatenate A and B.

A = magic(5); % Create 3-by-5 matrix, A
A(4:5,:) = []

A =

 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22

B = magic(3)*100 % Create 3-by-3 matrix, B

B =

 800 100 600
 300 500 700
 400 900 200

C = horzcat(A,B) % Horizontally concatenate A and B

C =

 17 24 1 8 15 800 100 600

horzcat

2-1102

 23 5 7 14 16 300 500 700
 4 6 13 20 22 400 900 200

See Also vertcat, cat

hostid

2-1103

2hostid Purpose Return MATLAB server host identification number

Syntax id = hostid

Description id = hostid usually returns a single element cell array containing the
identifier as a string. UNIX systems may have more than one identifier. In this
case, hostid returns a cell array with an identifier in each cell.

hsv2rgb

2-1104

2hsv2rgbPurpose Convert HSV colormap to RGB colormap

Syntax M = hsv2rgb(H)

Description M = hsv2rgb(H) converts a hue-saturation-value (HSV) colormap to a
red-green-blue (RGB) colormap. H is an m-by-3 matrix, where m is the number
of colors in the colormap. The columns of H represent hue, saturation, and
value, respectively. M is an m-by-3 matrix. Its columns are intensities of red,
green, and blue, respectively.

rgb_image = hsv2rgb(hsv_image) converts the HSV image to the equivalent
RGB image. HSV is an m-by-n-by-3 image array whose three planes contain
the hue, saturation, and value components for the image. RGB is returned as
an m-by-n-by-3 image array whose three planes contain the red, green, and
blue components for the image.

Remarks As H(:,1) varies from 0 to 1, the resulting color varies from red through yellow,
green, cyan, blue, and magenta, and returns to red. When H(:,2) is 0, the
colors are unsaturated (i.e., shades of gray). When H(:,2) is 1, the colors are
fully saturated (i.e., they contain no white component). As H(:,3) varies from
0 to 1, the brightness increases.

The MATLAB hsv colormap uses hsv2rgb([hue saturation value]) where
hue is a linear ramp from 0 to 1, and saturation and value are all 1’s.

See Also brighten, colormap, rgb2hsv

“Color Operations” for related functions

i

2-1105

2i
Purpose Imaginary unit

Syntax i
a+bi
x+i*y

Description As the basic imaginary unit sqrt(-1), i is used to enter complex numbers.
Since i is a function, it can be overridden and used as a variable. This permits
you to use i as an index in for loops, etc.

If desired, use the character i without a multiplication sign as a suffix in
forming a complex numerical constant.

You can also use the character j as the imaginary unit.

Examples Z = 2+3i
Z = x+i*y
Z = r*exp(i*theta)

See Also conj, imag, j, real

if

2-1106

2ifPurpose Conditionally execute statements

Syntax if expression
 statements
end

Description MATLAB evaluates the expression and, if the evaluation yields a logical true
or nonzero result, executes one or more MATLAB commands denoted here as
statements.

When you are nesting ifs, each if must be paired with a matching end.

When using elseif and/or else within an if statement, the general form of
the statement is

if expression1
 statements1
elseif expression2
 statements2
else
 statements3
end

Arguments expression
expression is a MATLAB expression, usually consisting of variables or smaller
expressions joined by relational operators (e.g., count < limit), or logical
functions (e.g., isreal(A)).

Simple expressions can be combined by logical operators (&,|,~) into compound
expressions such as the following. MATLAB evaluates compound expressions
from left to right, adhering to operator precedence rules.

(count < limit) & ((height - offset) >= 0)

statements
statements is one or more MATLAB statements to be executed only if the
expression is true or nonzero.

if

2-1107

Remarks Nonscalar Expressions
If the evaluated expression yields a nonscalar value, then every element of
this value must be true or nonzero for the entire expression to be considered
true. For example, the statement if (A < B) is true only if each element of
matrix A is less than its corresponding element in matrix B. See Example 2,
below.

Partial Evaluation of the expression Argument
Within the context of an if or while expression, MATLAB does not necessarily
evaluate all parts of a logical expression. In some cases it is possible, and often
advantageous, to determine whether an expression is true or false through only
partial evaluation.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no need to
evaluate B and MATLAB does not do so. In statement 2, if A is nonzero, then
the expression is true, regardless of B. Again, MATLAB does not evaluate the
latter part of the expression.

1) if (A & B) 2) if (A | B)

You can use this property to your advantage to cause MATLAB to evaluate a
part of an expression only if a preceding part evaluates to the desired state.
Here are some examples.

while (b ~= 0) & (a/b > 18.5)

if exist('myfun.m') & (myfun(x) >= y)

if iscell(A) & all(cellfun('isreal', A))

Examples Example 1 - Simple if Statement
In this example, if both of the conditions are satisfied, then the student passes
the course.

if ((attendance >= 0.90) & (grade_average >= 60))
 pass = 1;
end;

Example 2 - Nonscalar Expression
Given matrices A and B,

if

2-1108

A = B =
 1 0 1 1
 2 3 3 4

See Also else, elseif, end, for, while, switch, break, return, relational operators,
logical operators (elementwise and short-circuit)

Expression Evaluates As Because

A < B false A(1,1) is not less than B(1,1).

A < (B + 1) true Every element of A is less than that
same element of B with 1 added.

A & B false A(1,2) & B(1,2) is false.

B < 5 true Every element of B is less than 5.

ifft

2-1109

2ifftPurpose Inverse discrete Fourier transform

Syntax y = ifft(X)
y = ifft(X,n)
y = ifft(X,[],dim)
y = ifft(X,n,dim)
y = ifft(..., 'symmetric')
y = ifft(..., 'nonsymmetric')

Description y = ifft(X) returns the inverse discrete Fourier transform (DFT) of vector X,
computed with a fast Fourier transform (FFT) algorithm. If X is a matrix, ifft
returns the inverse DFT of each column of the matrix.

ifft tests X to see whether vectors in X along the active dimension are
conjugate symmetric. If so, the computation is faster and the output is real. An
N-element vector x is conjugate symmetric if
x(i) = conj(x(mod(N-i+1,N)+1)) for each element of x.

If X is a multidimensional array, ifft operates on the first non-singleton
dimension.

y = ifft(X,n) returns the n-point inverse DFT of vector X.

y = ifft(X,[],dim) and y = ifft(X,n,dim) return the inverse DFT of X
across the dimension dim.

y = ifft(..., 'symmetric') causes ifft to treat X as conjugate symmetric
along the active dimension. This option is useful when X is not exactly
conjugate symmetric, merely because of round-off error.

y = ifft(..., 'nonsymmetric') is the same as calling ifft(...) without the
argument 'nonsymmetric'.

For any X, ifft(fft(X)) equals X to within roundoff error.

Algorithm The algorithm for ifft(X) is the same as the algorithm for fft(X), except for
a sign change and a scale factor of n = length(X). As for fft, the execution
time for ifft depends on the length of the transform. It is fastest for powers of
two. It is almost as fast for lengths that have only small prime factors. It is
typically several times slower for lengths that are prime or which have large
prime factors.

ifft

2-1110

Note You might be able to increase the speed of ifft using the utility
function fftw, which controls how MATLAB optimizes the algorithm used to
compute an FFT of a particular size and dimension.

Data Type
Support

ifft supports inputs of data types double and single. If you call ifft with
the syntax y = ifft(X, ...), the output y has the same data type as the input
X.

See Also fft, fft2, ifft2, ifftn, ifftshift, fftw, ifft2, ifftn

dftmtx and freqz, in the Signal Processing Toolbox

ifft2

2-1111

2ifft2Purpose Two-dimensional inverse discrete Fourier transform

Syntax Y = ifft2(X)
Y = ifft2(X,m,n)
y = ifft2(..., 'nonsymmetric')
y = ifft2(..., 'nonsymmetric')

Description Y = ifft2(X) returns the two-dimensional inverse discrete Fourier transform
(DFT) of X, computed with a fast Fourier transform (FFT) algorithm. The
result Y is the same size as X.

ifft2 tests X to see whether it is conjugate symmetric. If so, the computation
is faster and the output is real. An M-by-N matrix X is conjugate symmetric if
X(i,j) = conj(X(mod(M-i+1, M) + 1, mod(N-j+1, N) + 1)) for each element
of X.

Y = ifft2(X,m,n) returns the m-by-n inverse fast Fourier transform of
matrix X.

y = ifft2(..., 'symmetric') causes ifft2 to treat X as conjugate symmetric.
This option is useful when X is not exactly conjugate symmetric, merely
because of round-off error.

y = ifft2(..., 'nonsymmetric') is the same as calling ifft2(...) without
the argument 'nonsymmetric'.

For any X, ifft2(fft2(X)) equals X to within roundoff error.

Algorithm The algorithm for ifft2(X) is the same as the algorithm for fft2(X), except
for a sign change and scale factors of [m,n] = size(X). The execution time for
ifft2 depends on the length of the transform. It is fastest for powers of two. It
is almost as fast for lengths that have only small prime factors. It is typically
several times slower for lengths that are prime or which have large prime
factors.

Note You might be able to increase the speed of ifft2 using the utility
function fftw, which controls how MATLAB optimizes the algorithm used to
compute an FFT of a particular size and dimension.

ifft2

2-1112

Data Type
Support

ifft2 supports inputs of data types double and single. If you call ifft2 with
the syntax y = ifft2(X, ...), the output y has the same data type as the
input X.

See Also dftmtx and freqz in the Signal Processing Toolbox, and:

fft2, fftw, fftshift, ifft, ifftn, ifftshift

ifftn

2-1113

2ifftnPurpose Multidimensional inverse discrete Fourier transform

Syntax Y = ifftn(X)
Y = ifftn(X,siz)
y = ifftn(..., 'nonsymmetric')
y = ifftn(..., 'nonsymmetric')

Description Y = ifftn(X) returns the n-dimensional inverse discrete Fourier transform
(DFT) of X, computed with a multidimensional fast Fourier transform (FFT)
algorithm. The result Y is the same size as X.

ifftn tests X to see whether it is conjugate symmetric. If so, the computation is
faster and the output is real. An N1-by-N2-by- ... Nk array X is conjugate
symmetric if

X(i1,i2, ...,ik) = conj(X(mod(N1-i1+1,N1)+1, mod(N2-i2+1,N2)+1,
... mod(Nk-ik+1,Nk)+1))

for each element of X.

Y = ifftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the inverse transform.
The size of the result Y is siz.

y = ifftn(..., 'symmetric') causes ifftn to treat X as conjugate symmetric.
This option is useful when X is not exactly conjugate symmetric, merely
because of round-off error.

y = ifftn(..., 'nonsymmetric') is the same as calling ifftn(...) without
the argument 'nonsymmetric'.

Remarks For any X, ifftn(fftn(X)) equals X within roundoff error.

Algorithm ifftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))
 Y = ifft(Y,[],p);
end

ifftn

2-1114

This computes in-place the one-dimensional inverse DFT along each dimension
of X.

The execution time for ifftn depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only small
prime factors. It is typically several times slower for lengths that are prime or
which have large prime factors.

Note You might be able to increase the speed of ifftn using the utility
function fftw, which controls how MATLAB optimizes the algorithm used to
compute an FFT of a particular size and dimension.

Data Type
Support

ifftn supports inputs of data types double and single. If you call ifftn with
the syntax y = ifftn(X, ...), the output y has the same data type as the
input X.

See Also fftn, fftw, ifft, ifft2, ifftshift

ifftshift

2-1115

2ifftshiftPurpose Inverse FFT shift

Syntax ifftshift(X)
ifftshift(X,dim)

Description ifftshift(X) undoes the results of fftshift.

If X is a vector, iffshift(X) swaps the left and right halves of X. For matrices,
ifftshift(X) swaps the first quadrant with the third and the second quadrant
with the fourth. If X is a multidimensional array, ifftshift(X) swaps
“half-spaces” of X along each dimension.

ifftshift(X,dim) applies the ifftshift operation along the dimension
dim.

See Also fft, fft2, fftn, fftshift

im2frame

2-1116

2im2framePurpose Convert indexed image into movie format

Syntax f = im2frame(X,map)
f = im2frame(X)

Description f = im2frame(X,map) converts the indexed image X and associated colormap
map into a movie frame f. If X is a true color (m-by-n-by-3) image, then map is
optional and has no effect.

Typical usage:

M(1) = im2frame(X1,map);
M(2) = im2frame(X2,map);

...
M(n) = im2frame(Xn,map);
movie(M)

f = im2frame(X) converts the indexed image X into a movie frame f using the
current colormap if X contains an indexed image.

See Also frame2im, movie

“Bit-Mapped Images” for related functions

im2java

2-1117

2im2javaPurpose Convert image to Java image

Syntax jimage = im2java(I)
jimage = im2java(X,MAP)
jimage = im2java(RGB)

Description To work with a MATLAB image in the Java environment, you must convert the
image from its MATLAB representation into an instance of the Java image
class, java.awt.Image.

jimage = im2java(I) converts the intensity image I to an instance of the Java
image class, java.awt.Image.

jimage = im2java(X,MAP) converts the indexed image X, with colormap MAP,
to an instance of the Java image class, java.awt.Image.

jimage = im2java(RGB) converts the RGB image RGB to an instance of the Java
image class, java.awt.Image.

Class Support The input image can be of class uint8, uint16, or double.

Note Java requires uint8 data to create an instance of the Java image class,
java.awt.Image. If the input image is of class uint8, jimage contains the
same uint8 data. If the input image is of class double or uint16, im2java
makes an equivalent image of class uint8, rescaling or offsetting the data as
necessary, and then converts this uint8 representation to an instance of the
Java image class, java.awt.Image.

Example This example reads an image into the MATLAB workspace and then uses
im2java to convert it into an instance of the Java image class.

I = imread('your_image.tif');
javaImage = im2java(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);
frame.getContentPane.add(label);
frame.pack

im2java

2-1118

frame.show

See Also “Bit-Mapped Images” for related functions

imag

2-1119

2imagPurpose Imaginary part of a complex number

Syntax Y = imag(Z)

Description Y = imag(Z) returns the imaginary part of the elements of array Z.

Examples imag(2+3i)

ans =

 3

See Also conj, i, j, real

image

2-1120

2imagePurpose Display image object

Syntax image(C)
image(x,y,C)
image(...,'PropertyName',PropertyValue,...)
image('PropertyName',PropertyValue,...) Formal syntax – PN/PV only
handle = image(...)

Description image creates an image graphics object by interpreting each element in a
matrix as an index into the figure’s colormap or directly as RGB values,
depending on the data specified.

The image function has two forms:

• A high-level function that calls newplot to determine where to draw the
graphics objects and sets the following axes properties:

XLim and YLim to enclose the image

Layer to top to place the image in front of the tick marks and grid lines

YDir to reverse

View to [0 90]

• A low-level function that adds the image to the current axes without calling
newplot. The low-level function argument list can contain only property
name/property value pairs.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see set and get for examples of how to specify these
data types).

image(C) displays matrix C as an image. Each element of C specifies the color
of a rectangular segment in the image.

image(x,y,C) where x and y are two-element vectors, specifies the range of the
x- and y-axis labels, but produces the same image as image(C). This can be
useful, for example, if you want the axis tick labels to correspond to real
physical dimensions represented by the image.

image

2-1121

image(x,y,C,'PropertyName',PropertyValue,...) is a high-level function
that also specifies property name/property value pairs. This syntax calls
newplot before drawing the image.

image('PropertyName',PropertyValue,...) is the low-level syntax of the
image function. It specifies only property name/property value pairs as input
arguments.

handle = image(...) returns the handle of the image object it creates. You
can obtain the handle with all forms of the image function.

Remarks Image data can be either indexed or true color. An indexed image stores colors
as an array of indices into the figure colormap. A true color image does not use
a colormap; instead, the color values for each pixel are stored directly as RGB
triplets. In MATLAB, the CData property of a true color image object is a
three-dimensional (m-by-n-by-3) array. This array consists of three m-by-n
matrices (representing the red, green, and blue color planes) concatenated
along the third dimension.

The imread function reads image data into MATLAB arrays from graphics files
in various standard formats, such as TIFF. You can write MATLAB image data
to graphics files using the imwrite function. imread and imwrite both support
a variety of graphics file formats and compression schemes.

When you read image data into MATLAB using imread, the data is usually
stored as an array of 8-bit integers. However, imread also supports reading
16-bit-per-pixel data from TIFF and PNG files. These are more efficient storage
methods than the double-precision (64-bit) floating-point numbers that
MATLAB typically uses. However, it is necessary for MATLAB to interpret

image

2-1122

8-bit and 16-bit image data differently from 64-bit data. This table summarizes
these differences.

Indexed Images
In an indexed image of class double, the value 1 points to the first row in the
colormap, the value 2 points to the second row, and so on. In a uint8 or uint16
indexed image, there is an offset; the value 0 points to the first row in the
colormap, the value 1 points to the second row, and so on.

If you want to convert a uint8 or uint16 indexed image to double, you need to
add 1 to the result. For example,

X64 = double(X8) + 1;

or

X64 = double(X16) + 1;

To convert from double to uint8 or unit16, you need to first subtract 1, and
then use round to ensure all the values are integers.

X8 = uint8(round(X64 1));

or

X16 = uint16(round(X64 1));

Image Type Double-Precision Data
(double Array)

8-Bit Data (uint8 Array)
16-Bit Data (uint16 Array)

indexed
(colormap)

Image is stored as a two-dimensional
(m-by-n) array of integers in the range
[1, length(colormap)]; colormap is an
m-by-3 array of floating-point values in
the range [0, 1].

Image is stored as a two-dimensional
(m-by-n) array of integers in the range
[0, 255] (uint8) or [0, 65535]
(uint16); colormap is an m-by-3 array
of floating-point values in the range
[0, 1].

true color
(RGB)

Image is stored as a three-dimensional
(m-by-n-by-3) array of floating-point
values in the range [0, 1].

Image is stored as a
three-dimensional (m-by-n-by-3) array
of integers in the range [0, 255]
(uint8) or [0, 65535] (uint16).

image

2-1123

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 or uint16 arrays.

When you write an indexed image using imwrite, MATLAB automatically
converts the values if necessary.

Colormaps
Colormaps in MATLAB are always m-by-3 arrays of double-precision
floating-point numbers in the range [0, 1]. In most graphics file formats,
colormaps are stored as integers, but MATLAB does not support colormaps
with integer values. imread and imwrite automatically convert colormap
values when reading and writing files.

True Color Images
In a true color image of class double, the data values are floating-point
numbers in the range [0, 1]. In a true color image of class uint8, the data values
are integers in the range [0, 255], and for true color images of class uint16 the
data values are integers in the range [0, 65535].

If you want to convert a true color image from one data type to the other, you
must rescale the data. For example, this statement converts a uint8 true color
image to double.

RGB64 = double(RGB8)/255;

or for uint16 images,

RGB64 = double(RGB16)/65535;

This statement converts a double true color image to uint8.

RGB8 = uint8(round(RGB64*255));

or for uint16 images,

RGB16 = uint16(round(RGB64*65535));

The order of the operations must be as shown in these examples, because you
cannot perform mathematical operations on uint8 or uint16 arrays.

When you write a true color image using imwrite, MATLAB automatically
converts the values if necessary.

image

2-1124

Object
Hierarchy

The following table lists all image properties and provides a brief description
of each. The property name links take you to an expanded description of the
properties.

Image

Axes

Image

Group
Object

Property Name Property Description Property Value

Data Defining the Object

CData The image data Value: matrix or m-by-n-by-3
array
Default: enter
image;axis image ij
and see

CDataMapping Specifies the mapping of data to
colormap

Values: scaled, direct
Default: direct

XData Controls placement of image along
x-axis

Values: [min max]
Default: [1 size(CData,2)]

YData Controls placement of image along
y-axis

Values: [min max]
Default: [1 size(CData,1)]

Specifying Transparency

AlphaData Transparency data m-by-n matrix of double or
uint8
Default: 1 (opaque)

AlphaDataMapping Transparency mapping method none, direct, scaled
Default: none

image

2-1125

Controlling the Appearance

Clipping Clipping to axes rectangle Values: on, off
Default: on

EraseMode Method of drawing and erasing the
image (useful for animation)

Values: normal, none, xor,
background
Default: normal

SelectionHighlight Highlights image when selected
(Selected property set to on)

Values: on, off
Default: on

Visible Makes the image visible or invisible Values: on, off
Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the line’s
handle is visible to other functions

Values: on, callback, off
Default: on

HitTest Determines if image can become the
current object (see the figure
CurrentObject property)

Values: on, off
Default: on

General Information About the Image

Children Image objects have no children. Values: [] (empty matrix)

Parent The parent of an image object is the
axes, hggroup, or hgtransform object
containing it.

Value: scalar handle

Selected Indicates whether image is in a
selected state

Values: on, off
Default: on

Tag User-specified label Value: any string
Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'image'

Property Name Property Description Property Value

image

2-1126

See Also colormap, imfinfo, imread, imwrite, pcolor, newplot, surface

Displaying Bit-Mapped Images chapter

“Bit-Mapped Images” for related functions

UserData User-specified data Value: any matrix
Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BeingDeleted Query to see if object is being
deleted.

Values: on | off
Read only

BusyAction Specifies how to handle callback
routine interruption

Values: cancel, queue
Default: queue

ButtonDownFcn Defines a callback routine that
executes when a mouse button is
pressed over the image

Values: string or function
handle
Default: empty string

CreateFcn Defines a callback routine that
executes when an image is created

Values: string or function
handle
Default: empty string

DeleteFcn Defines a callback routine that
executes when the image is deleted
(via close or delete)

Values: string or function
handle
Default: empty string

Interruptible Determines if callback routine can be
interrupted

Values: on, off
Default: on (can be
interrupted)

UIContextMenu Associates a context menu with the
image

Values: handle of a
uicontextmenu

Property Name Property Description Property Value

Image Properties

2-1127

2Image PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

Image
Properties

This section lists property names along with the types of values each property
accepts.

AlphaData m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each element in the image data. The AlphaData can be of class
double or uint8.

MATLAB determines the transparency in one of three ways:

• Using the elements of AlphaData as transparency values (AlphaDataMapping
set to none, the default).

• Using the elements of AlphaData as indices into the current alphamap
(AlphaDataMapping set to direct).

• Scaling the elements of AlphaData to range between the minimum and
maximum values of the axes ALim property (AlphaDataMapping set to
scaled).

AlphaDataMapping {none} | direct | scaled

Transparency mapping method. This property determines how MATLAB
interprets indexed alpha data. It can be any of the following:

• none — The transparency values of AlphaData are between 0 and 1 or are
clamped to this range (the default).

• scaled — Transform the AlphaData to span the portion of the alphamap
indicated by the axes ALim property, linearly mapping data values to alpha
values.

Image Properties

2-1128

• direct — Use the AlphaData as indices directly into the alphamap. When
not scaled, the data are usually integer values ranging from 1 to
length(alphamap). MATLAB maps values less than 1 to the first alpha
value in the alphamap, and values greater than length(alphamap) to the
last alpha value in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array of uint8 integers, then
the indexing begins at 0 (i.e., MATLAB maps a value of 0 to the first alpha
value in the alphamap).

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects that are going to be deleted, and therefore can check the object’s
BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

Image Properties

2-1129

ButtonDownFcn string or function handle

Button press callback routine. A callback routine that executes whenever you
press a mouse button while the pointer is over the image object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

CData matrix or m-by-n-by-3 array

The image data. A matrix or 3-D array of values specifying the color of each
rectangular area defining the image. image(C) assigns the values of C to CData.
MATLAB determines the coloring of the image in one of three ways:

• Using the elements of CData as indices into the current colormap (the
default) (CDataMapping set to direct)

• Scaling the elements of CData to range between the values
min(get(gca,'CLim')) and max(get(gca,'CLim')) (CDataMapping set to
scaled)

• Interpreting the elements of CData directly as RGB values (true color
specification)

Note that the behavior of NaNs in image CData is not defined. See the image
AlphaData property for information on using transparency with images.

A true color specification for CData requires an m-by-n-by-3 array of RGB
values. The first page contains the red component, the second page the green
component, and the third page the blue component of each element in the
image. RGB values range from 0 to 1. The following picture illustrates the
relative dimensions of CData for the two color models.

Image Properties

2-1130

If CData has only one row or column, the height or width respectively is always
one data unit and is centered about the first YData or XData element
respectively. For example, using a 4-by-1 matrix of random data,

C = rand(4,1);
image(C,'CDataMapping','scaled')
axis image

produces

Red

Green
Blue

CData

CData

Indexed Colors True Colors

Image Properties

2-1131

CDataMapping scaled | {direct}

Direct or scaled indexed colors. This property determines whether MATLAB
interprets the values in CData as indices into the figure colormap (the default)
or scales the values according to the values of the axes CLim property.

When CDataMapping is direct, the values of CData should be in the range 1 to
length(get(gcf,'Colormap')). If you use true color specification for CData,
this property has no effect.

Children handles

The empty matrix; image objects have no children.

Clipping on | off

Clipping mode. By default, MATLAB clips images to the axes rectangle. If you
set Clipping to off, the image can be displayed outside the axes rectangle. For
example, if you create an image, set hold to on, freeze axis scaling (axis
manual), and then create a larger image, it extends beyond the axis limits.

0.5 1 1.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Image Properties

2-1132

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates an image object. You
must define this property as a default value for images or in a call to the image
function to create a new image object. For example, the statement

set(0,'DefaultImageCreateFcn','axis image')

defines a default value on the root level that sets the aspect ratio and the axis
limits so the image has square pixels. MATLAB executes this routine after
setting all image properties. Setting this property on an existing image object
has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Delete image callback routine. A callback routine that executes when you delete
the image object (i.e., when you issue a delete command or clear the axes or
figure containing the image). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase image objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects are redrawn is
necessary to improve performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the

Image Properties

2-1133

slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none — Do not erase the image when it is moved or changed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

• xor — Draw and erase the image by performing an exclusive OR (XOR) with
the color of the screen beneath it. This mode does not damage the color of the
objects beneath the image. However, the image’s color depends on the color
of whatever is beneath it on the display.

• background — Erase the image by drawing it in the axes background Color,
or the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased image, but images are always properly
colored.

Printing with Nonnormal Erase Modes. MATLAB always prints figures as if the
EraseMode of all objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on screen than on
paper. On screen, MATLAB may mathematically combine layers of colors (e.g.,
performing an XOR on a pixel color with that of the pixel behind it) and ignore
three-dimensional sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing nonnormal mode objects.

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provide a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Image Properties

2-1134

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible, regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the image can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the image. If HitTest is off, clicking
the image selects the object below it (which may be the axes containing it).

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether an image callback routine can be interrupted by callback routines
invoked subsequently. Only callback routines defined for the ButtonDownFcn
are affected by the Interruptible property. MATLAB checks for events that
can interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

Parent handle of parent axes, hggroup, or hgtransform

Parent of image object. This property contains the handle of the image object’s
parent. The parent of an image object is the axes, hggroup, or hgtransform
object that contains it.

Image Properties

2-1135

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | {off}

Is object selected? When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing four edge handles and four
corner handles. When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For image objects, Type is always 'image'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the image. Assign this property the handle of a
uicontextmenu object created in the same figure as the image. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the image.

UserData matrix

User specified data. This property can be any data you want to associate with
the image object. The image does not use this property, but you can access it
using set and get.

Image Properties

2-1136

Visible {on} | off

Image visibility. By default, image objects are visible. Setting this property to
off prevents the image from being displayed. However, the object still exists
and you can set and query its properties.

XData [1 size(CData,2)] by default

Control placement of image along x-axis. A vector specifying the locations of the
centers of the elements CData(1,1) and CData(m,n), where CData has a size of
m-by-n. Element CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered over the
coordinate defined by the last elements in XData and YData. The centers of the
remaining elements of CData are evenly distributed between those two points.

The width of each CData element is determined by the expression

(XData(2)-XData(1))/(size(CData,2)-1)

You can also specify a single value for XData. In this case, image centers the
first element at this coordinate and centers each following element one unit
apart.

YData [1 size(CData,1)] by default

Control placement of image along y-axis. A vector specifying the locations of the
centers of the elements CData(1,1) and CData(m,n), where CData has a size of
m-by-n. Element CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered over the
coordinate defined by the last elements in XData and YData. The centers of the
remaining elements of CData are evenly distributed between those two points.

The height of each CData element is determined by the expression

(YData(2)-YData(1))/(size(CData,1)-1)

You can also specify a single value for YData. In this case, image centers the
first element at this coordinate and centers each following element one unit
apart.

imagesc

2-1137

2imagescPurpose Scale data and display an image object

Syntax imagesc(C)
imagesc(x,y,C)
imagesc(...,clims)
h = imagesc(...)

Description The imagesc function scales image data to the full range of the current
colormap and displays the image. (See Examples for an illustration.)

imagesc(C) displays C as an image. Each element of C corresponds to a
rectangular area in the image. The values of the elements of C are indices into
the current colormap that determine the color of each patch.

imagesc(x,y,C) displays C as an image and specifies the bounds of the x- and
y-axis with vectors x and y.

imagesc(...,clims) normalizes the values in C to the range specified by clims
and displays C as an image. clims is a two-element vector that limits the range
of data values in C. These values map to the full range of values in the current
colormap.

h = imagesc(...) returns the handle for an image graphics object.

Remarks x and y do not affect the elements in C; they only affect the annotation of the
axes. If length(x) > 2 or length(y) > 2, imagesc ignores all except the first
and last elements of the respective vector.

imagesc creates an image with CDataMapping set to scaled, and sets the axes
CLim property to the value passed in clims.

Examples If the size of the current colormap is 81-by-3, the statements

clims = [10 60]
imagesc(C,clims)

map the data values in C to the colormap as shown in this illustration.

imagesc

2-1138

In this example, the left image maps to the gray colormap using the statements

load clown
imagesc(X)
colormap(gray)

The right image has values between 10 and 60 scaled to the full range of the
gray colormap using the statements

load clown
clims = [10 60];
imagesc(X,clims)
colormap(gray)

81
80
79
78

4
3
2
1

60

59
58

11
10

12

81

1

Data Colormap
 Values Values

50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200
50 100 150 200 250 300

20

40

60

80

100

120

140

160

180

200

imagesc

2-1139

See Also image

“Bit-Mapped Images” for related functions

imfinfo

2-1140

2imfinfoPurpose Information about graphics file

Syntax info = imfinfo(filename,fmt)
info = imfinfo(filename)

Description info = imfinfo(filename,fmt) returns a structure, info, whose fields
contain information about an image in a graphics file. filename is a string that
specifies the name of the graphics file, and fmt is a string that specifies the
format of the file. The file must be in the current directory or in a directory on
the MATLAB path. If imfinfo cannot find a file named filename, it looks for a
file named filename.fmt.

This table lists all the possible values for fmt.

Format File Type

'bmp' Windows Bitmap (BMP)

'cur' Windows Cursor resources (CUR)

'gif' Graphics Interchange Format (GIF)

'hdf' Hierarchical Data Format (HDF)

'ico' Windows Icon resources (ICO)

'jpg' or 'jpeg' Joint Photographic Experts Group (JPEG)

'pbm' Portable Bitmap (PBM)

'pcx' Windows Paintbrush (PCX)

'pgm' Portable Graymap (PGM)

'png' Portable Network Graphics (PNG)

'pnm' Portable Anymap (PNM)

'ppm' Portable Pixmap (PPM)

'ras' Sun Raster (RAS)

imfinfo

2-1141

If filename is a TIFF, HDF, ICO, GIF, or CUR file containing more than one
image, info is a structure array with one element (i.e., an individual structure)
for each image in the file. For example, info(3) would contain information
about the third image in the file.

info = imfinfo(filename) attempts to infer the format of the file from its
contents.

Information
Returned

The set of fields in info depends on the individual file and its format. However,
the first nine fields are always the same. This table lists these common fields,
in the order they appear in the structure, and describes their values.

'tif' or 'tiff' Tagged Image File Format (TIFF)

'xwd' X Windows Dump (XWD)

Format File Type

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file.

FileModDate A string containing the date when the file was last
modified

FileSize An integer indicating the size of the file in bytes

Format A string containing the file format, as specified by fmt;
for JPEG and TIFF files, the three-letter variant is
returned.

FormatVersion A string or number describing the version of the
format

Width An integer indicating the width of the image in pixels

Height An integer indicating the height of the image in pixels

imfinfo

2-1142

Example info = imfinfo('canoe.tif')

info =

 Filename:'canoe.tif'
 FileModDate: '25-Oct-1996 22:10:39'
 FileSize: 69708
 Format: 'tif'
 FormatVersion: []
 Width: 346
 Height: 207
 BitDepth: 8
 ColorType: 'indexed'
 FormatSignature: [73 73 42 0]
 ByteOrder: 'little-endian'
 NewSubfileType: 0
 BitsPerSample: 8
 Compression: 'PackBits'
 PhotometricInterpretation: 'RGB Palette'
 StripOffsets: [9x1 double]
 SamplesPerPixel: 1
 RowsPerStrip: 23
 StripByteCounts: [9x1 double]
 XResolution: 72
 YResolution: 72
 ResolutionUnit: 'Inch'
 Colormap: [256x3 double]
 PlanarConfiguration: 'Chunky'
 TileWidth: []
 TileLength: []

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either
'truecolor' for a true color RGB image,
'grayscale' for a grayscale intensity image, or
'indexed' for an indexed image

Field Value

imfinfo

2-1143

 TileOffsets: []
 TileByteCounts: []
 Orientation: 1
 FillOrder: 1
 GrayResponseUnit: 0.0100
 MaxSampleValue: 255
 MinSampleValue: 0
 Thresholding: 1

See Also imformats, imread, imwrite

“Bit-Mapped Images” for related functions

imformats

2-1144

2imformatsPurpose Manage file format registry

Syntax imformats
formats = imformats
formats = imformats('fmt')
formats = imformats(format_struct)
formats = imformats('factory')

Description imformats displays a table of information listing all the values in the MATLAB
file format registry. This registry determines which file formats are supported
by the imfinfo, imread, and imwrite functions.

formats = imformats returns a structure containing all the values in the
MATLAB file format registry. The following tables lists the fields in the order
they appear in the structure.

Field Value

ext A cell array of strings that specify filename
extensions that are valid for this format

isa A string specifying the name of the function that
determines if a file is a certain format. This can also
be a function handle.

info A string specifying the name of the function that
reads information about a file. This can also be a
function handle.

read A string specifying the name of the function that
reads image data in a file. This can also be a function
handle.

write A string specifying the name of the function that
writes MATLAB data to a file. This can also be a
function handle.

imformats

2-1145

Note The values for the isa, info, read, and write fields must be functions
on the MATLAB search path or function handles.

formats = imformats('fmt') searches the known formats in the MATLAB
file format registry for the format associated with the filename extension
'fmt'. If found, imformats returns a structure containing the characteristics
and function names associated with the format. Otherwise, it returns an empty
structure.

formats = imformats(format_struct) sets the MATLAB file format registry
to the values in format_struct. The output structure, formats, contains the
new registry settings.

Caution Using imformats to specify values in the MATLAB file format
registry can result in the inability to load any image files. To return the file
format registry to a working state, use imformats with the 'factory' setting.

formats = imformats('factory') resets the MATLAB file format registry to
the default format registry values. This removes any user-specified settings.

Changes to the format registry do not persist between MATLAB sessions. To
have a format always available when you start MATLAB, add the appropriate
imformats command to the MATLAB startup file, startup.m, located in
$MATLAB/toolbox/local on UNIX systems, or $MATLAB\toolbox\local on
Windows systems.

Example formats = imformats;
formats(1)

alpha Returns 1 if the format has an alpha channel, 0
otherwise

description A text description of the file format

Field Value

imformats

2-1146

ans =

 ext: {'bmp'}
 isa: @isbmp
 info: @imbmpinfo
 read: @readbmp
 write: @writebmp
 alpha: 0
 description: 'Windows Bitmap (BMP)'

See Also fileformats, imfinfo, imread, imwrite, path

“Bit-Mapped Images” for related functions

importdata

2-1147

2importdataPurpose Load data from disk file.

Syntax importdata('filename')
A = importdata('filename')
importdata('filename','delimiter')

Description importdata('filename') loads data from filename into the workspace.

A = importdata('filename') loads data from filename into A.

A = importdata('filename','delimiter') loads data from filename using
delimiter as the column separator (if text). Use '\t' for tab.

Remarks importdata looks at the file extension to determine which helper function to
use. If it can recognize the file extension, importdata calls the appropriate
helper function, specifying the maximum number of output arguments. If it
cannot recognize the file extension, importdata calls finfo to determine which
helper function to use. If no helper function is defined for this file extension,
importdata treats the file as delimited text. importdata removes from the
result empty outputs returned from the helper function.

Examples s = importdata('ding.wav')
s =

 data: [11554x1 double]
 fs: 22050

See Also load

imread

2-1148

2imreadPurpose Read image from graphics file

Syntax A = imread(filename,fmt)
[X,map] = imread(filename,fmt)
[...] = imread(filename)
[...] = imread(URL,...)
[...] = imread(...,idx) (CUR, GIF, ICO, and TIFF only)
[...] = imread(...,'PixelRegion',{ROWS, COLS}) (TIFF only)
[...] = imread(...,'frames',idx) (GIF only)
[...] = imread(...,ref) (HDF only)
[...] = imread(...,'BackgroundColor',BG) (PNG only)
[A,map,alpha] = imread(...) (ICO, CUR, and PNG only)

Description The imread function supports four general syntaxes, described below. The
imread function also supports several other format-specific syntaxes. See
“Special Case Syntax” on page 2-1150 for information about these syntaxes.

A = imread(filename,fmt) reads a greyscale or color image from the file
specified by the string filename, where the string fmt specifies the format of
the file. If the file is not in the current directory or in a directory in the
MATLAB path, specify the full pathname of the location on your system. For a
list of all the possible values for fmt, see “Supported Formats” on page 2-1149.
If imread cannot find a file named filename, it looks for a file named
filename.fmt.

imread returns the image data in the array A. If the file contains a grayscale
image, A is a two-dimensional (M-by-N) array. If the file contains a color image,
A is a three-dimensional (M-by-N-by-3) array. The class of the returned array
depends on the data type used by the file format. See “Class Support” on
page 2-1154 for more information.

For most file formats, the color image data returned uses the RGB color space.
For TIFF files, however, imread can return color data that uses the RGB,
CIELAB, ICCLAB, or CMYK color spaces. If the color image uses the CMYK
color space, A is an M-by-N-by-4 array. See the “TIFF-Specific Syntax” on
page 2-1153 for more information.

[X,map] = imread(filename,fmt) reads the indexed image in filename into
X and its associated colormap into map. The colormap values are rescaled to the
range [0,1].

imread

2-1149

[...] = imread(filename) attempts to infer the format of the file from its
content.

[...] = imread(URL,...) reads the image from an Internet URL. The URL
must include the protocol type (e.g., http://).

Supported
Formats

This table lists all the types of images that imread can read, in alphabetical
order by the fmt abbreviation. You can also get a list of all supported formats
by using the imformats function. Note that, for certain formats, imread may
take additional parameters, described in Special Case Syntax.

Format Full Name Variants

'bmp' Windows Bitmap
(BMP)

1-bit, 4-bit, 8-bit, 16-bit, 24-bit, and 32-bit
uncompressed images and 4-bit and 8-bit run-length
encoded (RLE) images

'cur' Windows Cursor
resources (CUR)

1-bit, 4-bit, and 8-bit uncompressed images

'gif' Graphics Interchange
Format (GIF)

1-bit to 8-bit images

'hdf' Hierarchical Data
Format (HDF)

8-bit raster image data sets, with or without an
associated colormap, and 24-bit raster image data sets

'ico' Windows Icon
resources (ICO)

1-bit, 4-bit, and 8-bit uncompressed images

'jpg' or
'jpeg'

Joint Photographic
Experts Group
(JPEG)

Any baseline JPEG image or JPEG image with some
commonly used extensions, including:
Image Type Bitdepth Compression
grayscale 8- or 12-bit lossy
grayscale 8-, 12-, or 16-bit lossless
RGB 24- and 36-bit lossy or lossless

'pbm' Portable Bitmap
(PBM)

1-bit images using either raw (binary) or ASCII (plain)
encoding

'pcx' Windows Paintbrush
(PCX)

1-bit, 8-bit, and 24-bit images

imread

2-1150

Special Case
Syntax

CUR- and ICO-Specific Syntax
[...] = imread(...,idx) reads in one image from a multi-image icon or
cursor file. idx is an integer value that specifies the order that the image
appears in the file. For example, if idx is 3, imread reads the third image in the
file. If you omit this argument, imread reads the first image in the file.

[A,map,alpha] = imread(...) returns the AND mask for the resource, which
can be used to determine the transparency information. For cursor files, this
mask may contain the only useful data.

'pgm' Portable Graymap
(PGM)

ASCII (plain) encoding with arbitrary color depth, or
raw (binary) encoding with up to 16 bits per gray
value

'png' Portable Network
Graphics (PNG)

1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images;
8-bit and 16-bit indexed images; and 24-bit and 48-bit
RGB images

'pnm' Portable Anymap
(PNM)

PNM is not a file format itself. It is a common name
for any of the other three members of the Portable
Bitmap family of image formats: Portable Bitmap
(PBM), Portable Graymap (PGM) and Portable Pixel
Map (PPM).

'ppm' Portable Pixmap
(PPM)

ASCII (plain) encoding with arbitrary color depth or
raw (binary) encoding with up to 16 bits per color
component

'ras' Sun Raster (RAS) 1-bit bitmap, 8-bit indexed, 24-bit true color and 32-bit
true color with alpha data

'tif' or
'tiff'

Tagged Image File
Format (TIFF)

Any baseline image, including 1-bit, 8-bit, and 24-bit
uncompressed images; 1-bit, 8-bit, and 24-bit images
with packbits compression; 1-bit images with CCITT
compression; and 16-bit grayscale, 16-bit indexed, and
48-bit RGB images

'xwd' X Windows Dump
(XWD)

1-bit and 8-bit ZPixmaps, XYBitmaps, and 1-bit
XYPixmaps

Format Full Name Variants

imread

2-1151

Note By default, Microsoft Windows cursors are 32-by-32 pixels. MATLAB
pointers must be 16-by-16. You will probably need to scale your image. If you
have the Image Processing Toolbox, you can use the imresize function.

GIF-Specific Syntaxes
[...] = imread(...,idx) reads in one or more frames from a multiframe (i.e.,
animated) GIF file. idx must be an integer scalar or vector of integer values.
For example, if idx is 3, imread reads the third image in the file. If idx is 1:5,
imread returns only the first five frames.

[...] = imread(...,'frames',idx) is the same as the syntax above except
that idx can be 'all'. In this case, all the frames are read and returned in the
order that they appear in the file.

Note Because of the way that GIF files are structured, all the frames must be
read when a particular frame is requested. Consequently, it is much faster to
specify a vector of frames or 'all' for idx than to call imread in a loop when
reading multiple frames from the same GIF file.

HDF-Specific Syntax
[...] = imread(...,ref) reads in one image from a multi-image HDF file.
ref is an integer value that specifies the reference number used to identify the
image. For example, if ref is 12, imread reads the image whose reference
number is 12. (Note that in an HDF file the reference numbers do not
necessarily correspond to the order of the images in the file. You can use
imfinfo to match image order with reference number.) If you omit this
argument, imread reads the first image in the file.

PNG-Specific Syntax
The discussion in this section is only relevant to PNG files that contain
transparent pixels. A PNG file does not necessarily contain transparency data.
Transparent pixels, when they exist, are identified by one of two components:

imread

2-1152

a transparency chunk or an alpha channel. (A PNG file can only have one of
these components, not both.)

The transparency chunk identifies which pixel values are treated as
transparent. For example, if the value in the transparency chunk of an 8-bit
image is 0.5020, all pixels in the image with the color 0.5020 can be displayed
as transparent. An alpha channel is an array with the same number of pixels
as are in the image, which indicates the transparency status of each
corresponding pixel in the image (transparent or nontransparent).

Another potential PNG component related to transparency is the background
color chunk, which (if present) defines a color value that can be used behind all
transparent pixels. This section identifies the default behavior of the toolbox
for reading PNG images that contain either a transparency chunk or an alpha
channel, and describes how you can override it.

Case 1. You do not ask to output the alpha channel and do not specify a
background color to use. For example,

[A,map] = imread(filename);
A = imread(filename);

If the PNG file contains a background color chunk, the transparent pixels are
composited against the specified background color.

If the PNG file does not contain a background color chunk, the transparent
pixels are composited against 0 for grayscale (black), 1 for indexed (first color
in map), or [0 0 0] for RGB (black).

Case 2. You do not ask to output the alpha channel, but you specify the
background color parameter in your call. For example,

[...] = imread(...,'BackgroundColor',bg);

The transparent pixels will be composited against the specified color. The form
of bg depends on whether the file contains an indexed, intensity (grayscale), or
RGB image. If the input image is indexed, bg should be an integer in the range
[1,P] where P is the colormap length. If the input image is intensity, bg should
be an integer in the range [0,1]. If the input image is RGB, bg should be a
three-element vector whose values are in the range [0,1].

There is one exception to the toolbox’s behavior of using your background color.
If you set background to 'none' no compositing is performed. For example,

imread

2-1153

[...] = imread(...,'Back','none');

Note If you specify a background color, you cannot output the alpha channel.

Case 3. You ask to get the alpha channel as an output variable. For example,

[A,map,alpha] = imread(filename);
[A,map,alpha] = imread(filename,fmt);

No compositing is performed; the alpha channel is stored separately from the
image (not merged into the image as in cases 1 and 2). This form of imread
returns the alpha channel if one is present, and also returns the image and any
associated colormap. If there is no alpha channel, alpha returns []. If there is
no colormap, or the image is grayscale or true color, map may be empty.

TIFF-Specific Syntax
[...] = imread(...,idx) reads in one image from a multi-image TIFF file.
idx is an integer value that specifies the order in which the image appears in
the file. For example, if idx is 3, imread reads the third image in the file. If you
omit this argument, imread reads the first image in the file.

For TIFF files, imread can read color data represented in the RGB, CIELAB or
ICCLAB color spaces. To determine which color space is used, look at the value
of the PhotometricInterpretation field returned by imfinfo. Note, however,
that if a file contains CIELAB color data, imread converts it to ICCLAB before
bringing it into the MATLAB workspace. 8- or 16-bit TIFF CIELAB-encoded
values use a mixture of signed and unsigned data types that cannot be
represented as a single MATLAB array.

[...] = imread(...,'PixelRegion',{ROWS, COLS}) returns the sub-image
specified by the boundaries in ROWS and COLS. For tiled TIFF images, imread
reads only the tiles that encompass the region specified by ROWS and COLS,
improving memory efficiency and performance. ROWS and COLS must be either
two or three element vectors. If two elements are provided, they denote the
1-based indices [START STOP]. If three elements are provided, the indices
[START INCREMENT STOP] allow image downsampling.

imread

2-1154

Class Support For most file formats, imread uses 8 or fewer bits per color plane to store pixels.
The following table lists the class of the returned array for all data types used
by the file formats.

Note For indexed images, imread always reads the colormap into an array of
class double, even though the image array itself may be of class uint8 or
uint16.

Examples This example reads the sixth image in a TIFF file.

[X,map] = imread('your_image.tif',6);

This example reads the fourth image in an HDF file.

info = imfinfo('your_hdf_file.hdf');
[X,map] = imread('your_hdf_file.hdf',info(4).Reference);

This example reads a 24-bit PNG image and sets any of its fully transparent
(alpha channel) pixels to red.

bg = [255 0 0];
A = imread('your_image.png','BackgroundColor',bg);

This example returns the alpha channel (if any) of a PNG image.

[A,map,alpha] = imread('your_image.png');

Data Type Used in File Class of Array Returned by imread

1-bit logical

8-bits (or fewer) per color plane uint8

12-bits uint16

16-bits (JPEG, PNG, and TIFF) uint16

16-bits (BMP only) uint8

imread

2-1155

This example reads an ICO image, applies a transparency mask, and then
displays the image.

[a,b,c] = imread('your_icon.ico');
% Augment colormap for background color (white).
b2 = [b; 1 1 1];
% Create new image for display.
d = ones(size(a)) * (length(b2) - 1);
% Use the AND mask to mix the background and
% foreground data on the new image
d(c == 0) = a(c == 0);
% Display new image
image(uint8(d)), colormap(b2)

See Also double, fread, image, imfinfo, imformats, imwrite, uint8, uint16

“Bit-Mapped Images” for related functions

imwrite

2-1156

2imwritePurpose Write image to graphics file

Syntax imwrite(A,filename,fmt)
imwrite(X,map,filename,fmt)
imwrite(...,filename)
imwrite(...,Param1,Val1,Param2,Val2...)

Description imwrite(A,filename,fmt) writes the image A to the file specified by filename
in the format specified by fmt.

A can be an M-by-N (greyscale image) or M-by-N-by-3 (color image) array. A
cannot be an empty array. If the format specified is TIFF, imwrite can also
accept an M-by-N-by-4 arrray containing color data that uses the CMYK color
space. For information about the class of the input array and the output image,
see “Class Support” on page 2-1164.

filename is a string that specifies the name of the output file.

fmt can be any of the text strings listed in the table in “Supported Formats” on
page 2-1157. This list of supported formats is determined by the MATLAB
image file format registry. See imformats for more information about this
registry.

imwrite(X,map,filename,fmt) writes the indexed image in X and its
associated colormap map to filename in the format specified by fmt. If X is of
class uint8 or uint16, imwrite writes the actual values in the array to the file.
If X is of class double, the imwrite function offsets the values in the array
before writing, using uint8(X 1). The map parameter must be a valid MATLAB
colormap. Note that most image file formats do not support colormaps with
more than 256 entries.

imwrite(...,filename) writes the image to filename, inferring the format to
use from the filename’s extension. The extension must be one of the values for
fmt, listed in “Supported Formats” on page 2-1157.

imwrite(...,Param1,Val1,Param2,Val2...) specifies parameters that
control various characteristics of the output file for HDF, JPEG, PBM, PGM,
PNG, PPM, and TIFF files. For example, if you are writing a JPEG file, you can
specify the quality of the output image. For the lists of parameters available for
each format, see “Format-Specific Parameters” on page 2-1158.

imwrite

2-1157

Supported
Formats

This table summarizes the types of images that imwrite can write. The
MATLAB file format registry determines which file formats are supported. See
imformats for more information about this registry. Note that, for certain
formats, imwrite may take additional parameters, described in
“Format-Specific Parameters” on page 2-1158.

Format Full Name Variants

'bmp' Windows Bitmap
(BMP

1-bit, 8-bit, and 24-bit uncompressed images

'hdf' Hierarchical Data
Format (HDF)

8-bit raster image data sets, with or without
associated colormap, 24-bit raster image data sets;
uncompressed or with RLE or JPEG compression

'jpg' or
'jpeg'

Joint Photographic
Experts Group
(JPEG)

Baseline JPEG images (8- or 24-bit) Note: Indexed
images are converted to RGB before writing out JPEG
files, because the JPEG format does not support
indexed images.

'pbm' Portable Bitmap
(PBM)

Any 1-bit PBM image, ASCII (plain) or raw (binary)
encoding

'pcx' Windows Paintbrush
(PCX)

8-bit images

'pgm' Portable Graymap
(PGM)

Any standard PGM image; ASCII (plain) encoded
with arbitrary color depth; raw (binary) encoded with
up to 16 bits per gray value

'png' Portable Network
Graphics (PNG)

1-bit, 2-bit, 4-bit, 8-bit, and 16-bit grayscale images;
8-bit and 16-bit grayscale images with alpha
channels; 1-bit, 2-bit, 4-bit, and 8-bit indexed images;
24-bit and 48-bit true color images with or without
alpha channels

'pnm' Portable Anymap
(PNM)

Any of the PPM/PGM/PBM formats, chosen
automatically

imwrite

2-1158

Format-Specific
Parameters

The following tables list parameters that can be used with specific file formats.

HDF-Specific Parameters
This table describes the available parameters for HDF files.

'ppm' Portable Pixmap
(PPM)

Any standard PPM image. ASCII (plain) encoded
with arbitrary color depth; raw (binary) encoded with
up to 16 bits per color component

'ras' Sun Raster (RAS) Any RAS image, including 1-bit bitmap, 8-bit indexed,
24-bit true color and 32-bit true color with alpha

'tif' or
'tiff'

Tagged Image File
Format (TIFF)

Baseline TIFF images, including 1-bit, 8-bit, 16-bit,
and 24-bit uncompressed images; 1-bit, 8-bit, 16-bit,
and 24-bit images with packbits compression; 1-bit
images with CCITT 1D, Group 3, and Group 4
compression

'xwd' X Windows Dump
(XWD)

8-bit ZPixmaps

Format Full Name Variants

Parameter Values Default

'Compression' One of these strings:
'none'
'jpeg' (valid only for grayscale and RGB images)
'rle' (valid only for grayscale and indexed images)

'rle'

'Quality' A number between 0 and 100; this parameter
applies only if 'Compression' is 'jpeg'.
Higher numbers mean higher quality (less image
degradation due to compression), but the resulting
file size is larger.

75

'WriteMode' One of these strings:
'overwrite'
'append'

'overwrite'

imwrite

2-1159

JPEG-Specific Parameters
This table describes the available parameters for JPEG files.

PBM-, PGM-, and PPM-Specific Parameters
This table describes the available parameters for PBM, PGM, and PPM files.

PNG-Specific Parameters
The following table describes the available parameters for PNG files. In
addition to these PNG parameters, you can use any parameter name that
satisfies the PNG specification for keywords; that is, uses only printable

Parameter Values Default

'Bitdepth' A scalar value indicating desired bitdepth;
for grayscale images this can be 8, 12, or 16;
for color images this can be 8 or 12.

8 (grayscale) and
8 bit per plane for
color images

'Comment' A column vector cell array of strings or a character
matrix. Each row of input is written out as a
comment in the JPEG file.

Empty

'Mode' Specifies the type of compression used; value can be
either of these strings: 'lossy' or 'lossless'

'lossy'

'Quality' A number between 0 and 100; higher numbers
mean higher quality (less image degradation due to
compression), but the resulting file size is larger.

75

Parameter Values Default

'Encoding' One of these strings:
'ASCII' for plain encoding
'rawbits' for binary encoding

'rawbits'

'MaxValue' A scalar indicating the maximum gray or color
value. Available only for PGM and PPM files.
For PBM files, this value is always 1.

Default is 65535
if image array is
'uint16'; 255
otherwise.

imwrite

2-1160

characters, contains 80 or fewer characters, and no contains no leading or
trailing spaces. The value corresponding to these user-specified parameters
must be a string that contains no control characters other than linefeed.

Parameter Values Default

'Author' A string Empty

'Description' A string Empty

'Copyright' A string Empty

'CreationTime' A string Empty

'Software' A string Empty

'Disclaimer' A string Empty

'Warning' A string Empty

'Source' A string Empty

'Comment' A string Empty

'InterlaceType' Either 'none' or 'adam7' 'none'

'BitDepth' A scalar value indicating desired bit depth. For
grayscale images this can be 1, 2, 4, 8, or 16.
For grayscale images with an alpha channel this
can be 8 or 16. For indexed images this can be 1, 2,
4, or 8. For true color images with or without an
alpha channel this can be 8 or 16.

8 bits per pixel if
image is double or
uint8;
16 bits per pixel if
image is uint16;
1 bit per pixel if
image is logical

imwrite

2-1161

'Transparency' This value is used to indicate transparency
information only when no alpha channel is used.
Set to the value that indicates which pixels should
be considered transparent. (If the image uses a
colormap, this value represents an index number to
the colormap.)
For indexed images: a Q-element vector in the
range [0,1], where Q is no larger than the colormap
length and each value indicates the transparency
associated with the corresponding colormap entry.
In most cases, Q = 1.
For grayscale images: a scalar in the range [0,1].
The value indicates the grayscale color to be
considered transparent.
For true color images: a three-element vector in the
range [0,1]. The value indicates the true-color color
to be considered transparent.

Note: You cannot specify 'Transparency' and
'Alpha' at the same time.

Empty

'Background' The value specifies background color to be used
when compositing transparent pixels. For indexed
images: an integer in the range [1,P], where P is the
colormap length. For grayscale images: a scalar in
the range [0,1]. For true color images: a
three-element vector in the range [0,1].

Empty

'Gamma' A nonnegative scalar indicating the file gamma Empty

'Chromaticities' An eight-element vector [wx wy rx ry gx gy bx
by] that specifies the reference white point and the
primary chromaticities

Empty

'XResolution' A scalar indicating the number of pixels/unit in the
horizontal direction

Empty

Parameter Values Default

imwrite

2-1162

'YResolution' A scalar indicating the number of pixels/unit in the
vertical direction

Empty

'ResolutionUnit' Either 'unknown' or 'meter' Empty

'Alpha' A matrix specifying the transparency of each pixel
individually. The row and column dimensions must
be the same as the data array; they can be uint8,
uint16, or double, in which case the values should
be in the range [0,1].

Empty

'SignificantBits' A scalar or vector indicating how many bits in the
data array should be regarded as significant; values
must be in the range [1,BitDepth].
For indexed images: a three-element vector. For
grayscale images: a scalar. For grayscale images
with an alpha channel: a two-element vector. For
true color images: a three-element vector. For true
color images with an alpha channel: a four-element
vector.

Empty

Parameter Values Default

imwrite

2-1163

RAS-Specific Parameters
This table describes the available parameters for RAS files.

TIFF-Specific Parameters
This table describes the available parameters for TIFF files.

Parameter Values Default

'Alpha' A matrix specifying the transparency of each pixel
individually; the row and column dimensions must
be the same as the data array; can be uint8,
uint16, or double. Can only be used with true color
images.

Empty matrix
([])

'Type' One of these strings:
'standard' (uncompressed, b-g-r color order with
true color images)
'rgb' (like 'standard', but uses r-g-b color order
for true color images)
'rle' (run-length encoding of 1-bit and 8-bit
images)

'standard'

Parameter Values Default

'ColorSpace' Specifies one of the following color spaces used to
represent the color data.
'rgb'
'cielab'
'icclab'
See “L*a*b* Color Data” on page 2-1165 for more
information about this parameter.

'rgb'

'Compression' One of these strings: 'none', 'packbits', 'ccitt',
'fax3', or 'fax4'
The 'ccitt', 'fax3', and 'fax4' compression
schemes are valid for binary images only.

'ccitt' for
binary images;
'packbits' for
nonbinary images

imwrite

2-1164

Class Support The input array A can be of class logical, uint8, uint16, or double. Indexed
images (X) can be of class uint8, uint16, or double; the associated colormap,
map, must be of class double.

The class of the image written to the file depends on the format specified. For
most formats, if the input array is of class uint8, imwrite outputs the data as
8-bit values. If the input array is of class uint16 and the format supports 16-bit
data (JPEG, PNG, and TIFF), imwrite outputs the data as 16-bit values. If the
format does not support 16-bit values, imwrite issues an error. Several
formats, such as JPEG and PNG, support a parameter that lets you specify the
bitdepth of the output data.

If the input array is of class double, and the image is a grayscale or RGB color
image, imwrite assumes the dynamic range is [0,1] and automatically scales
the data by 255 before writing it to the file as 8-bit values.

If the input array is of class double, and the image is an indexed image,
imwrite converts the indices to zero-based indices by subtracting 1 from each
element, and then writes the data as uint8.

If the input array is of class logical, imwrite assumes the data is a binary
image and writes it to the file with a bit depth of 1, if the format allows it. BMP,
PNG, or TIFF formats accept binary images as input arrays.

'Description' Any string; fills in the ImageDescription field
returned by imfinfo

Empty

'Resolution' A two-element vector containing the XResolution
and YResolution, or a scalar indicating both
resolutions

72

'WriteMode' One of these strings:
'overwrite'
'append'

'overwrite'

Parameter Values Default

imwrite

2-1165

L*a*b* Color Data
For TIFF files only, imwrite can write a color image that uses the L*a*b* color
space. The 1976 CIE L*a*b* specification defines numeric values that
represent luminance (L*) and chrominance (a* and b*) information.

To store L*a*b* color data in a TIFF file, the values must be encoded to fit into
either 8-bit or 16-bit storage. imwrite can store L*a*b* color data in a TIFF file
using these encodings:

• 8-bit and 16-bit encodings defined by the TIFF specification, called the
CIELAB encodings

• 8-bit and 16-bit encodings defined by the International Color Consortium ,
called ICCLAB encodings

The output class and encoding used by imwrite to store color data depends on
the class of the input array and the value you specify for the TIFF-specific
ColorSpace parameter. The following table explains these options. (The 8-bit
and 16-bit CIELAB encodings cannot be input arrays because they use a
mixture of signed and unsigned values and cannot be represented as a single
MATLAB array.)

1 8-bit ICCLAB represents values as integers in the range [0 255]. L* values
are multiplied by 255/100; 128 is added to both the a* and b* values.

Input Class and
Encoding

ColorSpace
Parameter Value

Output Class and
Encoding

8-bit ICCLAB 1 'icclab' 8-bit ICCLAB

'cielab' 8-bit CIELAB

16-bit ICCLAB 2 'icclab' 16-bit ICCLAB

'cielab' 16-bit CIELAB

double precision 1976
CIE L*a*b* values 3

'icclab' 8-bit ICCLAB

'cielab' 8-bit CIELAB

imwrite

2-1166

2 16-bit ICCLAB multiplies L* values by 65280/100 and represents the values
as integers in the range [0, 65280]. 32768 is added to both the a* and b* values,
which are represented as integers in the range [0,65535].
3 L* is in the dynamic range [0, 100]. a* and b* can take any value. Setting a*
and b* to 0 produces a neutral color (gray).

Example This example appends an indexed image X and its colormap map to an existing
uncompressed multipage HDF file.

imwrite(X,map,'your_hdf_file.hdf','Compression','none',...
'WriteMode','append')

See Also fwrite, imfinfo, imformats, imread

“Bit-Mapped Images” for related functions

ind2rgb

2-1167

2ind2rgbPurpose Convert an indexed image to an RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts the matrix X and corresponding colormap map
to RGB (true color) format.

Class Support X can be of class uint8, uint16, or double. RGB is an m-by-n-3 array of class
double.

See Also image

“Bit-Mapped Images” for related functions

ind2sub

2-1168

2ind2subPurpose Subscripts from linear index

Syntax [I,J] = ind2sub(siz,IND)
[I1,I2,I3,...,In] = ind2sub(siz,IND)

Description The ind2sub command determines the equivalent subscript values
corresponding to a single index into an array.

[I,J] = ind2sub(siz,IND) returns the matrices I and J containing the
equivalent row and column subscripts corresponding to each linear index in the
matrix IND for a matrix of size siz. siz is a 2-element vector, where siz(1) is
the number of rows and siz(2) is the number of columns.

Note For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns the same
values as [I,J] = find(A>5).

[I1,I2,I3,...,In] = ind2sub(siz,IND) returns n subscript arrays
I1,I2,..,In containing the equivalent multidimensional array subscripts
equivalent to IND for an array of size siz. siz is an n-element vector that
specifies the size of each array dimension.

Examples Example 1. The mapping from linear indexes to subscript equivalents for a
3-by-3 matrix is

This code determines the row and column subscripts in a 3-by-3 matrix, of
elements with linear indices 3, 4, 5, 6.

3

1 4

2 5

6

7

8

9 3,1

1,1 1,2

2,1 2,2

3,2

1,3

2,3

3,3

ind2sub

2-1169

IND = [3 4 5 6]
s = [3,3];
[I,J] = ind2sub(s,IND)

I =
 3 1 2 3

J =
 1 2 2 2

Example 2. The mapping from linear indexes to subscript equivalents for a
2-by-2-by-2 array is

This code determines the subscript equivalents in a 2-by-2-by-2 array, of
elements whose linear indices 3, 4, 5, 6 are specified in the IND matrix.

IND = [3 4;5 6];
s = [2,2,2];
[I,J,K] = ind2sub(s,IND)

I =
 1 2
 1 2

J =
 2 2
 1 1

1,2,21,1,2

2,2,22,1,2

1,2,11,1,1

2,2,12,1,1

75

86

31

42

ind2sub

2-1170

K =
 1 1
 2 2

See Also find, size, sub2ind

Inf

2-1171

2InfPurpose Infinity

Syntax Inf
Inf('double')
Inf('single')
Inf(n)
Inf(m,n)
Inf(m,n,p,...)
Inf(...,classname)

Description Inf returns the IEEE arithmetic representation for positive infinity. Infinity
results from operations like division by zero and overflow, which lead to results
too large to represent as conventional floating-point values.

Inf('double') is the same as Inf with no inputs.

Inf('single') is the single precision representation of Inf.

Inf(n) is an n-by-n matrix of Infs.

Inf(m,n) or inf([m,n]) is an m-by-n matrix of Infs.

Inf(m,n,p,...) or Inf([m,n,p,...]) is an m-by-n-by-p-by-... array of Infs.

Inf(...,classname) is an array of Infs of class specified by classname.
classname must be either 'single' or 'double'.

Examples 1/0, 1.e1000, 2^2000, and exp(1000) all produce Inf.

log(0) produces -Inf.

Inf-Inf and Inf/Inf both produce NaN (Not-a-Number).

See Also isinf, NaN

inferiorto

2-1172

2inferiortoPurpose Inferior class relationship

Syntax inferiorto('class1','class2',...)

Description The inferiorto function establishes a hierarchy that determines the order in
which MATLAB calls object methods.

inferiorto('class1','class2',...) invoked within a class constructor
method (say myclass.m) indicates that myclass's method should not be invoked
if a function is called with an object of class myclass and one or more objects of
class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of class
'class_c'. Also suppose the constructor class_c.m contains the statement
inferiorto('class_a'). Then e = fun(a,c) or e = fun(c,a) invokes
class_a/fun.

If a function is called with two objects having an unspecified relationship, the
two objects are considered to have equal precedence, and the leftmost object's
method is called. So fun(b,c) calls class_b/fun, while fun(c,b) calls
class_c/fun.

See Also superiorto

info

2-1173

2infoPurpose Display Release Notes for MathWorks products

Syntax info

Description info displays the Release Notes in the Help browser, containing information
about new features, problems from previous releases that have been fixed in
the current release, and known problems, all organized by product.

See Also help, lookfor, path, version, which

inline

2-1174

2inlinePurpose Construct an inline object

Syntax g = inline(expr)
g = inline(expr,arg1,arg2,...)
g = inline(expr,n)

Description inline(expr) constructs an inline function object from the MATLAB
expression contained in the string expr. The input argument to the inline
function is automatically determined by searching expr for an isolated lower
case alphabetic character, other than i or j, that is not part of a word formed
from several alphabetic characters. If no such character exists, x is used. If the
character is not unique, the one closest to x is used. If two characters are found,
the one later in the alphabet is chosen.

inline(expr,arg1,arg2, ...) constructs an inline function whose input
arguments are specified by the strings arg1, arg2,.... Multicharacter symbol
names may be used.

inline(expr,n) where n is a scalar, constructs an inline function whose input
arguments are x, P1, P2,

Remarks Three commands related to inline allow you to examine an inline function
object and determine how it was created.

char(fun) converts the inline function into a character array. This is identical
to formula(fun).

argnames(fun) returns the names of the input arguments of the inline object
fun as a cell array of strings.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ^, * or /' in the
formula for fun. The result is a vectorized version of the inline function.

Examples Example 1. This example creates a simple inline function to square a number.

g = inline('t^2')
g =

 Inline function:

inline

2-1175

 g(t) = t^2

You can convert the result to a string using the char function.

char(g)

ans =

t^2

Example 2. This example creates an inline function to represent the formula
. The resulting inline function can be evaluated with the

argnames and formula functions.

f = inline('3*sin(2*x.^2)')

f =
 Inline function:
 f(x) = 3*sin(2*x.^2)

argnames(f)

ans =
 'x'

formula(f)
ans =

3*sin(2*x.^2)ans =

Example 3. This call to inline defines the function f to be dependent on two
variables, alpha and x:

f = inline('sin(alpha*x)')

f =
 Inline function:
 f(alpha,x) = sin(alpha*x)

If inline does not return the desired function variables or if the function
variables are in the wrong order, you can specify the desired variables
explicitly with the inline argument list.

f 3 2x2()sin=

inline

2-1176

g = inline('sin(alpha*x)','x','alpha')

g =

 Inline function:
 g(x,alpha) = sin(alpha*x)

inmem

2-1177

2inmemPurpose Return functions in memory

Syntax M = inmem
[M, X] = inmem
[M, X, J] = inmem
[...] = inmem('-completenames')

Description M = inmem returns a cell array of strings containing the names of the M-files
that are currently loaded.

[M, X] = inmem returns an additional cell array X containing the names of the
MEX-files that are currently loaded.

[M, X, J] = inmem also returns a cell array J containing the names of the
Java classes that are currently loaded.

[...] = inmem('-completenames') returns not only the names of the
currently loaded M- and MEX-files, but the path and filename extension for
each as well. No additional information is returned for loaded Java classes.

Examples Example 1

This example lists the M-files that are required to run erf.

clear all; % Clear the workspace
erf(0.5);

M = inmem
M =
 'erf'

Example 2
Generate a plot, and then find the M- and MEX-files that had been loaded to
perform this operation:

clear all
surf(peaks)

[m x] = inmem('-completenames');

inmem

2-1178

m(1:5)
ans =
 'F:\matlab\toolbox\matlab\ops\ismember.m'
 'F:\matlab\toolbox\matlab\datatypes\@opaque\double.m'
 'F:\matlab\toolbox\matlab\datatypes\isfield.m'
 'F:\matlab\toolbox\matlab\graphics\gcf.m'
 'F:\matlab\toolbox\matlab\elmat\meshgrid.m'

x(1:end)
ans =
 'F:\matlab\toolbox\matlab\graph2d\private\lineseriesmex.dll'

See Also clear

inpolygon

2-1179

2inpolygonPurpose Detect points inside a polygonal region

Syntax IN = inpolygon(X,Y,xv,yv)
[IN ON] = inpolygon(X,Y,xv,yv)

Description IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as X and Y.
Each element of IN is assigned the value 1 or 0 depending on whether the point
(X(p,q),Y(p,q)) is inside the polygonal region whose vertices are specified by
the vectors xv and yv. In particular:

[IN ON] = inpolygon(X,Y,xv,yv) returns a second matrix ON the same size
as X and Y. Each element of ON is assigned the value 1 or 0 depending on
whether the point (X(p,q),Y(p,q)) is on the boundary of the polygonal region
whose vertices are specified by the vectors xv and yv. In particular:

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
x = randn(250,1); y = randn(250,1);
in = inpolygon(x,y,xv,yv);
plot(xv,yv,x(in),y(in),'r+',x(~in),y(~in),'bo')

IN(p,q) = 1 If (X(p,q),Y(p,q)) is inside the polygonal region or on
the polygon boundary

IN(p,q) = 0 If (X(p,q),Y(p,q)) is outside the polygonal region

IN(p,q) = 1 If (X(p,q),Y(p,q)) is on the polygon boundary

IN(p,q) = 0 If (X(p,q),Y(p,q)) is inside or outside the polygon
boundary

inpolygon

2-1180

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−3

−2

−1

0

1

2

3

input

2-1181

2inputPurpose Request user input

Syntax user_entry = input('prompt')
user_entry = input('prompt','s')

Description The response to the input prompt can be any MATLAB expression, which is
evaluated using the variables in the current workspace.

user_entry = input('prompt') displays prompt as a prompt on the screen,
waits for input from the keyboard, and returns the value entered in
user_entry.

user_entry = input('prompt','s') returns the entered string as a text
variable rather than as a variable name or numerical value.

Remarks If you press the Return key without entering anything, input returns an
empty matrix.

The text string for the prompt can contain one or more '\n' characters. The
'\n' means to skip to the next line. This allows the prompt string to span
several lines. To display just a backslash, use '\\'.

Examples Press Return to select a default value by detecting an empty matrix:

reply = input('Do you want more? Y/N [Y]: ','s');
if isempty(reply)
 reply = 'Y';
end

See Also keyboard, menu, ginput, uicontrol

inputdlg

2-1182

2inputdlgPurpose Create input dialog box

Syntax answer = inputdlg(prompt)
answer = inputdlg(prompt,dlg_title)
answer = inputdlg(prompt,dlg_title,num_lines)
answer = inputdlg(prompt,dlg_title,num_lines,defAns)
answer = inputdlg(prompt,dlg_title,num_lines,defAns,Resize)

Description answer = inputdlg(prompt) creates a modal dialog box and returns user
inputs in the cell array. prompt is a cell array containing prompt strings.

answer = inputdlg(prompt,dlg_title) dlg_title specifies a title for the
dialog box.

answer = inputdlg(prompt,dlg_title,num_lines) num_lines specifies the
number of lines for each user-entered value. num_lines can be a scalar, column
vector, or matrix.

• If num_lines is a scalar, it applies to all prompts.

• If num_lines is a column vector, each element specifies the number of lines
of input for a prompt.

• If num_lines is a matrix, it should be size m-by-2, where m is the number of
prompts on the dialog box. Each row refers to a prompt. The first column
specifies the number of lines of input for a prompt. The second column
specifies the width of the field in characters.

answer = inputdlg(prompt,dlg_title,num_lines,defAns) defAns specifies
the default value to display for each prompt. defAns must contain the same
number of elements as prompt and all elements must be strings.

answer = inputdlg(prompt,dlg_title,num_lines,defAns,Resize) Resize
specifies whether or not the dialog box can be resized. Permissible values are
'on' and 'off' where 'on' means that the dialog box can be resized and that
the dialog box is not modal.

Example Create a dialog box to input an integer and colormap name. Allow one line for
each value.

inputname

2-1183

2inputnamePurpose Input argument name

Syntax inputname(argnum)

Description This command can be used only inside the body of a function.

inputname(argnum) returns the workspace variable name corresponding to the
argument number argnum. If the input argument has no name (for example, if
it is an expression instead of a variable), the inputname command returns the
empty string ('').

Examples Suppose the function myfun.m is defined as

function c = myfun(a,b)
disp(sprintf('First calling variable is "%s".',inputname(1))

Then

x = 5; y = 3; myfun(x,y)

produces

First calling variable is "x".

But

myfun(pi+1,pi-1)

produces

First calling variable is "".

See Also nargin, nargout, nargchk

inspect

2-1184

2inspectPurpose Display graphical user interface to list and modify property values

Syntax inspect
inspect(h)
inspect([h1,h2,...])

Description inspect creates a separate Property Inspector window to enable the display
and modification of the properties of any object you select in the figure window
or Layout Editor. If no object is selected, the Property Inspector is blank.

inspect(h) creates a Property Inspector window for the object whose handle
is h.

inspect([h1,h2,...]) creates a Property Inspector window for the objects
whose handles are elements of the vector [h1,h2,...]. If the objects are of
different types, the inspector displays only those properties the objects have in
common.

To change the value of any property, click on the property name shown at the
left side of the window, and then enter the new value in the field at the right.

Notes inspect h displays a Property Inspector window that enables
modification of the string 'h', not the object whose handle is h.

If you modify properties at the MATLAB command line, you must refresh the
Property Inspector window to see the change reflected there. Refresh the
Property Inspector by reinvoking inspect on the object.

Example Create a COM Excel server and open a Property Inspector window with
inspect:

h = actxserver('excel.application');
inspect(h)

Scroll down until you see the DefaultFilePath property. Click on the property
name shown at the left. Then replace the text at the right with C:\ExcelWork.

inspect

2-1185

Check this field in the MATLAB command window and confirm that it has
changed:

get(h,'DefaultFilePath')
ans =
 C:\ExcelWork

See Also get, set, isprop, guide, addproperty, deleteproperty

int2str

2-1186

2int2strPurpose Integer to string conversion

Syntax str = int2str(N)

Description str = int2str(N) converts an integer to a string with integer format. The
input N can be a single integer or a vector or matrix of integers. Noninteger
inputs are rounded before conversion.

Examples int2str(2+3) is the string '5'.

One way to label a plot is

title(['case number ' int2str(n)])

For matrix or vector inputs, int2str returns a string matrix:

int2str(eye(3))

ans =

1 0 0
0 1 0
0 0 1

See Also fprintf, num2str, sprintf

int8, int16, int32, int64

2-1187

2int8, int16, int32, int64Purpose Convert to signed integer

Syntax I = int8(X)
I = int16(X)
I = int32(X)
I = int64(X)

Description I = int*(X) converts the elements of array X into signed integers. X can be any
numeric object (such as a double). The results of an int* operation are shown
in the next table.

double and single values are rounded to the nearest int* value on conversion.
A value of X that is above or below the range for an integer class is mapped to
one of the endpoints of the range. For example,

int16(40000)
ans =
 32767

If X is already a signed integer of the same class, then int* has no effect.

You can define or overload your own methods for int* (as you can for any
object) by placing the appropriately named method in an @int* directory
within a directory on your path. Type help datatypes for the names of the
methods you can overload.

Operation Output Range Output Type Bytes per
Element

Output Class

int8 -128 to 127 Signed 8-bit
integer

1 int8

int16 -32,768 to 32,767 Signed 16-bit
integer

2 int16

int32 -2,147,483,648 to 2,147,483,647 Signed 32-bit
integer

4 int32

int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed 64-bit
integer

8 int64

int8, int16, int32, int64

2-1188

Remarks Most operations that manipulate arrays without changing their elements are
defined for integer values. Examples are reshape, size, the logical and
relational operators, subscripted assignment, and subscripted reference.

Some arithmetic operations are defined for integer arrays on interaction with
other integer arrays of the same class (e.g., where both operands are int16).
Examples of these operations are +, -, .*, ./, .\ and .^. If at least one operand
is scalar, then *, /, \, and ^ are also defined. Integer arrays may also interact
with scalar double variables, including constants, and the result of the
operation is an integer array of the same class. Integer arrays saturate on
overflow in arithmetic.

A particularly efficient way to initialize a large array is by specifying the data
type (i.e., class name) for the array in the zeros, ones, or eye function. For
example, to create a 100-by-100 int64 array initialized to zero, type

I = zeros(100, 100, 'int64');

An easy way to find the range for any MATLAB integer type is to use the
intmin and intmax functions as shown here for int32:

intmin('int32') intmax('int32')
ans = ans =
 -2147483648 2147483647

See Also double, single, uint8, uint16, uint32, uint64, intmax, intmin

interp1

2-1189

2interp1Purpose One-dimensional data interpolation (table lookup)

Syntax yi = interp1(x,Y,xi)
yi = interp1(Y,xi)
yi = interp1(x,Y,xi,method)
yi = interp1(x,Y,xi,method,'extrap')
yi = interp1(x,Y,xi,method,extrapval)
pp = interp1(x,Y,method,'pp')

Description yi = interp1(x,Y,xi) returns vector yi containing elements corresponding
to the elements of xi and determined by interpolation within vectors x and Y.
The vector x specifies the points at which the data Y is given. If Y is a matrix,
then the interpolation is performed for each column of Y and yi is
length(xi)-by-size(Y,2).

yi = interp1(Y,xi) assumes that x = 1:N, where N is the length of Y for
vector Y, or size(Y,1) for matrix Y.

yi = interp1(x,Y,xi,method) interpolates using alternative methods:

For the 'nearest', 'linear', and 'v5cubic' methods,
interp1(x,Y,xi,method) returns NaN for any element of xi that is outside the
interval spanned by x. For all other methods, interp1 performs extrapolation
for out of range values.

yi = interp1(x,Y,xi,method,'extrap') uses the specified method to
perform extrapolation for out of range values.

'nearest' Nearest neighbor interpolation

'linear' Linear interpolation (default)

'spline' Cubic spline interpolation

'pchip' Piecewise cubic Hermite interpolation

'cubic' (Same as 'pchip')

'v5cubic' Cubic interpolation used in MATLAB 5

interp1

2-1190

yi = interp1(x,Y,xi,method,extrapval) returns the scalar extrapval for
out of range values. NaN and 0 are often used for extrapval.

pp = interp1(x,Y,method,'pp') uses the specified method to generate the
piecewise polynomial form (ppform) of Y. You can use any of the methods in the
preceding table, except for 'v5cubic'.

The interp1 command interpolates between data points. It finds values at
intermediate points, of a one-dimensional function that underlies the
data. This function is shown below, along with the relationship between vectors
x, Y, xi, and yi.

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is [x,Y] and interp1 looks up the elements of xi in x, and,
based upon their locations, returns values yi interpolated within the elements
of Y.

Note interp1q is quicker than interp1 on non-uniformly spaced data
because it does no input checking. For interp1q to work properly, x must be a
monotonically increasing column vector and Y must be a column vector or
matrix with length(X) rows. Type help interp1q at the command line for
more information.

Examples Example 1. Generate a coarse sine curve and interpolate over a finer abscissa.

x = 0:10;

f x()

x

xi

Y yi

f(x)

interp1

2-1191

y = sin(x);
xi = 0:.25:10;
yi = interp1(x,y,xi);
plot(x,y,'o',xi,yi)

Example 2. Here are two vectors representing the census years from 1900 to
1990 and the corresponding United States population in millions of people.

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669...
 150.697 179.323 203.212 226.505 249.633];

The expression interp1(t,p,1975) interpolates within the census data to
estimate the population in 1975. The result is

ans =
 214.8585

Now interpolate within the data at every year from 1900 to 2000, and plot the
result.

 x = 1900:1:2000;
 y = interp1(t,p,x,'spline');

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

interp1

2-1192

 plot(t,p,'o',x,y)

Sometimes it is more convenient to think of interpolation in table lookup
terms, where the data are stored in a single table. If a portion of the census
data is stored in a single 5-by-2 table,

tab =
 1950 150.697
 1960 179.323
 1970 203.212
 1980 226.505
 1990 249.633

then the population in 1975, obtained by table lookup within the matrix tab, is

p = interp1(tab(:,1),tab(:,2),1975)
p =
 214.8585

Algorithm The interp1 command is a MATLAB M-file. The 'nearest' and 'linear'
methods have straightforward implementations.

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000
50

100

150

200

250

300

interp1

2-1193

For the 'spline' method, interp1 calls a function spline that uses the
functions ppval, mkpp, and unmkpp. These routines form a small suite of
functions for working with piecewise polynomials. spline uses them to perform
the cubic spline interpolation. For access to more advanced features, see the
spline reference page, the M-file help for these functions, and the Spline
Toolbox.

For the 'pchip' and 'cubic' methods, interp1 calls a function pchip that
performs piecewise cubic interpolation within the vectors x and y. This method
preserves monotonicity and the shape of the data. See the pchip reference page
for more information.

See Also interpft, interp2, interp3, interpn, pchip, spline

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

interp2

2-1194

2interp2Purpose Two-dimensional data interpolation (table lookup)

Syntax ZI = interp2(X,Y,Z,XI,YI)
ZI = interp2(Z,XI,YI)
ZI = interp2(Z,ntimes)
ZI = interp2(X,Y,Z,XI,YI,method)

ZI = interp2(...,method, extrapval)

Description ZI = interp2(X,Y,Z,XI,YI) returns matrix ZI containing elements
corresponding to the elements of XI and YI and determined by interpolation
within the two-dimensional function specified by matrices X, Y, and Z. X and Y
must be monotonic, and have the same format (“plaid”) as if they were
produced by meshgrid. Matrices X and Y specify the points at which the data Z
is given. Out of range values are returned as NaNs.

XI and YI can be matrices, in which case interp2 returns the values of Z
corresponding to the points (XI(i,j),YI(i,j)). Alternatively, you can pass in
the row and column vectors xi and yi, respectively. In this case, interp2
interprets these vectors as if you issued the command meshgrid(xi,yi).

ZI = interp2(Z,XI,YI) assumes that X = 1:n and Y = 1:m, where
[m,n] = size(Z).

ZI = interp2(Z,ntimes) expands Z by interleaving interpolates between
every element, working recursively for ntimes. interp2(Z) is the same as
interp2(Z,1).

ZI = interp2(X,Y,Z,XI,YI,method) specifies an alternative interpolation
method:

All interpolation methods require that X and Y be monotonic, and have the
same format (“plaid”) as if they were produced by meshgrid. If you provide two
monotonic vectors, interp2 changes them to a plaid internally. Variable

'nearest' Nearest neighbor interpolation

'linear' Bilinear interpolation (default)

'spline' Cubic spline interpolation

'cubic' Bicubuc interpolation

interp2

2-1195

spacing is handled by mapping the given values in X, Y, XI, and YI to an equally
spaced domain before interpolating. For faster interpolation when X and Y are
equally spaced and monotonic, use the methods '*linear', '*cubic',
'*spline', or '*nearest'.

ZI = interp2(...,method, extrapval) specificies a method and a scalar
value for ZI outside of the domain created by X and Y. Thus, ZI equals
extrapval for any value of YI or XI that is not spanned by Y or X respectively.
A method must be specified to use extrapval. The default method is 'linear'.

Remarks The interp2 command interpolates between data points. It finds values of a
two-dimensional function underlying the data at intermediate points.

Interpolation is the same operation as table lookup. Described in table lookup
terms, the table is tab = [NaN,Y; X,Z] and interp2 looks up the elements of
XI in X, YI in Y, and, based upon their location, returns values ZI interpolated
within the elements of Z.

Examples Example 1. Interpolate the peaks function over a finer grid.

[X,Y] = meshgrid(-3:.25:3);
Z = peaks(X,Y);
[XI,YI] = meshgrid(-3:.125:3);
ZI = interp2(X,Y,Z,XI,YI);
mesh(X,Y,Z), hold, mesh(XI,YI,ZI+15)
hold off
axis([-3 3 -3 3 -5 20])

f x y,()

f(x,y)
Interpolated points P(XI,YI,ZI)

Grid points P(X,Y,Z)

interp2

2-1196

Example 2. Given this set of employee data,

years = 1950:10:1990;
service = 10:10:30;
wage = [150.697 199.592 187.625

179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.243];

it is possible to interpolate to find the wage earned in 1975 by an employee with
15 years’ service:

w = interp2(service,years,wage,15,1975)
w =
 190.6287

See Also griddata, interp1, interp3, interpn, meshgrid

−3
−2

−1
0

1
2

3

−3

−2

−1

0

1

2

3
−5

0

5

10

15

20

interp3

2-1197

2interp3Purpose Three-dimensional data interpolation (table lookup)

Syntax VI = interp3(X,Y,Z,V,XI,YI,ZI)
VI = interp3(V,XI,YI,ZI)
VI = interp3(V,ntimes)
VI = interp3(...,method)
VI = INTERP3(...,'method',extrapval)

Description VI = interp3(X,Y,Z,V,XI,YI,ZI) interpolates to find VI, the values of the
underlying three-dimensional function V at the points in arrays XI,YI and ZI.
XI,YI, ZI must be arrays of the same size, or vectors. Vector arguments that are
not the same size, and have mixed orientations (i.e. with both row and column
vectors) are passed through meshgrid to create the Y1, Y2, Y3 arrays. Arrays X,
Y, and Z specify the points at which the data V is given. Out of range values are
returned as NaN.

VI = interp3(V,XI,YI,ZI) assumes X=1:N, Y=1:M, Z=1:P where
[M,N,P]=size(V).

VI = interp3(V,ntimes) expands V by interleaving interpolates between
every element, working recursively for ntimes iterations. The command
interp3(V) is the same as interp3(V,1).

VI = interp3(...,method) specifies alternative methods:

VI = INTERP3(...,'method',extrapval) specifies a method and a value for
VI outside of the domain created by X,Y and Z. Thus, VI equals extrapval for
any value of XI, YI or ZI that is not spanned by X, Y, and Z, respectively. You
must specify a method to use extrapval. The default method is 'linear'.

Discussion All the interpolation methods require that X,Y and Z be monotonic and have the
same format (“plaid”) as if they were created using meshgrid. X, Y, and Z can be

'linear' Linear interpolation (default)

'cubic' Cubic interpolation

'spline' Cubic spline interpolation

'nearest' Nearest neighbor interpolation

interp3

2-1198

non-uniformly spaced. For faster interpolation when X, Y, and Z are equally
spaced and monotonic, use the methods '*linear', '*cubic', or '*nearest'.

Examples To generate a coarse approximation of flow and interpolate over a finer mesh:

[x,y,z,v] = flow(10);
[xi,yi,zi] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);
vi = interp3(x,y,z,v,xi,yi,zi); % vi is 25-by-40-by-25
slice(xi,yi,zi,vi,[6 9.5],2,[-2 .2]), shading flat

See Also interp1, interp2, interpn, meshgrid

0
2

4
6

8
10

−3

−2

−1

0

1

2

3
−3

−2

−1

0

1

2

3

interpft

2-1199

2interpftPurpose One-dimensional interpolation using the FFT method

Syntax y = interpft(x,n)
y = interpft(x,n,dim)

Description y = interpft(x,n) returns the vector y that contains the value of the periodic
function x resampled to n equally spaced points.

If length(x) = m, and x has sample interval dx, then the new sample interval
for y is dy = dx*m/n. Note that n cannot be smaller than m.

If X is a matrix, interpft operates on the columns of X, returning a matrix Y
with the same number of columns as X, but with n rows.

y = interpft(x,n,dim) operates along the specified dimension.

Algorithm The interpft command uses the FFT method. The original vector x is
transformed to the Fourier domain using fft and then transformed back with
more points.

See Also interp1

interpn

2-1200

2interpnPurpose Multidimensional data interpolation (table lookup)

Syntax VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...)
VI = interpn(V,Y1,Y2,Y3,...)
VI = interpn(V,ntimes)
VI = interpn(...,method)

Description VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...) interpolates to find VI, the
values of the underlying multidimensional function V at the points in the
arrays Y1, Y2, Y3, etc. For an n-dimensional array V, interpn is called with
2*N+1 arguments. Arrays X1, X2, X3, etc. specify the points at which the data V
is given. Out of range values are returned as NaNs. Y1, Y2, Y3, etc. must be
arrays of the same size, or vectors. Vector arguments that are not the same
size, and have mixed orientations (i.e. with both row and column vectors) are
passed through ndgrid to create the Y1, Y2, Y3, etc. arrays. interpn works for
all n-dimensional arrays with 2 or more dimensions.

VI = interpn(V,Y1,Y2,Y3,...) interpolates as above, assuming
X1 = 1:size(V,1), X2 = 1:size(V,2), X3 = 1:size(V,3), etc.

VI = interpn(V,ntimes) expands V by interleaving interpolates between
each element, working recursively for ntimes iterations. interpn(V,1) is the
same as interpn(V).

VI = interpn(...,method) specifies alternative methods:

VI = INTERPN(...,'method',extrapval) specifies a method and a value for
VI outside of the domain created by X1, X2,... Thus, VI equals extrapval for any
value of Y1, Y2,.. that is not spanned by X1, X2,... respectively. You must specify
a method to use extrapval. The default method is 'linear'.

interpn requires that X1, X2, X3, ... be monotonic and plaid (as if they were
created using ndgrid). X1, X2, X3, and so on can be non-uniformly spaced.

'linear' Linear interpolation (default)

'cubic' Cubic interpolation

'spline' Cubic spline interpolation

'nearest' Nearest neighbor interpolation

interpn

2-1201

Discussion All the interpolation methods require that X1,X2, X3 ... be monotonic and have
the same format (“plaid”) as if they were created using ndgrid. X1,X2,X3,... and
Y1, Y2, Y3, etc. can be non-uniformly spaced. For faster interpolation when X1,
X2, X3, etc. are equally spaced and monotonic, use the methods '*linear',
'*cubic', or '*nearest'.

See Also interp1, interp2, interp3, ndgrid

interpstreamspeed

2-1202

2interpstreamspeedPurpose Interpolate stream line vertices from flow speed

Syntax interpstreamspeed(X,Y,Z,U,V,W,vertices)
interpstreamspeed(U,V,W,vertices)
interpstreamspeed(X,Y,Z,speed,vertices)
interpstreamspeed(speed,vertices)

interpstreamspeed(X,Y,U,V,vertices)
interpstreamspeed(U,V,vertices)
interpstreamspeed(X,Y,speed,vertices)
interpstreamspeed(speed,vertices)

interpstreamspeed(...,sf)
vertsout = interpstreamspeed(...)

Description interpstreamspeed(X,Y,Z,U,V,W,vertices) interpolates streamline vertices
based on the magnitude of the vector data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (as if produced by
meshgrid).

interpstreamspeed(U,V,W,vertices) assumes X, Y, and Z are determined by
the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(U).

interpstreamspeed(X,Y,Z,speed,vertices) uses the 3-D array speed for the
speed of the vector field.

interpstreamspeed(speed,vertices) assumes X, Y, and Z are determined by
the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p]=size(speed).

interpstreamspeed(X,Y,U,V,vertices) interpolates streamline vertices
based on the magnitude of the vector data U, V. The arrays X, Y define the

interpstreamspeed

2-1203

coordinates for U, V and must be monotonic and 2-D plaid (as if produced by
meshgrid)

interpstreamspeed(U,V,vertices) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [M N]=size(U).

interpstreamspeed(X,Y,speed,vertices) uses the 2-D array speed for the
speed of the vector field.

interpstreamspeed(speed,vertices) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [M,N]= size(speed).

interpstreamspeed(...,sf) uses sf to scale the magnitude of the vector data
and therefore controls the number of interpolated vertices. For example, if sf
is 3, then interpstreamspeed creates only one-third of the vertices.

vertsout = interpstreamspeed(...) returns a cell array of vertex arrays.

Examples This example draws streamlines using the vertices returned by
interpstreamspeed. Dot markers indicate the location of each vertex. This
example enables you to visualize the relative speeds of the flow data.
Streamlines having widely spaced vertices indicate faster flow; those with
closely spaced vertices indicate slower flow.

load wind
[sx sy sz] = meshgrid(80,20:1:55,5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.2);
sl = streamline(iverts);
set(sl,'Marker','.')
axis tight; view(2); daspect([1 1 1])

interpstreamspeed

2-1204

This example plots streamlines whose vertex spacing indicates the value of the
gradient along the streamline.

z = membrane(6,30);
[u v] = gradient(z);
[verts averts] = streamslice(u,v);
iverts = interpstreamspeed(u,v,verts,15);
sl = streamline(iverts);
set(sl,'Marker','.')
hold on; pcolor(z); shading interp
axis tight; view(2); daspect([1 1 1])

interpstreamspeed

2-1205

See Also stream2, stream3, streamline, streamslice, streamparticles

“Volume Visualization” for related functions

intersect

2-1206

2intersectPurpose Set intersection of two vectors

Syntax c = intersect(A,B)
c = intersect(A,B,'rows')
[c,ia,ib] = intersect(...)

Description c = intersect(A,B) returns the values common to both A and B. The
resulting vector is sorted in ascending order. In set theoretic terms, this is
A∩ B. A and B can be cell arrays of strings.

c = intersect(A,B,'rows') when A and B are matrices with the same
number of columns returns the rows common to both A and B.

[c,ia,ib] = intersect(a,b) also returns column index vectors ia and ib
such that c = a(ia) and c = b(ib) (or c = a(ia,:) and c = b(ib,:)).

Examples A = [1 2 3 6]; B = [1 2 3 4 6 10 20];
[c,ia,ib] = intersect(A,B);
disp([c;ia;ib])
 1 2 3 6
 1 2 3 4
 1 2 3 5

See Also ismember, issorted, setdiff, setxor, union, unique

intmax

2-1207

2intmax Purpose Return largest possible integer value

Syntax v = intmax
v = intmax('classname')

Description v = intmax is the largest positive value that can be represented in MATLAB
with a 32-bit integer. Any value larger than the value returned by intmax
saturates to the intmax value when cast to a 32-bit integer.

v = intmax('classname') is the largest positive value in the integer class
classname. Valid values for the string classname are

intmax('int32') is the same as intmax with no arguments.

Examples Find the maximum value for a 64-bit signed integer:

v = intmax('int64')
v =
 9223372036854775807

Convert this value to a 32-bit signed integer:

x = int32(v)
x =
 2147483647

Compare the result with the default value returned by intmax:

isequal(x, intmax)
ans =
 1

See Also intmin, realmax, realmin, int8, uint8, isa, class

'int8' 'int16' 'int32' 'int64'

'uint8' 'uint16' 'uint32' 'uint64'

intmin

2-1208

2intmin Purpose Return smallest possible integer value

Syntax v = intmin
v = intmin('classname')

Description v = intmin is the smallest value that can be represented in MATLAB with a
32-bit integer. Any value smaller than the value returned by intmin saturates
to the intmin value when cast to a 32-bit integer.

v = intmin('classname') is the smallest positive value in the integer class
classname. Valid values for the string classname are

intmin('int32') is the same as intmin with no arguments.

Examples Find the minimum value for a 64-bit signed integer:

v = intmin('int64')
v =
 -9223372036854775808

Convert this value to a 32-bit signed integer:

x = int32(v)
x =
 2147483647

Compare the result with the default value returned by intmin:

isequal(x, intmin)
ans =
 1

See Also intmax, realmin, realmax, int8, uint8, isa, class

'int8' 'int16' 'int32' 'int64'

'uint8' 'uint16' 'uint32' 'uint64'

intwarning

2-1209

2intwarningPurpose Control state of integer warnings

Syntax intwarning('action')
s = intwarning('action')
intwarning(s)
sOld = intwarning(sNew)

Description MATLAB has four types of integer warnings. The intwarning function enables,
disables, or returns information on these warnings:

• MATLAB:intConvertNaN — Warning on an attempt to convert NaN (Not a
Number) to an integer. The result of the operation is zero.

• MATLAB:intConvertNonIntVal — Warning on an attempt to convert a
non-integer value to an integer. The result is that the input value is rounded
to the nearest integer for that class.

• MATLAB:intConvertOverflow — Warning on overflow when attempting to
convert from a numeric class to an integer class. The result is the maximum
value for the target class.

• MATLAB:intMathOverflow — Warning on overflow when attempting an
integer arithmetic operation. The result is the maximum value for the class
of the input value. MATLAB also issues this warning when NaN is computed
(e.g., int8(0)/0).

intwarning('action') sets or displays the state of integer warnings in
MATLAB according to the string, action. There are three possible actions, as
shown here. The default state is 'off'.

Action Description

off Disable the display of integer warnings

on Enable the display of integer warnings

query Display the state of all integer warnings

intwarning

2-1210

s = intwarning('action') sets the state of integer warnings in MATLAB
according to the string action, and then returns the previous state in a 4-by-1
structure array, s. The return structure array has two fields: identifier and
state.

intwarning(s) sets the state of integer warnings in MATLAB according to the
identifier and state fields in structure array s.

sOld = intwarning(sNew) sets the state of integer warnings in MATLAB
according to sNew, and then returns the previous state in sOld.

Remarks Examples of the four types of integer warnings are shown here.

MATLAB:intConvertNaN
Attempt to convert NaN (Not a Number) to an unsigned integer:

uint8(NaN);
Warning: NaN converted to uint8(0).

MATLAB:intConvertNonIntVal
Attempt to convert a floating point number to an unsigned integer:

uint8(2.7);
Warning: Conversion rounded non-integer floating point
 value to nearest uint8 value.

MATLAB:intConvertOverflow
Attempt to convert a large unsigned integer to a signed integer, where the
operation overflows:

int8(uint8(200));
Warning: Out of range value converted to intmin('int8')
 or intmax('int8').

MATLAB:intMathOverflow
Attempt an integer arithmetic operation that overflows:

intmax('uint8') + 5;
Warning: Out of range value or NaN computed in integer arithmetic.

intwarning

2-1211

Examples Check the initial state of integer warnings:

intwarning('query')
The state of warning 'MATLAB:intConvertNaN' is 'off'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'off'.
The state of warning 'MATLAB:intConvertOverflow' is 'off'.
The state of warning 'MATLAB:intMathOverflow' is 'off'.

Convert a floating point value to an 8-bit unsigned integer. MATLAB does the
conversion, but that requires rounding the resulting value. Because all integer
warnings have been disabled, no warning is displayed:

uint8(2.7)
ans =
 3

Store this state in structure array iwState:

iwState = intwarning('query');

Change the state of the ConvertNonIntVal warning to 'on' by first setting the
state to 'on' in the iwState structure array, and then loading iwState back
into the internal integer warning settings for your MATLAB session:

maxintwarn = 4;

for k = 1:maxintwarn
 if strcmp(iwState(k).identifier, 'MATLAB:intConvertNonIntVal')
 iwState(k).state = 'on';
 intwarning(iwState);
 end
end

Verify that the state of ConvertNonIntVal has changed:

intwarning('query')
The state of warning 'MATLAB:intConvertNaN' is 'off'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'on'.
The state of warning 'MATLAB:intConvertOverflow' is 'off'.
The state of warning 'MATLAB:intMathOverflow' is 'off'.

intwarning

2-1212

Now repeat the conversion from floating point to integer. This time MATLAB
displays the warning:

uint8(2.7)
Warning: Conversion rounded non-integer floating point value
 to nearest uint8 value.
ans =
 3

See Also warning, lastwarn

inv

2-1213

2invPurpose Matrix inverse

Syntax Y = inv(X)

Description Y = inv(X) returns the inverse of the square matrix X. A warning message is
printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a matrix. A
frequent misuse of inv arises when solving the system of linear equations

. One way to solve this is with x = inv(A)*b. A better way, from both
an execution time and numerical accuracy standpoint, is to use the matrix
division operator x = A\b. This produces the solution using Gaussian
elimination, without forming the inverse. See \ and / for further information.

Examples Here is an example demonstrating the difference between solving a linear
system by inverting the matrix with inv(A)*b and solving it directly with A\b.
A random matrix A of order 500 is constructed so that its condition number,
cond(A), is 1.e10, and its norm, norm(A), is 1. The exact solution x is a random
vector of length 500 and the right-hand side is b = A*x. Thus the system of
linear equations is badly conditioned, but consistent.

On a 300 MHz, laptop computer the statements

n = 500;
Q = orth(randn(n,n));
d = logspace(0,-10,n);
A = Q*diag(d)*Q';
x = randn(n,1);
b = A*x;
tic, y = inv(A)*b; toc
err = norm(y-x)
res = norm(A*y-b)

produce

elapsed_time =
 1.4320
err =
 7.3260e-006
res =
 4.7511e-007

Ax b=

inv

2-1214

while the statements

tic, z = A\b, toc
err = norm(z-x)
res = norm(A*z-b)

produce

elapsed_time =
 0.6410
err =
 7.1209e-006
res =
 4.4509e-015

It takes almost two and one half times as long to compute the solution with
y = inv(A)*b as with z = A\b. Both produce computed solutions with about
the same error, 1.e-6, reflecting the condition number of the matrix. But the
size of the residuals, obtained by plugging the computed solution back into the
original equations, differs by several orders of magnitude. The direct solution
produces residuals on the order of the machine accuracy, even though the
system is badly conditioned.

The behavior of this example is typical. Using A\b instead of inv(A)*b is two
to three times as fast and produces residuals on the order of machine accuracy,
relative to the magnitude of the data.

Algorithm Inputs of Type Double
For inputs of type double, inv uses the following LAPACK routines to compute
the matrix inverse:

Matrix Routine

Real DLANGE, DGETRF, DGECON, DGETRI

Complex ZLANGE, ZGETRF, ZGECON, ZGETRI

inv

2-1215

Inputs of Type Single
For inputs of type single, inv uses the following LAPACK routines to compute
the matrix inverse:

See Also det, lu, rref

The arithmetic operators \, /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third Edition,
SIAM, Philadelphia, 1999.

Matrix Routine

Real SLANGE, SGETRF, SGECON, SGETRI

Complex CLANGE, CGETRF, CGECON, CGETRI

invhilb

2-1216

2invhilbPurpose Inverse of the Hilbert matrix

Syntax H = invhilb(n)

Description H = invhilb(n) generates the exact inverse of the exact Hilbert matrix for n
less than about 15. For larger n, invhilb(n) generates an approximation to the
inverse Hilbert matrix.

Limitations The exact inverse of the exact Hilbert matrix is a matrix whose elements are
large integers. These integers may be represented as floating-point numbers
without roundoff error as long as the order of the matrix, n, is less than 15.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two or three
sets of roundoff errors:

• The errors caused by representing hilb(n)

• The errors in the matrix inversion process

• The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions like
1/3 and 1/5 in floating-point, is the most significant.

Examples invhilb(4) is

 16 -120 240 -140
 -120 1200 -2700 1680
 240 -2700 6480 -4200
 -140 1680 -4200 2800

See Also hilb

References [1] [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear Algebraic
Systems, Prentice-Hall, 1967, Chapter 19.

ipermute

2-1217

2ipermutePurpose Inverse permute the dimensions of a multidimensional array

Syntax A = ipermute(B,order)

Description A = ipermute(B,order) is the inverse of permute. ipermute rearranges the
dimensions of B so that permute(A,order) will produce B. B has the same
values as A but the order of the subscripts needed to access any particular
element are rearranged as specified by order. All the elements of order must
be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Consider the 2-by-2-by-3 array a:

a = cat(3,eye(2),2*eye(2),3*eye(2))

a(:,:,1) = a(:,:,2) =
 1 0 2 0
 0 1 0 2

a(:,:,3) =
 3 0
 0 3

Permuting and inverse permuting a in the same fashion restores the array to
its original form:

B = permute(a,[3 2 1]);
C = ipermute(B,[3 2 1]);
isequal(a,C)
ans=

 1

See Also permute

is*

2-1218

2is*Purpose Detect state

Description These functions detect the state of MATLAB entities:

isappdata Determine if object has specific applica-
tion-defined data

iscell Determine if input is a cell array

iscellstr Determine if input is a cell array of strings

ischar Determine if input is a character array

isdir Determine if input is a directory

isempty Determine if input is an empty array

isequal Determine if arrays are numerically equal

isequalwithequalnans Determine if arrays are numerically equal, treat-
ing NaNs as equal

isevent Determine if input is an event of an object

isfield Determine if input is a MATLAB structure array
field

isfinite Detect finite elements of an array

isfloat Determine if input is a floating-point array

isglobal Determine if input is a global variable

ishandle Detect valid graphics object handles

ishold Determine if graphics hold state is on

isinf Detect infinite elements of an array

isinteger Determine if input is an integer array

isjava Determine if input is a Java object

iskeyword Determine if input is a MATLAB keyword

is*

2-1219

See Also isa

islogical Determine if input is a logical array

ismember Detect members of a specific set

ismethod Determine if input is a method of an object

isnan Detect elements of an array that are not a num-
ber (NaN)

isnumeric Determine if input is a numeric array

isobject Determine if input is a MATLAB OOPs object

ispc Determine if PC (Windows) version of MATLAB

isprime Detect prime elements of an array

isprop Determine if input is a property of an object

isreal Determine if all array elements are real num-
bers

isscalar Determine if input is scalar

issorted Determine if set elements are in sorted order

isspace Detect space characters in an array

issparse Determine if input is a sparse array

isstrprop Determine if string is of specified category

isstruct Determine if input is a MATLAB structure array

isstudent Determine if student edition of MATLAB

isunix Determine if UNIX version of MATLAB

isvalid Determine if timer object is valid

isvarname Determine if input is a valid variable name

isvector Determine if input is a vector

isa

2-1220

2isaPurpose Detect an object of a given MATLAB class or Java class

Syntax K = isa(obj,'class_name')

Description K = isa(obj,'class_name') returns logical true (1) if obj is of class (or a
subclass of) class_name, and logical false (0) otherwise.

The argument obj is a MATLAB object or a Java object. The argument
class_name is the name of a MATLAB (predefined or user-defined) or a Java
class. Predefined MATLAB classes include

logical Logical array of true and false values

char Characters array

numeric Integer or floating-point array

integer Signed or unsigned integer array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

float Single- or double-precision floating-point array

single Single-precision floating-point array

double Double-precision floating-point array

cell Cell array

struct Structure array

function_handle Function handle

'class_name' Custom MATLAB object class or Java class

isa

2-1221

To check for a sparse array, use issparse. To check for a complex array, use
~isreal.

Examples isa(rand(3,4),'double')
ans =
 1

The following example creates an instance of the user-defined MATLAB class
named polynom. The isa function identifies the object as being of the polynom
class.

polynom_obj = polynom([1 0 -2 -5]);
isa(polynom_obj, 'polynom')
ans =
 1

See Also class, is*

isappdata

2-1222

2isappdataPurpose True if application-defined data exists

Syntax isappdata(h,name)

Description isappdata(h,name) returns 1 if application-defined data with the specified
name exists on the object specified by handle h, and returns 0 otherwise.

See Also getappdata, rmappdata, setappdata

iscell

2-1223

2iscellPurpose Determine if input is a cell array

Syntax tf = iscell(A)

Description tf = iscell(A) returns logical true (1) if A is a cell array and logical false (0)
otherwise.

Examples A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';
A{2,1} = 3+7i;
A{2,2} = -pi:pi/10:pi;

iscell(A)

ans =

 1

See Also cell, iscellstr, isstruct, isnumeric, islogical, isobject, isa, is*

iscellstr

2-1224

2iscellstrPurpose Determine if input is a cell array of strings

Syntax tf = iscellstr(A)

Description tf = iscellstr(A) returns logical true (1) if A is a cell array of strings and
logical false (0) otherwise. A cell array of strings is a cell array where every
element is a character array.

Examples A{1,1} = 'Thomas Lee';
A{1,2} = 'Marketing';
A{2,1} = 'Allison Jones';
A{2,2} = 'Development';

iscellstr(A)

ans =

 1

See Also cell, char, iscell, isstruct, isa, is*

ischar

2-1225

2ischarPurpose Determine if input is a character array

Syntax tf = ischar(A)

Description tf = ischar(A) returns logical true (1) if A is a character array and logical
false (0) otherwise.

Examples Given the following cell array,

C{1,1} = magic(3); % double array
C{1,2} = 'John Doe'; % char array
C{1,3} = 2 + 4i % complex double

C =

 [3x3 double] 'John Doe' [2.0000+ 4.0000i]

ischar shows that only C{1,2} is a character array.

for k = 1:3
x(k) = ischar(C{1,k});
end

x

x =

 0 1 0

See Also char, isnumeric, islogical, isobject, isstruct, iscell, isa, is*

isdir

2-1226

2isdirPurpose Determine if item is a directory

Syntax tf = isdir('A')

Description tf = isdir('A') returns logical true (1) if A is a directory and 0 otherwise.

Examples Type

tf=isdir('mymfiles/results')

and MATLAB returns

tf =
1

indicating that mymfiles/results is a directory.

See Also dir, is*

isempty

2-1227

2isemptyPurpose Test if array is empty

Syntax tf = isempty(A)

Description tf = isempty(A) returns logical true (1) if A is an empty array and logical false
(0) otherwise. An empty array has at least one dimension of size zero, for
example, 0-by-0 or 0-by-5.

Examples B = rand(2,2,2);
B(:,:,:) = [];

isempty(B)

ans =
 1

See Also is*

isequal

2-1228

2isequalPurpose Determine if arrays are numerically equal

Syntax tf = isequal(A,B,...)

Description tf = isequal(A,B,...) returns logical true (1) if the input arrays are the
same type and size and hold the same contents, and logical false (0) otherwise.

Remarks When comparing structures, the order in which the fields of the structures
were created is not important. As long as the structures contain the same
fields, with corresponding fields set to equal values, isequal considers the
structures to be equal. See Example 2, below.

When comparing numeric values, isequal does not consider the data type used
to store the values in determining whether they are equal. See Example 3,
below.

NaNs (Not a Number), by definition, are not equal. Therefore, arrays that
contain NaN elements are not equal, and isequal returns zero when comparing
such arrays. See Example 4, below. Use the isequalwithequalnans function
when you want to test for equality with NaNs treated as equal.

isequal recursively compares the contents of cell arrays and structures. If all
the elements of a cell array or structure are numerically equal, isequal returns
logical 1.

Examples Example 1
Given

A = B = C =
 1 0 1 0 1 0
 0 1 0 1 0 0

isequal(A,B,C) returns 0, and isequal(A,B) returns 1.

Example 2
When comparing structures with isequal, the order in which the fields of the
structures were created is not important:

A.f1 = 25; A.f2 = 50
A =
 f1: 25

isequal

2-1229

 f2: 50

B.f2 = 50; B.f1 = 25
B =
 f2: 50
 f1: 25

isequal(A, B)
ans =
 1

Example 3
When comparing numeric values, the data types used to store the values are
not important:

A = [25 50]; B = [int8(25) int8(50)];

isequal(A, B)
ans =
 1

Example 4
Arrays that contain NaN (Not a Number) elements cannot be equal, since NaNs,
by definition, are not equal:

A = [32 8 -29 NaN 0 5.7];
B = A;

isequal(A, B)
ans =
 0

See Also isequalwithequalnans, strcmp, isa, is*, relational operators

isequalwithequalnans

2-1230

2isequalwithequalnansPurpose Determine if arrays are numerically equal, treating NaNs as equal

Syntax tf = isequalwithequalnans(A,B,...)

Description tf = isequalwithequalnans(A,B,...) returns logical true (1) if the input
arrays are the same type and size and hold the same contents, and logical false
(0) otherwise. NaN (Not a Number) values are considered to be equal to each
other. Numeric data types and structure field order do not have to match.

Remarks isequalwithequalnans is the same as isequal, except isequalwithequalnans
considers NaN (Not a Number) values to be equal, and isequal does not.

isequalwithequalnans recursively compares the contents of cell arrays and
structures. If all the elements of a cell array or structure are numerically equal,
isequalwithequalnans returns logical 1.

Examples Arrays containing NaNs are handled differently by isequal and
isequalwithequalnans. isequal does not consider NaNs to be equal, while
isequalwithequalnans does.

A = [32 8 -29 NaN 0 5.7];
B = A;
isequal(A, B)
ans =
 0

isequalwithequalnans(A, B)
ans =
 1

The position of NaN elements in the array does matter. If they are not in the
same position in the arrays being compared, then isequalwithequalnans
returns zero.

A = [2 4 6 NaN 8]; B = [2 4 NaN 6 8];
isequalwithequalnans(A, B)
ans =
 0

See Also isequal, strcmp, isa, is*, relational operators

isfield

2-1231

2isfieldPurpose Determine if input is a MATLAB structure array field

Syntax tf = isfield(A, 'field')

Description tf = isfield(A, 'field') returns logical 1 (true) if field is the name of a
field in the structure array A, and logical 0 (false) otherwise. If A is not a
structure array, isfield returns logical 0 (false).

Examples Given the following MATLAB structure,

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isfield identifies billing as a field of that structure.

isfield(patient,'billing')

ans =

 1

See Also fieldnames, setfield, getfield, orderfields, rmfield, struct, isstruct,
iscell, isa, is*, dynamic field names

isfinite

2-1232

2isfinitePurpose Detect finite elements of an array

Syntax TF = isfinite(A)

Description TF = isfinite(A) returns an array the same size as A containing logical true
(1) where the elements of the array A are finite and logical false (0) where they
are infinite or NaN. For a complex number z, isfinite(z) returns 1 if both the
real and imaginary parts of z are finite, and 0 if either the real or the imaginary
part is infinite or NaN.

For any real A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2];

isfinite(1./a)
Warning: Divide by zero.

ans =
 1 1 0 1 1

isfinite(0./a)
Warning: Divide by zero.

ans =
 1 1 0 1 1

See Also isinf, isnan, is*

isfloat

2-1233

2isfloatPurpose Detect floating-point arrays

Syntax isfloat(A)

Description isfloat(A) returns a logical true (1) if A is a floating-point array and a logical
false (0) otherwise. The only floating-point data types in MATLAB are single
and double.

See Also isa, isinteger, double, single, isnumeric

isglobal

2-1234

2isglobalPurpose Determine if input is a global variable

Syntax tf = isglobal(A)

Description tf = isglobal(A) returns logical true (1) if A has been declared to be a global
variable and logical false (0) otherwise.

See Also global, isvarname, isa, is*

ishandle

2-1235

2ishandlePurpose Determines if values are valid graphics object handles

Syntax array = ishandle(h)

Description array = ishandle(h) returns an array that contains 1’s where the elements
of h are valid graphics handles and 0’s where they are not.

Examples Determine whether the handles previously returned by fill remain handles of
existing graphical objects:

X = rand(4); Y = rand(4);
h = fill(X,Y,'blue')
.
.
.
delete(h(3))
.
.
.
ishandle(h)
ans =

1
1
0
1

See Also findobj

“Finding and Identifying Graphics Objects” for related functions

ishold

2-1236

2isholdPurpose Return hold state

Syntax k = ishold

Description k = ishold returns the hold state of the current axes. If hold is on, k = 1, if
hold is off, k = 0.

Examples ishold is useful in graphics M-files where you want to perform a particular
action only if hold is not on. For example, these statements set the view to 3-D
only if hold is off:

if ~ishold
view(3);

end

See Also axes, figure, hold, newplot

“Axes Operations” for related functions

isinf

2-1237

2isinfPurpose Detect infinite elements of an array

Syntax TF = isinf(A)

Description TF = isinf(A) returns an array the same size as A containing logical true (1)
where the elements of A are +Inf or -Inf and logical false (0) where they are
not. For a complex number z, isinf(z) returns 1 if either the real or imaginary
part of z is infinite, and 0 if both the real and imaginary parts are finite or NaN.

For any real A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2]

isinf(1./a)
Warning: Divide by zero.

ans =
 0 0 1 0 0

isinf(0./a)
Warning: Divide by zero.

ans =
 0 0 0 0 0

See Also isfinite, isnan, is*

isinteger

2-1238

2isintegerPurpose Detect whether an array has integer data type

Syntax isinteger(A)

Description isinteger(A) returns a logical true (1) if the array A has integer data type and
a logical false (0) otherwise. The integer data types in MATLAB are

• int8
• uint8
• int16
• uint16
• int32
• uint32
• int64
• uint64

See Also isa, isnumeric, isfloat

iskeyword

2-1239

2iskeywordPurpose Determine if input is a MATLAB keyword

Syntax tf = iskeyword('str')
iskeyword str
iskeyword

Description tf = iskeyword('str') returns logical true (1) if the string str is a keyword
in the MATLAB language and logical false (0) otherwise.

iskeyword str uses the MATLAB command format.

iskeyword returns a list of all MATLAB keywords.

Examples To test if the word while is a MATLAB keyword,

iskeyword while
ans =
 1

To obtain a list of all MATLAB keywords,

iskeyword
 'break'
 'case'
 'catch'
 'continue'
 'else'
 'elseif'
 'end'
 'for'
 'function'
 'global'
 'if'
 'otherwise'
 'persistent'
 'return'
 'switch'
 'try'
 'while'

iskeyword

2-1240

See Also isvarname, genvarname, is*

isletter

2-1241

2isletterPurpose Detect array elements that are letters of the alphabet

Note Use the isstrprop function in place of isletter. The isletter
function will be removed in a future version of MATLAB.

Syntax tf = isletter('str')

Description tf = isletter('str') returns an array the same size as str containing
logical true (1) where the elements of str are letters of the alphabet and logical
false (0) where they are not.

Examples Find the letters in character array s.

s = 'A1, B2, C3';

isletter(s)
ans =
 1 0 0 1 0 0 1 0

See Also isstrprop, isnumeric, ischar, char, isspace, isa, is*

islogical

2-1242

2islogicalPurpose Determine if input is a logical array

Syntax tf = islogical(A)

Description tf = islogical(A) returns logical true (1) if A is a logical array and logical
false (0) otherwise.

Examples Given the following cell array,

C{1,1} = pi; % double
C{1,2} = 1; % double
C{1,3} = ispc; % logical
C{1,4} = magic(3) % double array

C =
 [3.1416] [1] [1] [3x3 double]

islogical shows that only C{1,3} is a logical array.

for k = 1:4
x(k) = islogical(C{1,k});
end

x
x =
 0 0 1 0

See Also logical, isnumeric, ischar, isreal, logical operators (elementwise and
short-circuit), isa, is*

ismember

2-1243

2ismemberPurpose Detect members of a specific set

Syntax tf = ismember(A, S)
tf = ismember(A, S, 'rows')
[tf, loc] = ismember(A, S, ...)

Description tf = ismember(A, S) returns a vector the same length as A, containing logical
true (1) where the elements of A are in the set S, and logical false (0) elsewhere.
In set theory terms, k is 1 where A ∈ S. A and S can be cell arrays of strings.

tf = ismember(A, S, 'rows'), when A and S are matrices with the same
number of columns, returns a vector containing 1 where the rows of A are also
rows of S and 0 otherwise. You cannot use this syntax if A or S is a cell array of
strings.

[tf, loc] = ismember(A, S, ...) returns index vector loc containing the
highest index in S for each element in A that is a member of S. For those
elements of A that do not occur in S, ismember returns 0.

Examples set = [0 2 4 6 8 10 12 14 16 18 20];
a = reshape(1:5, [5 1])

a =
 1
 2
 3
 4
 5

ismember(a, set)
ans =
 0
 1
 0
 1
 0

set = [5 2 4 2 8 10 12 2 16 18 20 3];
[tf, index] = ismember(a, set);

ismember

2-1244

index
index =
 0
 8
 12
 3
 1

See Also issorted, intersect, setdiff, setxor, union, unique, is*

ismethod

2-1245

2ismethodPurpose Determine if input is a method of an object

Syntax ismethod(h, 'name')

Description ismethod(h, 'name') returns a logical true (1) if the specified name is a
method that you can call on object h. Otherwise, ismethod returns logical false
(0).

Examples Create an Excel application and test to see if SaveWorkspace is a method of the
object. ismethod returns true:

h = actxserver ('Excel.Application');

ismethod(h, 'SaveWorkspace')
ans =
 1

Try the same test on UsableWidth, which is a property. isevent returns false:

ismethod(h, 'UsableWidth')
ans =
 0

See Also methods, methodsview, isprop, isevent, isobject, class, invoke

isnan

2-1246

2isnanPurpose Detect NaN elements of an array

Syntax TF = isnan(A)

Description TF = isnan(A) returns an array the same size as A containing logical true (1)
where the elements of A are NaNs and logical false (0) where they are not. For a
complex number z, isnan(z) returns 1 if either the real or imaginary part of z
is NaN, and 0 if both the real and imaginary parts are finite or Inf.

For any real A, exactly one of the three quantities isfinite(A), isinf(A), and
isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2]

isnan(1./a)
Warning: Divide by zero.

ans =
 0 0 0 0 0

isnan(0./a)
Warning: Divide by zero.

ans =
 0 0 1 0 0

See Also isfinite, isinf, is*

isnumeric

2-1247

2isnumericPurpose Determine if input is a numeric array

Syntax tf = isnumeric(A)

Description tf = isnumeric(A) returns logical true (1) if A is a numeric array and logical
false (0) otherwise. For example, sparse arrays and double-precision arrays are
numeric, while strings, cell arrays, and structure arrays and logicals are not.

Examples Given the following cell array,

C{1,1} = pi; % double
C{1,2} = 'John Doe'; % char array
C{1,3} = 2 + 4i; % complex double
C{1,4} = ispc; % logical
C{1,5} = magic(3) % double array

C =
 [3.1416] 'John Doe' [2.0000+ 4.0000i] [1] [3x3 double]

isnumeric shows that all but C{1,2} and C{1,4} are numeric arrays.

for k = 1:5
x(k) = isnumeric(C{1,k});
end

x
x =
 1 0 1 0 1

See Also isstrprop, isnan, isreal, isprime, isfinite, isinf, isa, is*

isobject

2-1248

2isobjectPurpose Determine if input is a MATLAB OOPs object

Syntax tf = isobject(A)

Description tf = isobject(A) returns logical true (1) if A is a MATLAB object and logical
false (0) otherwise.

Examples Create an instance of the polynom class as defined in the section “Example - A
Polynomial Class” in the MATLAB documentation.

p = polynom([1 0 -2 -5])
p =
 x^3 - 2*x - 5

isobject indicates that p is a MATLAB object.

isobject(p)
ans =
 1

Note that isjava, which tests for Java objects in MATLAB, returns false (0).

isjava(p)
ans =
 0

See Also isjava, isstruct, iscell, ischar, isnumeric, islogical, ismethod, isprop,
isevent, methods, class, isa, is*

isocaps

2-1249

2isocapsPurpose Compute isosurface end cap geometry

Syntax fvc = isocaps(X,Y,Z,V,isovalue)
fvc = isocaps(V,isovalue)
fvc = isocaps(...,'enclose')
fvc = isocaps(...,'whichplane')
[f,v,c] = isocaps(...)
isocaps(...)

Description fvc = isocaps(X,Y,Z,V,isovalue) computes isosurface end cap geometry for
the volume data V at isosurface value isovalue. The arrays X, Y, and Z define
the coordinates for the volume V.

The struct fvc contains the face, vertex, and color data for the end caps and can
be passed directly to the patch command.

fvc = isocaps(V,isovalue) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isocaps(...,'enclose') specifies whether the end caps enclose data
values above or below the value specified in isovalue. The string enclose can
be either above (default) or below.

fvc = isocaps(...,'whichplane') specifies on which planes to draw the end
caps. Possible values for whichplane are all (default), xmin, xmax, ymin, ymax,
zmin, or zmax.

[f,v,c] = isocaps(...) returns the face, vertex, and color data for the end
caps in three arrays instead of the struct fvc.

isocaps(...) without output arguments draws a patch with the computed
faces, vertices, and colors.

Examples This example uses a data set that is a collection of MRI slices of a human skull.
It illustrates the use of isocaps to draw the end caps on this cutaway volume.

The red isosurface shows the outline of the volume (skull) and the end caps
show what is inside of the volume.

isocaps

2-1250

The patch created from the end cap data (p2) uses interpolated face coloring,
which means the gray colormap and the light sources determine how it is
colored. The isosurface patch (p1) used a flat red face color, which is affected by
the lights, but does not use the colormap.

load mri
D = squeeze(D);
D(:,1:60,:) = [];
p1 = patch(isosurface(D, 5),'FaceColor','red',...

'EdgeColor','none');
p2 = patch(isocaps(D, 5),'FaceColor','interp',...

'EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight left; camlight; lighting gouraud
isonormals(D,p1)

See Also isosurface, isonormals, smooth3, subvolume, reducevolume, reducepatch

Isocaps Add Context to Visualizations for more illustrations of isocaps

isocaps

2-1251

“Volume Visualization” for related functions

isocolors

2-1252

2isocolorsPurpose Calculates isosurface and patch colors

Syntax nc = isocolors(X,Y,Z,C,vertices)
nc = isocolors(X,Y,Z,R,G,B,vertices)
nc = isocolors(C,vertices)
nc = isocolors(R,G,B,vertices)
nc = isocolors(...,PatchHandle)
isocolors(...,PatchHandle)

Description nc = isocolors(X,Y,Z,C,vertices) computes the colors of isosurface (patch
object) vertices (vertices) using color values C. Arrays X, Y, Z define the
coordinates for the color data in C and must be monotonic vectors or 3-D plaid
arrays (as if produced by meshgrid). The colors are returned in nc. C must be
3-D (index colors).

nc = isocolors(X,Y,Z,R,G,B,vertices) uses R, G, B as the red, green, and
blue color arrays (true color).

nc = isocolors(C,vertices), and nc = isocolors(R,G,B,vertices)
assume X, Y, and Z are determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(C).

nc = isocolors(...,PatchHandle) uses the vertices from the patch
identified by PatchHandle.

isocolors(...,PatchHandle) sets the FaceVertexCData property of the patch
specified by PatchHandle to the computed colors.

Examples Indexed Color Data
This example displays an isosurface and colors it with random data using
indexed color. (See "Interpolating in Indexed Color vs. Truecolor" for
information on how patch objects interpret color data.)

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
cdata = smooth3(rand(size(data)),'box',7);
p = patch(isosurface(x,y,z,data,10));

isocolors

2-1253

isonormals(x,y,z,data,p);
isocolors(x,y,z,cdata,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);axis tight
camlight; lighting phong;

True Color Data
This example displays an isosurface and colors it with true color (RGB) data.

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(x,y,z,data,20));
isonormals(x,y,z,data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
isocolors(x,y,z,r/20,g/20,b/20,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

isocolors

2-1254

Modified True Color Data
This example uses isocolors to calculate the true color data using the
isosurface’s (patch object’s) vertices, but then returns the color data in a
variable (c) in order to modify the values. It then explicitly sets the isosurface’s
FaceVertexCData to the new data (1-c).

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(data,20));
isonormals(data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
c = isocolors(r/20,g/20,b/20,p);
set(p,'FaceVertexCData',1-c)
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

isocolors

2-1255

See Also isosurface, isocaps, smooth3, subvolume, reducevolume, reducepatch,
isonormals

“Volume Visualization” for related functions

isonormals

2-1256

2isonormalsPurpose Compute normals of isosurface vertices

Syntax n = isonormals(X,Y,Z,V,vertices)
n = isonormals(V,vertices)
n = isonormals(V,p), n = isonormals(X,Y,Z,V,p)
n = isonormals(...,'negate')
isonormals(V,p), isonormals(X,Y,Z,V,p)

Description n = isonormals(X,Y,Z,V,vertices) computes the normals of the isosurface
vertices from the vertex list, vertices, using the gradient of the data V. The
arrays X, Y, and Z define the coordinates for the volume V. The computed
normals are returned in n.

n = isonormals(V,vertices) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p) compute normals
from the vertices of the patch identified by the handle p.

n = isonormals(...,'negate') negates (reverses the direction of) the
normals.

isonormals(V,p) and isonormals(X,Y,Z,V,p) set the VertexNormals
property of the patch identified by the handle p to the computed normals rather
than returning the values.

Examples This example compares the effect of different surface normals on the visual
appearance of lit isosurfaces. In one case, the triangles used to draw the
isosurface define the normals. In the other, the isonormals function uses the
volume data to calculate the vertex normals based on the gradient of the data
points. The latter approach generally produces a smoother-appearing
isosurface.

Define a 3-D array of volume data (cat, interp3):

data = cat(3, [0 .2 0; 0 .3 0; 0 0 0], ...
 [.1 .2 0; 0 1 0; .2 .7 0],...
 [0 .4 .2; .2 .4 0;.1 .1 0]);
data = interp3(data,3,'cubic');

isonormals

2-1257

Draw an isosurface from the volume data and add lights. This isosurface uses
triangle normals (patch, isosurface, view, daspect, axis, camlight,
lighting, title):

subplot(1,2,1)
p1 = patch(isosurface(data,.5),...
'FaceColor','red','EdgeColor','none');
view(3); daspect([1,1,1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Triangle Normals')

Draw the same lit isosurface using normals calculated from the volume data:

subplot(1,2,2)
p2 = patch(isosurface(data,.5),...
 'FaceColor','red','EdgeColor','none');
isonormals(data,p2)
view(3); daspect([1 1 1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Data Normals')

These isosurfaces illustrate the difference between triangle and data normals:

See Also interp3, isosurface, isocaps, smooth3, subvolume, reducevolume,
reducepatch

“Volume Visualization” for related functions

isosurface

2-1258

2isosurfacePurpose Extract isosurface data from volume data

Syntax fv = isosurface(X,Y,Z,V,isovalue)
fv = isosurface(V,isovalue)
fv = isosurface(X,Y,Z,V), fv = isosurface(X,Y,Z,V)
fvc = isosurface(...,colors)
fv = isosurface(...,'noshare')
fv = isosurface(...,'verbose')
[f,v] = isosurface(...)
isosurface(...)

Description fv = isosurface(X,Y,Z,V,isovalue) computes isosurface data from the
volume data V at the isosurface value specified in isovalue. That is, the
isosurface connects points that have the specified value much the way contour
lines connect points of equal elevation.

The arrays X, Y, and Z define the coordinates for the volume V. The structure fv
contains the faces and vertices of the isosurface, which you can pass directly to
the patch command.

fv = isosurface(V,isovalue) assumes the arrays X, Y, and Z are defined as
[X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isosurface(...,colors) interpolates the array colors onto the scalar
field and returns the interpolated values in the facevertexcdata field of the
fvc structure. The size of the colors array must be the same as V. The colors
argument enables you to control the color mapping of the isosurface with data
different from that used to calculate the isosurface (e.g., temperature data
superimposed on a wind current isosurface).

fv = isosurface(...,'noshare') does not create shared vertices. This is
faster, but produces a larger set of vertices.

fv = isosurface(...,'verbose') prints progress messages to the command
window as the computation progresses.

[f,v] = isosurface(...) returns the faces and vertices in two arrays instead
of a struct.

isosurface

2-1259

isosurface(...) with no output arguments creates a patch using the
computed faces and vertices.

Remarks You can pass the fv structure created by isosurface directly to the patch
command, but you cannot pass the individual faces and vertices arrays (f, v) to
patch without specifying property names. For example,

patch(isosurface(X,Y,Z,V,isovalue))

or

[f,v] = isosurface(X,Y,Z,V,isovalue);
patch('Faces',f,'Vertices',v)

Examples This example uses the flow data set, which represents the speed profile of a
submerged jet within an infinite tank (type help flow for more information).
The isosurface is drawn at the data value of -3. The statements that follow the
patch command prepare the isosurface for lighting by

• Recalculating the isosurface normals based on the volume data (isonormals)

• Setting the face and edge color (set, FaceColor, EdgeColor)

• Specifying the view (daspect, view)

• Adding lights (camlight, lighting)
[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
set(p,'FaceColor','red','EdgeColor','none');
daspect([1 1 1])
view(3); axis tight
camlight
lighting gouraud

isosurface

2-1260

See Also isonormals, shrinkfaces, smooth3, subvolume

Connecting Equal Values with Isosurfaces for more examples

“Volume Visualization” for related functions

ispc

2-1261

2ispcPurpose Determine if PC (Windows) version of MATLAB

Syntax tf = ispc

Description tf = ispc

returns logical true (1) for the PC version of MATLAB and logical false (0) oth-

erwise.

See Also isunix, isstudent, is*

isprime

2-1262

2isprimePurpose Detect prime elements of an array

Syntax TF = isprime(A)

Description TF = isprime(A) returns an array the same size as A containing logical true
(1) for the elements of A which are prime, and logical false (0) otherwise. A must
contain only positive integers.

Examples c = [2 3 0 6 10]

c =
 2 3 0 6 10

isprime(c)

ans =
 1 1 0 0 0

See Also is*

isprop

2-1263

2isprop

Purpose Determine if input is a property of an object

Syntax isprop(h, 'name')

Description isprop(h, 'name')

returns a logical 1 (true) if the specified name is a property you can use with

object h. Otherwise, isprop returns logical 0 (false).

Examples Create an Excel application and test to see if UsableWidth is a property of the

object. isprop returns true:

h = actxserver ('Excel.Application');

isprop(h, 'UsableWidth')

h.isprop('UsableWidth')

ans =

 1

Try the same test on SaveWorkspace, which is a method, and isprop returns

false:

isprop(h, 'SaveWorkspace')

h.isprop('SaveWorkspace')

ans =

 0

See Also get(COM), inspect, addproperty, deleteproperty, ismethod, isevent,
isobject, methods, class

isreal

2-1264

2isrealPurpose Determine if all array elements are real numbers

Syntax tf = isreal(A)

Description tf = isreal(A) returns logical false (0) if any element of array A has an
imaginary component, even if the value of that component is 0. It returns
logical true (1) otherwise.

~isreal(x) returns logical true for arrays that have at least one element with
an imaginary component. The value of that component can be 0.

Note If a is real, complex(a) returns a complex number whose imaginary
component is 0, and isreal(complex(a)) returns false. In contrast, the
addition a + 0i returns the real value a, and isreal(a + 0i) returns true.

Because MATLAB supports complex arithmetic, certain of its functions can
introduce significant imaginary components during the course of calculations
that appear to be limited to real numbers. Thus, you should use isreal with
discretion.

Examples Example 1. These examples use isreal to detect the presence or absence of
imaginary numbers in an array. Let

x = magic(3);
y = complex(x);

isreal(x) returns true because no element of x has an imaginary component.

isreal(x)
ans =
 1

isreal(y) returns false, because every element of x has an imaginary
component, even though the value of the imaginary components is 0.

isreal(y)
ans =
 0

isreal

2-1265

This expression detects strictly real arrays, i.e., elements with 0-valued
imaginary components are treated as real.

~any(imag(y(:)))
ans =
 1

Example 2. Given the following cell array,

C{1,1} = pi; % double
C{1,2} = 'John Doe'; % char array
C{1,3} = 2 + 4i; % complex double
C{1,4} = ispc; % logical
C{1,5} = magic(3) % double array
C{1,6} = complex(5,0) % complex double

C =
 [3.1416] 'John Doe' [2.0000+ 4.0000i] [1] [3x3 double] [5]

isreal shows that all but C{1,3} and C{1,6} are real arrays.

for k = 1:6
x(k) = isreal(C{1,k});
end

x
x =
 1 1 0 1 1 0

See Also complex, isnumeric, isnan, isprime, isfinite, isinf, isa, is*

isscalar

2-1266

2isscalar Purpose Determine if input is scalar

Syntax tf = isscalar(A)

Description tf = isscalar(A) returns logical 1 (true) if A is a 1-by-1 matrix, and logical 0
(false) otherwise.

The A argument can also be a MATLAB object, as described in MATLAB
Classes and Objects, as long as that object overloads the size function.

Examples Test matrix A and one element of the matrix:

A = rand(5);

isscalar(A)
ans =
 0

isscalar(A(3,2))
ans =
 1

See Also isvector, isempty, isnumeric, islogical, ischar, isa, is*

issorted

2-1267

2issortedPurpose Determine if set elements are in sorted order

Syntax tf = issorted(A)
tf = issorted(A, 'rows')

Description tf = issorted(A) returns logical true (1) if the elements of vector A are in
sorted order, and logical false (0) otherwise. Vector A is considered to be sorted
if A and the output of sort(A) are equal.

tf = issorted(A, 'rows') returns logical true (1) if the rows of
two-dimensional matrix A are in sorted order, and logical false (0) otherwise.
Matrix A is considered to be sorted if A and the output of sortrows(A) are equal.

Remarks For character arrays, issorted uses ASCII, rather than alphabetical, order.

You cannot use issorted on arrays of greater than two dimensions.

Examples Using issorted on a vector,

A = [5 12 33 39 78 90 95 107 128 131];

issorted(A)
ans =
 1

Using issorted on a matrix,

A = magic(5)
A =
 17 24 1 8 15
 23 5 7 14 16
 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9

issorted(A, 'rows')
ans =
 0

B = sortrows(A)
B =

issorted

2-1268

 4 6 13 20 22
 10 12 19 21 3
 11 18 25 2 9
 17 24 1 8 15
 23 5 7 14 16

issorted(B)
ans =
 1

See Also sort, sortrows, ismember, unique, intersect, union, setdiff, setxor, is*

isspace

2-1269

2isspacePurpose Detect space characters in an array

Syntax tf = isspace('str')

Description tf = isspace('str') returns an array the same size as 'str' containing
logical true (1) where the elements of str are ASCII white spaces and logical
false (0) where they are not. White spaces in ASCII are space, newline, carriage
return, tab, vertical tab, or formfeed characters.

Examples isspace(' Find spa ces ')
 Columns 1 through 13
 1 1 0 0 0 0 1 0 0 0 1 0 0
 Columns 14 through 15
 0 1

See Also isstrprop, ischar, isa, is*

issparse

2-1270

2issparsePurpose Test if matrix is sparse

Syntax tf = issparse(S)

Description tf = issparse(S) returns logical true (1) if the storage class of S is sparse and
logical false (0) otherwise.

See Also is*

isstr

2-1271

2isstrPurpose Determine if input is a character array

Description This MATLAB 4 function has been renamed ischar in MATLAB 5.

See Also ischar, isa, is*

isstrprop

2-1272

2isstrpropPurpose Determine if string is of specified category

Syntax tf = isstrprop('str', 'category')

Description tf = isstrprop('str', 'category') returns a logical array the same size as
str containing logical true (1) where the elements of str belong to the specified
category, and logical false (0) where they do not.

The str input can be a character array, cell array, or any MATLAB numeric
type. If str is a cell array, then the return value is a cell array of the same
shape as str.

The category input can be any of the strings shown in the left column below:

Category Description

alpha True for those elements of str that are alphabetic

alphanum True for those elements of str that are alphanumeric

cntrl True for those elements of str that are control charac-
ters (for example, char(0:20))

digit True for those elements of str that are numeric digits

graphic True for those elements of str that are graphic charac-
ters. These are all values that represent any characters
except for the following:

unassigned, space, line separator,
paragraph separator, control characters,
Unicode format control characters,
private user-defined characters,
Unicode surrogate characters,
Unicode other characters

lower True for those elements of str that are lowercase letters

print True for those elements of str that are graphic charac-
ters, plus char(32)

punct True for those elements of str that are punctuation
characters

isstrprop

2-1273

Remarks Numbers of type double are converted to int32 according to MATLAB rules of
double-to-integer conversion. Numbers of type int64 and uint64 bigger than
int32(inf) saturate to int32(inf).

MATLAB classifies the elements of the str input according to the Unicode
definition of the specified category. If the numeric value of an element in the
input array falls within the range that defines a Unicode character category,
then this element is classified as being of that category. The set of Unicode
character codes includes the set of ASCII character codes, but also covers a
large number of languages beyond the scope of the ASCII set. The classification
of characters is dependent on the global location of the platform on which
MATLAB is installed.

Examples Test for alphabetic characters in a string:

A = isstrprop('abc123def', 'alpha')
A =
 1 1 1 0 0 0 1 1 1

Test for numeric digits in a string:

A = isstrprop('abc123def', 'digit')
A =
 0 0 0 1 1 1 0 0 0

Test for hexadecimal digits in a string:

A = isstrprop('abcd1234efgh', 'xdigit')
A =
 1 1 1 1 1 1 1 1 1 1 0 0

wspace True for those elements of str that are white-space
characters. This range includes the ANSI C definition of
white space, {' ','\t','\n','\r','\v','\f'}.

upper True for those elements of str that are uppercase letters

xdigit True for those elements of str that are valid hexadeci-
mal digits

Category Description

isstrprop

2-1274

Test for numeric digits in a character array:

A = isstrprop(char([97 98 99 49 50 51 101 102 103]), 'digit')
A =
 0 0 0 1 1 1 0 0 0

Test for alphabetic characters in a two-dimensional cell array:

A = isstrprop({'abc123def';'456ghi789'}, 'alpha')
A =
 [1x9 logical]
 [1x9 logical]

A{:,:}
ans =
 1 1 1 0 0 0 1 1 1
 0 0 0 1 1 1 0 0 0

Test for white-space characters in a string:

A = isstrprop(sprintf('a bc\n'), 'wspace')
A =
 0 1 0 0 1

See Also ischar, isnumeric, isspace, iscellstr, isa, is*

isstruct

2-1275

2isstructPurpose Determine if input is a MATLAB structure array

Syntax tf = isstruct(A)

Description tf = isstruct(A) returns logical true (1) if A is a MATLAB structure and
logical false (0) otherwise.

Examples patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isstruct(patient)

ans =

 1

See Also struct, isfield, iscell, ischar, isobject, isnumeric, islogical, isa, is*,
dynamic field names

isstudent

2-1276

2isstudentPurpose Determine if student edition of MATLAB

Syntax tf = isstudent

Description tf = isstudent returns logical true (1) for the student edition of MATLAB
and logical false (0) for commercial editions.

See Also ispc, isunix, is*

isunix

2-1277

2isunixPurpose Determine if UNIX version of MATLAB

Syntax tf = isunix

Description tf = isunix returns logical true (1) for the UNIX version of MATLAB and
logical false (0) otherwise.

See Also ispc, isstudent, is*

isvalid (timer)

2-1278

2isvalid (timer)Purpose Determine if timer object is valid

Syntax out = isvalid(obj)

Description out = isvalid(obj) returns a logical array, out, that contains a 0 where the
elements of obj are invalid timer objects and a 1 where the elements of obj are
valid timer objects.

An invalid timer object is an object that has been deleted and cannot be reused.
Use the clear command to remove an invalid timer object from the workspace.

Examples Create a valid timer object.

t = timer;
out = isvalid(t)
out =

1

Delete the timer object, making it invalid.

delete(t)
out1 = isvalid(t)
out1 =

0

See Also timer, delete

isvarname

2-1279

2isvarnamePurpose Determine if input is a valid variable name

Syntax tf = isvarname('str')
isvarname str

Description tf = isvarname 'str' returns logical true (1) if the string str is a valid
MATLAB variable name and logical false (0) otherwise. A valid variable name
is a character string of letters, digits, and underscores, totaling not more than
namelengthmax characters and beginning with a letter.

isvarname str uses the MATLAB command format.

Examples This variable name is valid:

isvarname foo
ans =
 1

This one is not because it starts with a number:

isvarname 8th_column
ans =
 0

If you are building strings from various pieces, place the construction in
parentheses.

d = date;

isvarname(['Monday_', d(1:2)])
ans =
 1

See Also genvarname, isglobal, iskeyword, namelengthmax, is*

isvector

2-1280

2isvector Purpose Determine if input is a vector

Syntax tf = isvector(A)

Description tf = isvector(A) returns logical 1 (true) if A is a 1-by-N or N-by-1 vector
where N >= 0, and logical 0 (false) otherwise.

The A argument can also be a MATLAB object, as described in MATLAB
Classes and Objects, as long as that object overloads the size function.

Examples Test matrix A and its row and column vectors:

A = rand(5);

isvector(A)
ans =
 0

isvector(A(3, :))
ans =
 1

isvector(A(:, 2))
ans =
 1

See Also isscalar, isempty, isnumeric, islogical, ischar, isa, is*

j

2-1281

2j
Purpose Imaginary unit

Syntax j
x+yj
x+j*y

Description Use the character j in place of the character i, if desired, as the imaginary unit.

As the basic imaginary unit sqrt(-1), j is used to enter complex numbers.
Since j is a function, it can be overridden and used as a variable. This permits
you to use j as an index in for loops, etc.

It is possible to use the character j without a multiplication sign as a suffix in
forming a numerical constant.

Examples Z = 2+3j
Z = x+j*y
Z = r*exp(j*theta)

See Also conj, i, imag, real

keyboard

2-1282

2keyboard
Purpose Invoke the keyboard in an M-file

Syntax keyboard

Description keyboard , when placed in an M-file, stops execution of the file and gives
control to the keyboard. The special status is indicated by a K appearing before
the prompt. You can examine or change variables; all MATLAB commands are
valid. This keyboard mode is useful for debugging your M-files.

To terminate the keyboard mode, type the command

return

then press the Return key.

See Also dbstop, input, quit, pause, return

kron

2-1283

2kronPurpose Kronecker tensor product

Syntax K = kron(X,Y)

Description K = kron(X,Y) returns the Kronecker tensor product of X and Y. The result is
a large array formed by taking all possible products between the elements of X
and those of Y. If X is m-by-n and Y is p-by-q, then kron(X,Y) is m*p-by-n*q.

Examples If X is 2-by-3, then kron(X,Y) is

[X(1,1)*Y X(1,2)*Y X(1,3)*Y
 X(2,1)*Y X(2,2)*Y X(2,3)*Y]

The matrix representation of the discrete Laplacian operator on a
two-dimensional, n-by-n grid is a n^2-by-n^2 sparse matrix. There are at most
five nonzero elements in each row or column. The matrix can be generated as
the Kronecker product of one-dimensional difference operators with these
statements:

 I = speye(n,n);
 E = sparse(2:n,1:n-1,1,n,n);
 D = E+E'-2*I;
 A = kron(D,I)+kron(I,D);

Plotting this with the spy function for n = 5 yields:

lasterr

2-1284

2lasterr
Purpose Return last error message

Syntax msgstr = lasterr
[msgstr, msgid] = lasterr
lasterr('new_msgstr')
lasterr('new_msgstr','new_msgid')
[msgstr,msgid] = lasterr('new_msgstr','new_msgid')

Description msgstr = lasterr returns the last error message generated by MATLAB.

[msgstr, msgid] = lasterr returns the last error in msgstr and its message
identifier in msgid. If the error was not defined with an identifier, lasterr
returns an empty string for msgid. See “Message Identifiers” and “Using
Message Identifiers with lasterr” in the MATLAB documentation for more
information on the msgid argument and how to use it.

lasterr('new_msgstr') sets the last error message to a new string,
new_msgstr, so that subsequent invocations of lasterr return the new error
message string. You can also set the last error to an empty string with
lasterr('').

lasterr('new_msgstr','new_msgid') sets the last error message and its
identifier to new strings new_msgstr and new_msgid, respectively. Subsequent
invocations of lasterr return the new error message and message identifier.

[msgstr,msgid] = lasterr('new_msgstr','new_msgid') returns the last
error message and its identifier, also changing these values so that subsequent
invocations of lasterr return the message and identifier strings specified by
new_msgstr and new_msgid respectively.

Examples Example 1
Here is a function that examines the lasterr string and displays its own
message based on the error that last occurred. This example deals with two
cases, each of which is an error that can result from a matrix multiply:

function matrix_multiply(A, B)
try
 A * B

lasterr

2-1285

catch
 errmsg = lasterr;
 if(strfind(errmsg, 'Inner matrix dimensions'))
 disp('** Wrong dimensions for matrix multiply')
 else
 if(strfind(errmsg, 'not defined for variables of class'))
 disp('** Both arguments must be double matrices')
 end
 end
end

If you call this function with matrices that are incompatible for matrix
multiplication (e.g., the column dimension of A is not equal to the row
dimension of B), MATLAB catches the error and uses lasterr to determine its
source:

A = [1 2 3; 6 7 2; 0 -1 5];
B = [9 5 6; 0 4 9];

matrix_multiply(A, B)
** Wrong dimensions for matrix multiply

Example 2
Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
 'The angle specified must be less than 90 degrees.');

In your error handling code, use lasterr to determine the message identifier
and error message string for the failing operation:

[errmsg, msgid] = lasterr
errmsg =
 The angle specified must be less than 90 degrees.
msgid =
 MyToolbox:angleTooLarge

See Also error, lasterror, warning, lastwarn

lasterror

2-1286

2lasterrorPurpose Return last error message and related information

Syntax s = lasterror
s = lasterror(err)

Description s = lasterror returns a structure s containing information about the last
error issued by MATLAB. The return structure contains the following
character array fields.

Note The lasterror return structure might contain additional fields in
future versions of MATLAB.

If the last error issued by MATLAB had no message identifier, then the
message_id field is an empty character array.

See “Message Identifiers” in the MATLAB documentation for more information
on the syntax and usage of message identifiers.

s = lasterror(err) sets the last error information to the error message and
identifier specified in the structure err. Subsequent invocations of lasterror
or lasterr return this new error information. The optional return structure s
contains information on the previous error.

The fields of the structure err are shown in the table above. If either of these
fields is undefined, MATLAB uses an empty character array instead.

Example lasterror is usually used in conjunction with the rethrow function in
try-catch statements. For example,

try
 do_something

Fieldname Description

message Text of the error message

identifier Message identifier of the error message

lasterror

2-1287

catch
 do_cleanup
 rethrow(lasterror)
end

See Also error, rethrow, try, catch, lasterr, lastwarn

lastwarn

2-1288

2lastwarnPurpose Return last warning message

Syntax msgstr = lastwarn
[msgstr,msgid] = lastwarn
lastwarn('new_msgstr')
lastwarn('new_msgstr','new_msgid')
[msgstr,msgid] = lastwarn('new_msgstr','new_msgid')

Description msgstr = lastwarn returns the last warning message generated by MATLAB.

[msgstr,msgid] = lastwarn returns the last warning in msgstr and its
message identifier in msgid. If the warning was not defined with an identifier,
lastwarn returns an empty string for msgid. See “Message Identifiers” and
“Warning Control” in the MATLAB documentation for more information on the
msgid argument and how to use it.

lastwarn('new_msgstr') sets the last warning message to a new string,
new_msgstr, so that subsequent invocations of lastwarn return the new
warning message string. You can also set the last warning to an empty string
with lastwarn('').

lastwarn('new_msgstr','new_msgid') sets the last warning message and its
identifier to new strings new_msgstr and new_msgid, respectively. Subsequent
invocations of lastwarn return the new warning message and message
identifier.

[msgstr,msgid] = lastwarn('new_msgstr','new_msgid') returns the last
warning message and its identifier, also changing these values so that
subsequent invocations of lastwarn return the message and identifier strings
specified by new_msgstr and new_msgid, respectively.

Remarks lastwarn does not return warnings that are reported during the parsing of
MATLAB commands. (Warning messages that include the failing file name
and line number are parse-time warnings.)

Examples Specify a message identifier and warning message string with warning:

warning('MATLAB:divideByZero', 'Divide by zero');

lastwarn

2-1289

Use lastwarn to determine the message identifier and error message string for
the operation:

[warnmsg, msgid] = lastwarn
warnmsg =
 Divide by zero
msgid =
 MATLAB:divideByZero

See Also warning, error, lasterr, lasterror

lcm

2-1290

2lcmPurpose Least common multiple

Syntax L = lcm(A,B)

Description L = lcm(A,B) returns the least common multiple of corresponding elements of
arrays A and B. Inputs A and B must contain positive integer elements and must
be the same size (or either can be scalar).

Examples lcm(8,40)

ans =

40

lcm(pascal(3),magic(3))

ans =
 8 1 6
 3 10 21
 4 9 6

See Also gcd

ldivide, rdivide

2-1291

2ldivide, rdividePurpose Left or right array division

Syntax ldivide(A,B) A.\B
rdivide(A,B) A./B

Description ldivide(A,B) and the equivalent A.\B divides each entry of B by the
corresponding entry of A. A and B must be arrays of the same size. A scalar value
for either A or B is expanded to an array of the same size as the other.

rdivide(A,B) and the equivalent A./B divides each entry of A by the
corresponding entry of B. A and B must be arrays of the same size. A scalar value
for either A or B is expanded to an array of the same size as the other.

Example A = [1 2 3;4 5 6];
B = ones(2, 3);
A.\B

ans =

 1.0000 0.5000 0.3333
 0.2500 0.2000 0.1667

See Also Arithmetic operators, mldivide, mrdivide

legend

2-1292

2legend Purpose Display a legend on graphs

Syntax legend('string1','string2',...)
legend(h,'string1','string2',...)
legend(string_matrix)
legend(h,string_matrix)
legend(axes_handle,...)
legend('off')
legend('toggle'), legend(axes_handle,'toggle')
legend('hide'), legend(axes_handle,'hide')
legend('show'), legend(axes_handle,'show')
legend('boxoff'), legend(axes_handle,'boxoff')
legend('boxon'), legend(axes_handle,'boxon')
legend_handle = legend(...)
legend
legend(legend_handle,...)
legend(...,'Location',location)
legend(...,'Orientation',orientation)
[legend_h,object_h,plot_h,text_strings] = legend(...)
legend(li_object,string1,string2,string3)
legend(li_object,M)

Description legend places a legend on various types of graphs (line plots, bar graphs, pie
charts, etc.). For each line plotted, the legend shows a sample of the line type,
marker symbol, and color beside the text label you specify. When plotting filled
areas (patch or surface objects), the legend contains a sample of the face color
next to the text label.

The font size and font name for the legend strings match the Axes FontSize
and FontName properties.

legend('string1','string2',...) displays a legend in the current axes
using the specified strings to label each set of data.

legend(h,'string1','string2',...) displays a legend on the plot
containing the objects identified by the handles in the vector h and using the
specified strings to label the corresponding graphics object (line, barseries,
etc.).

legend

2-1293

legend(string_matrix) adds a legend containing the rows of the matrix
string_matrix as labels. This is the same as
legend(string_matrix(1,:),string_matrix(2,:),...).

legend(h,string_matrix) associates each row of the matrix string_matrix
with the corresponding graphics object in the vector h.

legend(axes_handle,...) displays the legend for the axes specified by
axes_handle.

legend('off'), legend(axes_handle,'off') removes the legend in the
current axes or the axes specified by axes_handle.

legend('toggle'), legend(axes_handle,'toggle') toggles the legend on or
off. If no legend exists for the current axes, one is created using default strings.

The default string for an object is the value of the object’s DisplayName
property, if you have defined a value for DisplayName (which you can do using
the Property Editor or calling set). Otherwise, legend constructs a sting of the
form data1, data2, etc.

legend('hide'), legend(axes_handle,'hide') makes the legend in the
current axes or the axes specified by axes_handle invisible.

legend('show'), legend(axes_handle,'show') makes the legend in the
current axes or the axes specified by axes_handle visible.

legend('boxoff'), legend(axes_handle,'boxoff') removes the box from
the legend in the current axes or the axes specified by axes_handle.

legend('boxon'), legend(axes_handle,'boxon') adds a box to the legend
in the current axes or the axes specified by axes_handle.

legend_handle = legend returns the handle to the legend on the current axes
or empty if no legend exists.

legend with no arguments refreshes all the legends in the current figure.

legend(legend_handle) refreshes the specified legend.

legend

2-1294

legend(...,'Location',location) uses location to determine where to
place the legend. location can be either a 1-by-4 position vector ([left bottom
width height]) or one of the following strings.

The location string can be all lower case and can be abbreviated by sentinel
letter (e.g., N, NE, NEO, etc.).

Specifier Location in Axes

North inside plot box near top

South inside bottom

East inside right

West inside left

NorthEast inside top right (default)

NorthWest inside top left

SouthEast inside bottom right

SouthWest inside bottom left

NorthOutside outside plot box near top

SouthOutside outside bottom

EastOutside outside right

WestOutside outside left

NorthEastOutside outside top right

NorthWestOutside outside top left

SouthEastOutside outside bottom right

SouthWestOutside outside bottom left

Best least conflict with data in plot

BestOutside least unused space outside plot

legend

2-1295

Obsolete Location Values

legend(...,'Orientation','orientation') creates a legend with the legend
items arranged in the specified orientation. orientation can be vertical (the
default) or horizontal.

[legend_h,object_h,plot_h,text_strings] = legend(...) returns

• legend_h — Handle of the legend axes

• object_h — Handles of the line, patch and text graphics objects used in the
legend

• plot_h — Handles of the lines and other objects used in the plot

• text_strings — Cell array of the text strings used in the legend

These handles enable you to modify the properties of the respective objects.

legend(li_object,string1,string2,string3) creates a legend for
legendinfo objects li_objects with strings string1, etc.

legend(li_object,M) creates a legend of legendinfo objects li_objects where
M is a string matrix or cell array of strings corresponding to the legendinfo
objects.

Remarks legend associates strings with the objects in the axes in the same order that
they are listed in the axes Children property. By default, the legend annotates
the current axes.

Obsolete
Specifier

Location in Axes

-1 outside axes on right side

0 inside axes

1 upper right corner of axes

2 upper left corner of axes

3 lower left corner of axes

4 lower right corner of axes

legend

2-1296

MATLAB displays only one legend per axes. legend positions the legend based
on a variety of factors, such as what objects the legend obscures.

legend installs a figure ResizeFcn, if there is not already a user-defined
ResizeFcn assigned to the figure. This ResizeFcn attempts to keep the legend
the same size.

Moving the Legend
You can move the legend by pressing the left mouse button while the cursor is
over the legend and dragging the legend to a new location. Double-clicking a
label allows you to edit the label.

Examples Add a legend to a graph showing a sine and cosine function:

x = pi:pi/20:pi;
plot(x,cos(x),'-ro',x,sin(x),'-.b')
h = legend('cos','sin',2);

−4 −3 −2 −1 0 1 2 3 4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cos
sin

legend

2-1297

In this example, the plot command specifies a solid, red line ('−r') for the
cosine function and a dash-dot, blue line ('−.b') for the sine function.

See Also LineSpec, plot

Adding a Legend to a Graph for more information on using legends

“Annotating Plots” for related functions

legendre

2-1298

2legendrePurpose Associated Legendre functions

Syntax P = legendre(n,X)
S = legendre(n,X,'sch')
N = legendre(n,X,'norm')

Definitions Associated Legendre Functions. The Legendre functions are defined by

where

is the Legendre polynomial of degree .

Schmidt Seminormalized Associated Legendre Functions. The Schmidt seminormalized
associated Legendre functions are related to the nonnormalized associated
Legendre functions by

 for

 for .

Fully Normalized Associated Legendre Functions. The fully normalized associated
Legendre functions are normalized such that

and are related to the unnormalized associated Legendre functions by

Pn
m x() 1–()m 1 x2–()m 2/

xm

m

d
d Pn x()=

Pn x()

n

Pn x() 1

2nn!
------------ dn

dxn
---------- x2 1–()

n
=

Pn
m x()

Pn x() m 0=

Sn
m x() 1–()m 2 n m–()!

n m+()!
------------------------- Pn

m x()= m 0>

Nn
m x()()

2

1–

1

∫ dx 1=

Pn
m x()

legendre

2-1299

Description P = legendre(n,X) computes the associated Legendre functions of
degree n and order m = 0,1,...,n, evaluated for each element of X. Argument
n must be a scalar integer, and X must contain real values in the domain

.

If X is a vector, then P is an (n+1)-by-q matrix, where q = length(X). Each
element P(m+1,i) corresponds to the associated Legendre function of degree n
and order m evaluated at X(i).

In general, the returned array P has one more dimension than X, and each
element P(m+1,i,j,k,...) contains the associated Legendre function of
degree n and order m evaluated at X(i,j,k,...). Note that the first row of P is
the Legendre polynomial evaluated at X, i.e., the case where m = 0.

S = legendre(n,X,'sch') computes the Schmidt seminormalized associated
Legendre functions .

N = legendre(n,X,'norm') computes the fully normalized associated
Legendre functions .

Examples Example 1. The statement legendre(2,0:0.1:0.2) returns the matrix

Example 2. Given,

X = rand(2,4,5);
n = 2;
P = legendre(n,X)

Nn
m x() 1–()m

n 1
2
---+ 

  n m–()!

n m+()!
--- Pn

m x()=

Pn
m x()

1– x 1≤ ≤

Sn
m x()

Nn
m x()

x = 0 x = 0.1 x = 0.2

m = 0 -0.5000 -0.4850 -0.4400

m = 1 0 -0.2985 -0.5879

m = 2 3.0000 2.9700 2.8800

legendre

2-1300

then

size(P)
ans =
 3 2 4 5

and

P(:,1,2,3)
ans =
 -0.2475
 -1.1225
 2.4950

is the same as

legendre(n,X(1,2,3))
ans =
 -0.2475
 -1.1225
 2.4950

Algorithm legendre uses a three-term backward recursion relationship in m. This
recursion is on a version of the Schmidt seminormalized associated Legendre
functions , which are complex spherical harmonics. These functions are
related to the standard Abramowitz and Stegun [1] functions by

 They are related to the Schmidt form given previously by

 for

 for .

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions,
Dover Publlications, 1965, Ch.8.

[2] Jacobs, J. A., Geomagnetism, Academic Press, 1987, Ch.4.

Qn
m x()

Pn
m x()

Pn
m x() n m+()!

n m–()!
---------------------- Qn

m x()=

Sn
m x() Qn

0 x()= m 0=

Sn
m x() 1–()m 2 Qn

m x()= m 0>

length

2-1301

2lengthPurpose Length of vector

Syntax n = length(X)

Description The statement length(X) is equivalent to max(size(X)) for nonempty arrays
and 0 for empty arrays.

n = length(X) returns the size of the longest dimension of X. If X is a vector,
this is the same as its length.

Examples x = ones(1,8);
n = length(x)

n =
 8

x = rand(2,10,3);
n = length(x)

n =
 10

See Also ndims, size

license

2-1302

2licensePurpose Display license number for MATLAB or list of licenses checked out

Syntax license
license('inuse')
result = license('inuse')
result = license('test',feature)
license('test',feature,toggle)

license('checkout',feature)

Description license displays the license number for this MATLAB as a string, or one of the
following strings:

license('inuse') displays the list of licenses checked out in the current
MATLAB session. In the list, products are identified by the license feature
names, i.e., the text string used in the INCREMENT lines in a License File
(license.dat). The license function uses only lower-case characters in the
license feature names and sorts the list by alphabetical order.

result = license('inuse') returns an array of structures, where each
structure represents a checked-out license. Each structure contains two fields:
feature identifies the product and user is the username of the person who has
the license checked out.

result = license('test',feature) tests if a license exists for the product
identified by the text string feature, returning 1 if the license exists and 0 if
the license does not exist.

In the feature argument, you must specify the product by license feature
name, exactly as it appears in the INCREMENT lines in a License File
(license.dat). For example, 'image_toolbox' is the feature name for the

String Description

'demo' MATLAB is a demonstration version

'student' MATLAB is the student version

'unknown' License number cannot be determined

license

2-1303

Image Processing Toolbox. The feature string is case insensitive and must not
exceed 27 characters in length.

Note Testing for a license only confirms that the license exists. It does not
confirm that the license can be checked out. If the license has expired or if a
system administrator has excluded you from using the product in an options
file, license will still return 1, if the license exists.

license('test',feature,toggle) enables or disables license testing for the
specified product, feature, depending on the value of toggle. The parameter
toggle can have either of two values:

Note Disabling a test for a particular product can impact all other tests for
the existence of the license, not just tests performed using the license
command.

result = license('checkout',feature) checks out a license for the product
identified by the text string feature, returning 1 if the license was checked out
and 0 if it could not be checked out.

Examples Get a list of licenses currently being used.

license('inuse')

image_toolbox
map_toolbox
matlab

Get a list of licenses in use with information about who is using the license.

'enable' Tests for the specified license return either 1 (license
exists) or 0 (license does not exist).

'disable' Tests for the specified license always return 0 (license does
not exist)

license

2-1304

S = license('inuse')

S =

1x3 struct array with fields:
feature
user

S(1)

ans =

feature: 'image_toolbox'
user: 'juser'

Determine if a license exists for the Mapping Toolbox.

license('test','map_toolbox')

ans =

1

Check out a license for the Control Toolbox.

license('checkout','control_toolbox')

ans =

1

Determine if the license for the Control Toolbox is checked out.

license('inuse')

control_toolbox
image_toolbox
map_toolbox
matlab

light

2-1305

2lightPurpose Create a light object

Syntax light('PropertyName',PropertyValue,...)
handle = light(...)

Description light creates a light object in the current axes. Lights affect only patch and
surface objects.

light('PropertyName',PropertyValue,...) creates a light object using the
specified values for the named properties. MATLAB parents the light to the
current axes unless you specify another axes with the Parent property.

handle = light(...) returns the handle of the light object created.

Remarks You cannot see a light object per se, but you can see the effects of the light
source on patch and surface objects. You can also specify an axes-wide ambient
light color that illuminates these objects. However, ambient light is visible only
when at least one light object is present and visible in the axes.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see set and get for examples of how to specify these
data types).

See also the patch and surface AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, SpecularColorReflectance, and
VertexNormals properties. Also see the lighting and material commands.

Examples Light the peaks surface plot with a light source located at infinity and oriented
along the direction defined by the vector [1 0 0], that is, along the x-axis.

h = surf(peaks);
set(h,'FaceLighting','phong','FaceColor','interp',...

'AmbientStrength',0.5)
light('Position',[1 0 0],'Style','infinite');

See Also lighting, material, patch, surface

Lighting as a Visualization Tool for more information about lighting

“Lighting” for related functions

light

2-1306

Object
Hierarchy

Setting Default Properties
You can set default light properties on the axes, figure, and root levels:

set(0,'DefaultLightProperty',PropertyValue...)
set(gcf,'DefaultLightProperty',PropertyValue...)
set(gca,'DefaultLightProperty',PropertyValue...)

where Property is the name of the light property and PropertyValue is the
value you are specifying. Use set and get to access light properties.

The following table lists all light properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Light

Axes

Light

Group
Object

Property Name Property Description Property Value

Defining the Light

Color Color of the light produced by the
light object

Values: ColorSpec

Position Location of light in the axes Values: x-, y-, z-coordinates in
axes units

Default: [1 0 1]

Style Parallel or divergent light source Values: infinite, local

Controlling the Appearance

SelectionHighlight This property is not used by light
objects.

Values: on, off

Default: on

light

2-1307

Visible Makes the effects of the light visible
or invisible

Values: on, off

Default: on

Controlling Access to Objects

HandleVisibility Determines if and when the light’s
handle is visible to other functions

Values: on, callback, off

Default: on

HitTest This property is not used by light
objects.

Values: on, off

Default: on

General Information About the Light

Children Light objects have no children. Value: [] (empty matrix)

Parent The parent of a light object is an
axes, hggroup, or hgtransform object.

Value: object handle

Selected This property is not used by light
objects.

Values: on, off

Default: on

Tag User-specified label Value: any string

Default: '' (empty string)

Type The type of graphics object (read
only)

Value: the string 'light'

UserData User-specified data Value: any matrix

Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BeingDeleted Query to see if object is being
deleted.

Values: on | off

Read only

BusyAction Specifies how to handle callback
routine interruption

Values: cancel, queue
Default: queue

Property Name Property Description Property Value

light

2-1308

ButtonDownFcn This property is not used by light
objects.

Value: string or function
handle

Default: empty string

CreateFcn Defines a callback routine that
executes when a light is created

Value: string or function
handle

Default: empty string

DeleteFcn Defines a callback routine that
executes when the light is deleted
(via close or delete)

Value: string or function
handle

Default: empty string

Interruptible Determines if callback routine can be
interrupted

Values: on, off

Default: on (can be
interrupted)

UIContextMenu This property is not used by light
objects.

Value: handle of a
Uicontextmenu

Property Name Property Description Property Value

Light Properties

2-1309

2Light PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

Light Property
Descriptions

This section lists property names along with the type of values each accepts.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects that are going to be deleted and, therefore, can check the object’s
BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

Light Properties

2-1310

ButtonDownFcn string

This property is not useful on lights.

Children handles

The empty matrix; light objects have no children.

Clipping on | off

Clipping has no effect on light objects.

Color ColorSpec

Color of light. This property defines the color of the light emanating from the
light object. Define it as a three-element RGB vector or one of the MATLAB
predefined names. See the ColorSpec reference page for more information.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a light object. You must
define this property as a default value for lights or in a call to the light
function to create a new light object. For example, the statement

set(0,'DefaultLightCreateFcn','set(gcf,''Colormap'',hsv)')

sets the current figure colormap to hsv whenever you create a light object.
MATLAB executes this routine after setting all light properties. Setting this
property on an existing light object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Delete light callback routine. A callback routine that executes when you delete
the light object (i.e., when you issue a delete command or clear the axes or
figure containing the light). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Light Properties

2-1311

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

HitTest {on} | off

This property is not used by light objects.

Light Properties

2-1312

Interruptible {on} | off

Callback routine interruption mode. Light object callback routines defined for
the DeleteFcn property are not affected by the Interruptible property.

Parent handle of parent axes, hggroup,or hgtransform

Parent of light object. This property contains the handle of the light object’s
parent. The parent of a light object is the axes, hggroup, or hgtransform object
that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Position [x,y,z] in axes data units

Location of light object. This property specifies a vector defining the location of
the light object. The vector is defined from the origin to the specified x-, y-, and
z-coordinates. The placement of the light depends on the setting of the Style
property:

• If the Style property is set to local, Position specifies the actual location
of the light (which is then a point source that radiates from the location in all
directions).

• If the Style property is set to infinite, Position specifies the direction
from which the light shines in parallel rays.

Selected on | off

This property is not used by light objects.

SelectionHighlight {on} | off

This property is not used by light objects.

Style {infinite} | local

Parallel or divergent light source. This property determines whether MATLAB
places the light object at infinity, in which case the light rays are parallel, or at
the location specified by the Position property, in which case the light rays
diverge in all directions. See the Position property.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need

Light Properties

2-1313

to define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Type string (read only)

Type of graphics object. This property contains a string that identifies the class
of graphics object. For light objects, Type is always 'light'.

UIContextMenu handle of a uicontextmenu object

This property is not used by light objects.

UserData matrix

User-specified data. This property can be any data you want to associate with
the light object. The light does not use this property, but you can access it using
set and get.

Visible {on} | off

Light visibility. While light objects themselves are not visible, you can see the
light on patch and surface objects. When you set Visible to off, the light
emanating from the source is not visible. There must be at least one light object
in the axes whose Visible property is on for any lighting features to be enabled
(including the axes AmbientLightColor and patch and surface
AmbientStrength).

lightangle

2-1314

2lightanglePurpose Create or position a light object in spherical coordinates

Syntax lightangle(az,el)
light_handle = lightangle(az,el)
lightangle(light_handle,az,el)
[az el] = lightangle(light_handle)

Description lightangle(az,el) creates a light at the position specified by azimuth and
elevation. az is the azimuthal (horizontal) rotation and el is the vertical
elevation (both in degrees). The interpretation of azimuth and elevation is the
same as that of the view command.

light_handle = lightangle(az,el) creates a light and returns the handle of
the light in light_handle.

lightangle(light_handle,az,el) sets the position of the light specified by
light_handle.

[az,el] = lightangle(light_handle) returns the azimuth and elevation of
the light specified by light_handle.

Remarks By default, when a light is created, its style is infinite. If the light handle
passed in to lightangle refers to a local light, the distance between the light
and the camera target is preserved as the position is changed.

Examples surf(peaks)
axis vis3d
h = light;
for az = -50:10:50

lightangle(h,az,30)
drawnow

end

See Also light, camlight, view

Lighting as a Visualization Tool for more information about lighting

“Lighting” for related functions

lighting

2-1315

2lightingPurpose Select the lighting algorithm

Syntax lighting flat
lighting gouraud
lighting phong
lighting none

Description lighting selects the algorithm used to calculate the effects of light objects on
all surface and patch objects in the current axes.

lighting flat selects flat lighting.

lighting gouraud selects gouraud lighting.

lighting phong selects phong lighting.

lighting none turns off lighting.

Remarks The surf, mesh, pcolor, fill, fill3, surface, and patch functions create
graphics objects that are affected by light sources. The lighting command sets
the FaceLighting and EdgeLighting properties of surfaces and patches
appropriately for the graphics object.

See Also light, material, patch, surface

Lighting as a Visualization Tool for more information about lighting

“Lighting” for related functions

lin2mu

2-1316

2lin2muPurpose Convert linear audio signal to mu-law

Syntax mu = lin2mu(y)

Description mu = lin2mu(y) converts linear audio signal amplitudes in the range
-1 ≤ Y ≤ 1 to mu-law encoded “flints” in the range 0 ≤ u ≤ 255.

See Also auwrite, mu2lin

line

2-1317

2linePurpose Create line object

Syntax line(X,Y)
line(X,Y,Z)
line(X,Y,Z,'PropertyName',PropertyValue,...)
line('PropertyName',PropertyValue,...) low-level–PN/PV pairs only
h = line(...)

Description line creates a line object in the current axes. You can specify the color, width,
line style, and marker type, as well as other characteristics.

The line function has two forms:

• Automatic color and line style cycling. When you specify matrix coordinate
data using the informal syntax (i.e., the first three arguments are
interpreted as the coordinates),
line(X,Y,Z)

MATLAB cycles through the axes ColorOrder and LineStyleOrder property
values the way the plot function does. However, unlike plot, line does not
call the newplot function.

• Purely low-level behavior. When you call line with only property
name/property value pairs,
line('XData',x,'YData',y,'ZData',z)

MATLAB draws a line object in the current axes using the default line color
(see the colordef function for information on color defaults). Note that you
cannot specify matrix coordinate data with the low-level form of the line
function.

line(X,Y) adds the line defined in vectors X and Y to the current axes. If X and
Y are matrices of the same size, line draws one line per column.

line(X,Y,Z) creates lines in three-dimensional coordinates.

line(X,Y,Z,'PropertyName',PropertyValue,...) creates a line using the
values for the property name/property value pairs specified and default values
for all other properties.

See the LineStyle and Marker properties for a list of supported values.

line

2-1318

line('XData',x,'YData',y,'ZData',z,'PropertyName',PropertyValue,..
.) creates a line in the current axes using the property values defined as
arguments. This is the low-level form of the line function, which does not
accept matrix coordinate data as the other informal forms described above.

h = line(...) returns a column vector of handles corresponding to each line
object the function creates.

Remarks In its informal form, the line function interprets the first three arguments
(two for 2-D) as the X, Y, and Z coordinate data, allowing you to omit the
property names. You must specify all other properties as name/value pairs. For
example,

line(X,Y,Z,'Color','r','LineWidth',4)

The low-level form of the line function can have arguments that are only
property name/property value pairs. For example,

line('XData',x,'YData',y,'ZData',z,'Color','r','LineWidth',4)

Line properties control various aspects of the line object and are described in
the “Line Properties” section. You can also set and query property values after
creating the line using set and get.

You can specify properties as property name/property value pairs, structure
arrays, and cell arrays (see the set and get reference pages for examples of
how to specify these data types).

Unlike high-level functions such as plot, line does not respect the settings of
the figure and axes NextPlot properties. It simply adds line objects to the
current axes. However, axes properties that are under automatic control, such
as the axis limits, can change to accommodate the line within the current axes.

Examples This example uses the line function to add a shadow to plotted data. First, plot
some data and save the line’s handle:

t = 0:pi/20:2*pi;
hline1 = plot(t,sin(t),'k');

Next, add a shadow by offsetting the x-coordinates. Make the shadow line light
gray and wider than the default LineWidth:

hline2 = line(t+.06,sin(t),'LineWidth',4,'Color',[.8 .8 .8]);

line

2-1319

Finally, pop the first line to the front:

set(gca,'Children',[hline1 hline2])

Input Argument Dimensions – Informal Form
This statement reuses the one-column matrix specified for ZData to produce
two lines, each having four points.

line(rand(4,2),rand(4,2),rand(4,1))

If all the data has the same number of columns and one row each, MATLAB
transposes the matrices to produce data for plotting. For example,

line(rand(1,4),rand(1,4),rand(1,4))

is changed to

line(rand(4,1),rand(4,1),rand(4,1))

This also applies to the case when just one or two matrices have one row. For
example, the statement

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

line

2-1320

line(rand(2,4),rand(2,4),rand(1,4))

is equivalent to

line(rand(4,2),rand(4,2),rand(4,1))

See Also axes,newplot, plot, plot3

“Object Creation Functions” for related functions

Object
Hierarchy

Setting Default Properties
You can set default line properties on the axes, figure, and root levels:

set(0,'DefaultLinePropertyName',PropertyValue,...)
set(gcf,'DefaultLinePropertyName',PropertyValue,...)
set(gca,'DefaultLinePropertyName',PropertyValue,...)

Where PropertyName is the name of the line property and PropertyValue is the
value you are specifying. Use set and get to access line properties.

The following table lists all light properties and provides a brief description of
each. The property name links take you to an expanded description of the
properties.

Line

Axes

Line

Group
Object

line

2-1321

Property Name Property Description Property Value

Data Defining the Object

XData The x-coordinates defining the line Value: vector or matrix

Default: [0 1]

YData The y-coordinates defining the line Value: vector or matrix

Default: [0 1]

ZData The z-coordinates defining the line Value: vector or matrix

Default: [] (empty matrix)

Defining Line Styles and Markers

LineStyle Select from five line styles. Values: −, −−, :, −., none

Default: −

LineWidth The width of the line in points Value: scalar

Default: 0.5 points

Marker Marker symbol to plot at data points Values: see Marker property

Default: none

MarkerEdgeColor Color of marker or the edge color for
filled markers

Values: ColorSpec, none, auto

Dejfault: auto

MarkerFaceColor Fill color for markers that are closed
shapes

Values: ColorSpec, none, auto

Default: none

MarkerSize Size of marker in points Value: size in points

Default: 6

Controlling the Appearance

line

2-1322

Clipping Clipping to axes rectangle Values: on, off

Default: on

EraseMode Method of drawing and erasing the line
(useful for animation)

Values: normal, none, xor,
background

Default: normal

SelectionHighlight Highlights line when selected
(Selected property set to on)

Values: on, off

Default: on

Visible Makes the line visible or invisible Values: on, off

Default: on

Color Color of the line ColorSpec

Controlling Access to Objects

HandleVisibility Determines if and when the line’s
handle is visible to other functions

Values: on, callback, off

Default: on

HitTest Determines if the line can become the
current object (see the figure
CurrentObject property)

Values: on, off

Default: on

General Information About the Line

Children Line objects have no children. Value: [] (empty matrix)

Parent The parent of a line object is an axes,
hggroup, or hgtransform object.

Value: object handle

Selected Indicates whether the line is in a
selected state

Values: on, off

Default: on

Tag User-specified label Value: any string

Default: '' (empty string)

Property Name Property Description Property Value

line

2-1323

Type The type of graphics object (read only) Value: the string 'line'

UserData User-specified data Value: any matrix

Default: [] (empty matrix)

Properties Related to Callback Routine Execution

BeingDeleted Query to see if object is being deleted. Values: on | off

Read only

BusyAction Specifies how to handle callback
routine interruption

Values: cancel, queue

Default: queue

ButtonDownFcn Defines a callback routine that
executes when a mouse button is
pressed on over the line

Value: string or function handle

Default: '' (empty string)

CreateFcn Defines a callback routine that
executes when a line is created

Value: string or function handle

Default: '' (empty string)

DeleteFcn Defines a callback routine that
executes when the line is deleted (via
close or delete)

Value: string or function handle

Default: '' (empty string)

Interruptible Determines if callback routine can be
interrupted

Values: on, off

Default: on (can be interrupted)

UIContextMenu Associates a context menu with the
line

Value: handle of a
Uicontextmenu

Property Name Property Description Property Value

Line Properties

2-1324

2Line PropertiesModifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and change
object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

Line Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects that are going to be deleted and, therefore, can check the object’s
BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

Line Properties

2-1325

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback function that executes whenever you
press a mouse button while the pointer is over the line object. Define this
routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Children vector of handles

The empty matrix; line objects have no children.

Clipping {on} | off

Clipping mode. MATLAB clips lines to the axes plot box by default. If you set
Clipping to off, lines are displayed outside the axes plot box. This can occur if
you create a line, set hold to on, freeze axis scaling (set axis to manual), and
then create a longer line.

Color ColorSpec

Line color. A three-element RGB vector or one of the MATLAB predefined
names, specifying the line color. See the ColorSpec reference page for more
information on specifying color.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback routine that executes when MATLAB creates a line object. You must
define this property as a default value for lines or in a call to the line function
to create a new line object. For example, the statement

set(0,'DefaultLineCreateFcn','set(gca,''LineStyleOrder'',''-.|--'')')

defines a default value on the root level that sets the axes LineStyleOrder
whenever you create a line object. MATLAB executes this routine after setting
all line properties. Setting this property on an existing line object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Line Properties

2-1326

DeleteFcn string or function handle

Delete line callback routine. A callback routine that executes when you delete
the line object (e.g., when you issue a delete command or clear the axes or
figure). MATLAB executes the routine before deleting the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase line objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects are redrawn is
necessary to improve performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none — Do not erase the line when it is moved or destroyed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it, because MATLAB stores no information about its former location.

• xor — Draw and erase the line by performing an exclusive OR (XOR) with
the color of the screen beneath it. This mode does not damage the color of the
objects beneath the line. However, the line’s color depends on the color of
whatever is beneath it on the display.

• background — Erase the line by drawing it in the axes background Color, or
the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased line, but lines are always properly colored.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (e.g., performing an XOR on a pixel

Line Properties

2-1327

color with that of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are not applied to
the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing nonnormal mode objects.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the line can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the line. If HitTest is off, clicking the
line selects the object below it (which may be the axes containing it).

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
may be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Line Properties

2-1328

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a line callback routine can be interrupted by subsequently invoked
callback routines. Only callback routines defined for the ButtonDownFcn are
affected by the Interruptible property. MATLAB checks for events that can
interrupt a callback routine only when it encounters a drawnow, figure,
getframe, or pause command in the routine.

LineStyle {−} | −− | : | −. | none

Line style. This property specifies the line style. Available line styles are shown
in the table.

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

The width of the line object. Specify this value in points (1 point = 1/72 inch). The
default LineWidth is 0.5 points.

Symbol Line Style

' ' Solid line (default)

'--' Dashed line

':' Dotted line

' .' Dash-dot line

'none' No line

Line Properties

2-1329

Marker character (see table)

Marker symbol. The Marker property specifies marks that display at data
points. You can set values for the Marker property independently from the
LineStyle property. Supported markers include those shown in the table.

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the line’s Color property.

Marker Specifier Description

'+' Plus sign

'o' Circle

'*' Asterisk

'.' Point

'x' Cross

'square' or 's' Square

'diamond' or 'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'pentagram' or 'p' Five-pointed star (pentagram)

'hexagram' or 'h' Six-pointed star (hexagram)

'none' No marker (default)

Line Properties

2-1330

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or the figure color, if the axes Color property is set to none (which is the
factory default for axes).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB
draws the point marker (specified by the '.' symbol) at one-third the specified
size.

Parent handle of axes, hggroup, or hgtransform

Parent of line object. This property contains the handle of the line object’s
parent. The parent of a line object is the axes that contains it. You can reparent
line objects to other axes, hggroup, or hgtransform objects.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | off

Is object selected? When this property is on. MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to select the
object with the mouse.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing handles at each vertex. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Line Properties

2-1331

Type string (read only)

Class of graphics object. For line objects, Type is always the string 'line'.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the line. Assign this property the handle of a
uicontextmenu object created in the same figure as the line. Use the
uicontextmenu function to create the context menu. MATLAB displays the
context menu whenever you right-click over the line.

UserData matrix

User-specified data. Any data you want to associate with the line object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Line visibility. By default, all lines are visible. When set to off, the line is not
visible, but still exists, and you can get and set its properties.

XData vector of coordinates

X-coordinates. A vector of x-coordinates defining the line. YData and ZData
must be the same length and have the same number of rows. (See Examples.)

YData vector or matrix of coordinates

Y-coordinates. A vector of y-coordinates defining the line. XData and ZData
must be the same length and have the same number of rows.

ZData vector of coordinates

Z-coordinates. A vector of z-coordinates defining the line. XData and YData
must have the same number of rows.

Lineseries Properties

2-1332

2Lineseries PropertiesModifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

See Plot Objects for more information on lineseries objects.

Note that you cannot define default properties for lineseries objects.

Lineseries
Property
Descriptions

This section lists property names along with the type of values each accepts.
Curly braces { } enclose default values.

BeingDeleted on | {off} Read Only

This object is being deleted. The BeingDeleted property provides a mechanism
that you can use to determine if objects are in the process of being deleted.
MATLAB sets the BeingDeleted property to on when the object’s delete
function callback is called (see the DeleteFcn property). It remains set to on
while the delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions that act on
a number of different objects. These functions may not need to perform actions
on objects that are going to be deleted and, therefore, can check the object’s
BeingDeleted property before acting.

BusyAction cancel | {queue}

Callback routine interruption. The BusyAction property enables you to control
how MATLAB handles events that potentially interrupt executing callback
routines. If there is a callback routine executing, callback routines invoked
subsequently always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the object owning
the executing callback) determines how MATLAB handles the event. The
choices are

• cancel — Discard the event that attempted to execute a second callback
routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn string or function handle

Button press callback function. A callback function that executes whenever you
press a mouse button while the pointer is over the line object. Define this

Lineseries Properties

2-1333

routine as a string that is a valid MATLAB expression or the name of an M-file.
The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

Children vector of handles

The empty matrix; line objects have no children.

Clipping {on} | off

Clipping mode. MATLAB clips lines to the axes plot box by default. If you set
Clipping to off, lines are displayed outside the axes plot box. This can occur if
you create a line, set hold to on, freeze axis scaling (axis manual), and then
create a longer line.

Color ColorSpec

Line color. A three-element RGB vector or one of the MATLAB predefined
names, specifying the line color. See the ColorSpec reference page for more
information on specifying color.

CreateFcn string or function handle

Callback routine executed during object creation. This property defines a
callback that executes when MATLAB creates a lineseries object. You must
specify the callback during the creation of the object. For example,

plot(1:10,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the callback function.

MATLAB executes this routine after setting all other lineseries properties.
Setting this property on an existing lineseries object has no effect.

The handle of the object whose CreateFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DeleteFcn string or function handle

Delete line callback routine. A callback routine that executes when you delete
the line object (e.g., when you issue a delete command or clear the axes or
figure). MATLAB executes the routine before deleting the object’s properties so
these values are available to the callback routine.

Lineseries Properties

2-1334

The handle of the object whose DeleteFcn is being executed is accessible only
through the root CallbackObject property, which you can query using gcbo.

See Function Handle Callbacks for information on how to use function handles
to define the callback function.

DisplayName string

Label used by plot legends. The legend command and the figure’s active legend
use the text you specify for this property as labels for any bar objects appearing
in these legends.

EraseMode {normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses to draw and
erase line objects. Alternative erase modes are useful for creating animated
sequences, where control of the way individual objects are redrawn is
necessary to improve performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture, but is the
slowest. The other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none — Do not erase the line when it is moved or destroyed. While the object
is still visible on the screen after erasing with EraseMode none, you cannot
print it because MATLAB stores no information about its former location.

• xor — Draw and erase the line by performing an exclusive OR (XOR) with
the color of the screen beneath it. This mode does not damage the color of the
objects beneath the line. However, the line’s color depends on the color of
whatever is beneath it on the display.

• background — Erase the line by drawing it in the axes background Color, or
the figure background Color if the axes Color is set to none. This damages
objects that are behind the erased line, but lines are always properly colored.

Printing with Nonnormal Erase Modes
MATLAB always prints figures as if the EraseMode of all objects is normal. This
means graphics objects created with EraseMode set to none, xor, or background
can look different on screen than on paper. On screen, MATLAB may
mathematically combine layers of colors (e.g., performing an XOR on a pixel
color with that of the pixel behind it) and ignore three-dimensional sorting to

Lineseries Properties

2-1335

obtain greater rendering speed. However, these techniques are not applied to
the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing nonnormal mode objects.

HitTest {on} | off

Selectable by mouse click. HitTest determines if the line can become the
current object (as returned by the gco command and the figure CurrentObject
property) as a result of a mouse click on the line. If HitTest is off, clicking the
line selects the object below it (which may be the axes containing it).

HandleVisibility {on} | callback | off

Control access to object’s handle by command-line users and GUIs. This
property determines when an object’s handle is visible in its parent’s list of
children. HandleVisibility is useful for preventing command-line users from
accidentally drawing into or deleting a figure that contains only user interface
devices (such as a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be visible from
within callback routines or functions invoked by callback routines, but not from
within functions invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback routines to
have complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all times. This
might be necessary when a callback routine invokes a function that might
potentially damage the GUI (such as evaluating a user-typed string), and so
temporarily hides its own handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it cannot be returned
by functions that obtain handles by searching the object hierarchy or querying
handle properties. This includes get, findobj, gca, gcf, gco, newplot, cla, clf,
and close.

When a handle’s visibility is restricted using callback or off, the object’s
handle does not appear in its parent’s Children property, figures do not appear
in the root’s CurrentFigure property, objects do not appear in the root’s
CallbackObject property or in the figure’s CurrentObject property, and axes
do not appear in their parent’s CurrentAxes property.

Lineseries Properties

2-1336

You can set the root ShowHiddenHandles property to on to make all handles
visible regardless of their HandleVisibility settings (this does not affect the
values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle, you can
set and get its properties, and pass it to any function that operates on handles.

Interruptible {on} | off

Callback routine interruption mode. The Interruptible property controls
whether a lineseries callback routine can be interrupted by subsequently
invoked callback routines. Only callback routines defined for the
ButtonDownFcn are affected by the Interruptible property. MATLAB checks
for events that can interrupt a callback routine only when it encounters a
drawnow, figure, getframe, or pause command in the routine.

LineStyle {−} | −− | : | −. | none

Style of line drawn. This property specifies the style of the line used to draw the
lineseries object. The following table shows available line styles.

You can use LineStyle none when you want to place a marker at each point
but do not want the points connected with a line (see the Marker property).

LineWidth scalar

The width of the lineseries object. Specify this value in points (1 point = 1/72
inch). The default LineWidth is 0.5 points.

Symbol Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

none No line

Lineseries Properties

2-1337

Marker character (see table)

Marker symbol. The Marker property specifies marks that are displayed at data
points. You can set values for the Marker property independently from the
LineStyle property. Supported markers are shown in the following table.

MarkerEdgeColor ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for filled markers
(circle, square, diamond, pentagram, hexagram, and the four triangles).
ColorSpec defines the color to use. none specifies no color, which makes
nonfilled markers invisible. auto sets MarkerEdgeColor to the same color as
the Color property.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

'square' or s Square

'diamond' or d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

'pentagram' or p Five-pointed star (pentagram)

'hexagram' or h Six-pointed star (hexagram)

none No marker (default)

Lineseries Properties

2-1338

MarkerFaceColor ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes (circle,
square, diamond, pentagram, hexagram, and the four triangles). ColorSpec
defines the color to use. none makes the interior of the marker transparent,
allowing the background to show through. auto sets the fill color to the axes
color, or the figure color, if the axes Color property is set to none (which is the
factory default for axes).

MarkerSize size in points

Marker size. A scalar specifying the size of the marker, in points. The default
value for MarkerSize is six points (1 point = 1/72 inch). Note that MATLAB
draws the point marker (specified by the '.' symbol) at one-third the specified
size.

Parent handle of axes, hggroup, or hgtransform

Parent of lineseries object. This property contains the handle of the lineseries
object’s parent. The parent of a lineseries object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information on
parenting graphics objects.

Selected on | off

Is object selected? When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn callback to set this property, allowing users to select
the object with the mouse.

SelectionHighlight {on} | off

Objects are highlighted when selected. When the Selected property is on,
MATLAB indicates the selected state by drawing handles at each vertex. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag string

User-specified object label. The Tag property provides a means to identify
graphics objects with a user-specified label. This is particularly useful when
you are constructing interactive graphics programs that would otherwise need
to define object handles as global variables or pass them as arguments between
callback routines. You can define Tag as any string.

Lineseries Properties

2-1339

Type string (read only)

Class of graphics object. For lineseries objects, Type is always the string line.

UIContextMenu handle of a uicontextmenu object

Associate a context menu with the lineseries object. Assign this property the
handle of a uicontextmenu object created in the same figure as the lineseries.
Use the uicontextmenu function to create the context menu. MATLAB displays
the context menu whenever you right-click over the lineseries object.

UserData matrix

User-specified data. Any data you want to associate with the lineseries object.
MATLAB does not use this data, but you can access it using the set and get
commands.

Visible {on} | off

Lineseries object visibility. By default, all lineseries objects are visible. When
set to off, the object is not visible, but still exists, and you can get and set its
properties.

XData vector of coordinates

X-coordinates. A vector of x-coordinates defining the lineseries object. YData
and ZData must be the same size.

XDataMode {auto} | manual

Use automatic or user-specified x-axis values. If you specify XData, MATLAB
sets this property to manual.

If you set XDataMode to auto after having specified XData, MATLAB resets the
x-axis ticks and x-tick labels to the indices of the YData, overwriting any
previous values.

XDataSource string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the XData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change XData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

Lineseries Properties

2-1340

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

YData vector or matrix of coordinates

Y-coordinates. A vector of y-coordinates defining the lineseries object. XData
and ZData must be the same length and have the same number of rows.

YDataSource string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the YData.

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change YData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

ZData vector of coordinates

Z-coordinates. A vector of z-coordinates defining the lineseries object. XData
and YData must be the same length and have the same number of rows.

ZDataSource string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB variable that,
by default, is evaluated in the base workspace to generate the ZData.

Lineseries Properties

2-1341

MATLAB reevaluates this property only when you set it. Therefore, a change
to workspace variables appearing in an expression does not change ZData.

You can use the refreshdata function to force an update of the object’s data.
refreshdata also enables you to specify that the data source variable be
evaluated in the workspace of a function from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that contains data
of a different dimension, you might cause the function to generate a warning
and not render the graph until you have changed all data source properties to
appropriate values.

LineSpec

2-1342

2LineSpecPurpose Line specification syntax

Description This page describes how to specify the properties of lines used for plotting.
MATLAB enables you to define many characteristics, including

• Line style

• Line width

• Color

• Marker type

• Marker size

• Marker face and edge coloring (for filled markers)

MATLAB defines string specifiers for line styles, marker types, and colors. The
following tables list these specifiers.

Line Style Specifiers

Marker Specifiers

Specifier Line Style

− Solid line (default)

−− Dashed line

: Dotted line

−. Dash-dot line

Specifier Marker Type

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

LineSpec

2-1343

Color Specifiers

Many plotting commands accept a LineSpec argument that defines three
components used to specify lines:

• Line style

• Marker symbol

'square' or s Square

'diamond' or d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

'pentagram' or p Five-pointed star (pentagram)

'hexagram' or h Six-pointed star (hexagram)

Specifier Color

r Red

g Green

b Blue

c Cyan

m Magenta

y Yellow

k Black

w White

Specifier Marker Type

LineSpec

2-1344

• Color

For example,

plot(x,y,'−.or')

plots y versus x using a dash-dot line (−.), places circular markers (o) at the
data points, and colors both line and marker red (r). Specify the components (in
any order) as a quoted string after the data arguments.

Plotting Data Points with No Line
If you specify a marker, but not a line style, MATLAB plots only the markers.
For example,

plot(x,y,'d')

Related
Properties

When using the plot and plot3 functions, you can also specify other
characteristics of lines using graphics properties:

• LineWidth — Specifies the width (in points) of the line

• MarkerEdgeColor — Specifies the color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram, and the four
triangles)

• MarkerFaceColor — Specifies the color of the face of filled markers

• MarkerSize — Specifies the size of the marker in points

In addition, you can specify the LineStyle, Color, and Marker properties
instead of using the symbol string. This is useful if you want to specify a color
that is not in the list by using RGB values. See ColorSpec for more information
on color.

Examples Plot the sine function over three different ranges using different line styles,
colors, and markers.

t = 0:pi/20:2*pi;
plot(t,sin(t),'-.r*')
hold on
plot(sin(t-pi/2),'--mo')
plot(sin(t-pi),':bs')
hold off

LineSpec

2-1345

Create a plot illustrating how to set line properties.

plot(t,sin(2*t),'-mo',...
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12)

0 5 10 15 20 25 30 35 40 45
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

LineSpec

2-1346

See Also line, plot, patch, set, surface, axes LineStyleOrder property

“Basic Plots and Graphs” for related functions

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

linkaxes

2-1347

2linkaxesPurpose Synchronize limits of specified axes

Syntax linkaxes
linkaxes(axes_handles)
linkaxes(axes_handles,'options)

Description Use linkaxes to synchronize the individual axis limits on different subplots
within a figure. This is useful when you want to zoom or pan in one subplot and
display the same range of data in another subplot. linkaxes operates on 2-D
plots.

linkaxes links the x- and y-axis limits of all axes (i.e., all subplots) in the
current figure.

linkaxes(axes_handles) links the x- and y-axis limits of the axes specified in
axes_handles.

linkaxes(axes_handles,'option') links the axes specified in axes_handles
according to the specified option. The option argument can be one of the
following strings:

• x — Link x-axes only

• y — Link y-axes only

• xy — Link x- and y-axes

• off — Remove linking

See the linkprop function for more advanced capabilities enabling you to link
object properties on any graphics objects.

Examples This example creates two subplots and links the x-axis limits of the two axes.
You can use interactive zooming or panning (selected from the figure toolbar)
to see the effect of axes linking. For example, pan in one graph and notice how
the x-axis also changes in the other.

ax(1) = subplot(2,2,1);
plot(rand(1,10)*10,'Parent',ax(1));
ax(2) = subplot(2,2,2);
plot(rand(1,10)*100,'Parent',ax(2));
linkaxes(ax,'x');

linkaxes

2-1348

See Also linkprop

linkprop

2-1349

2linkpropPurpose Keep same value for corresponding properties

Syntax hlink = linkprop(obj_handles,'PropertyName')
hlink = linkprop(obj_handles,{'PropertyName1','PropertyName2',...})

Description Use linkprop to maintain the same values for the corresponding properties of
different objects.

hlink = linkprop(obj_handles,'PropertyName') maintains the same value
for the property PropertyName on all objects whose handles appear in
obj_handles. linkprop returns the link object in hlink. See “Link Object” for
more information.

hlink =
linkprop(obj_handles,{'PropertyName1','PropertyName2',...})
maintains the same respective values for all properties passed as a cell array
on all objects whose handles appear in obj_handles.

Note that the linked properties of all linked objects are updated immediately
when linkprop is called. The first object in the list (obj_handles) determines
the property values for the rest of the objects.

Link Object The mechanism to link the properties of different graphics objects is stored in
the link object, which is returned by linkprop. Therefore, the link object must
exist within the context where you want property linking to occur (such as in
the base workspace if users are to interact with the objects from the command
line or figure tools).

The following list describes ways to maintain a reference to the link object.

• Return the link object as an output argument from a function and keep it in
the base workspace while interacting with the linked objects.

• Make the hlink variable global.

• Store the hlink variable in an object’s UserData property or in application
data. See the “Examples” section for an example that uses application data.

Modifying Link
Object

If you want to change either the graphics objects or the properties that are
linked, you need to use the link object methods designed for that purpose.

linkprop

2-1350

These methods are functions that operate only on link objects. To use them, you
must first create a link object using linkprop.

Method Syntax
addtarget(hlink,obj_handles)
removetarget(hlink,obj_handles)
addprop(hlink,'PropertyName')
removeprop(hlink,'PropertyName')

Arguments

• hlink — Link object returned by linkprop

• obj_handles — One or more graphic object handles

• PropertyName — Name of a property common to all target objects

Examples This example creates four isosurface graphs of fluid flow data, each displaying
a different isovalue. The CameraPosition and CameraUpVector properties of
each subplot axes are linked so that the user can rotate all subplots in unison.

After running the example, select Rotate 3D from the figure Tools menu and
observe how all subplots rotate together.

Note If you are using the MATLAB help browser, you can run this example
or open it in the MATLAB editor.

Method Purpose

addtarget Add specified graphics object to the link object’s
targets.

removetarget Remove specified graphics object from the link
object’s targets.

addprop Add specified property to the linked properties.

removeprop Remove specified property from the linked
properties.

linkprop

2-1351

The property linking code is in step 3.

1 Define the data using the flow M-file and specify property values for the
isosurface (which is a patch object).

function linkprop_example
[x y z v] = flow;
isoval = [-3 -1 0 1];
props.FaceColor = [0 0 .5];
props.EdgeColor = 'none';
props.AmbientStrength = 1;
props.FaceLighting = 'gouraud';

2 Create four subplot axes and add an isosurface graph to each one. Add a title
and set viewing and lighting parameters using a local function (set_view).
(subplot, patch, isosurface, title, num2str)

for k = 1:4
 h(k) = subplot(2,2,k);
 patch(isosurface(x,y,z,v,isoval(k)),props)
 title(h(k),['Isovalue = ',num2str(k)])
 set_view(h(k))
end

3 Link the CameraPosition and CameraTarget properties of all subplot axes.
Since this example function will have completed execution when the user is
rotating the subplots, the link object is stored in the first subplot axes
application data. See setappdata for more information on using application
data.

hlink = linkprop(h,{'CameraPosition','CameraUpVector'});
key = 'graphics_linkprop';
% Store link object on first subplot axes
setappdata(h(1),key,hlink);

4 The following local function contains viewing and lighting commands issued
on each axes. It is called with the creation of each subplot (view, axis,
camlight).

function set_view(ax)
% Set the view and add lighting
view(ax,3); axis(ax,'tight','equal')
camlight left; camlight right

linkprop

2-1352

% Make axes invisible and title visible
axis(ax,'off')
set(get(ax,'title'),'Visible','on')

Linking an Additional Property
Suppose you want to add the axes PlotBoxAspectRatio to the linked
properties in the previous example. You can do this by modifying the link object
that is stored in the first subplot axes’ application data.

1 First click the first subplot axes to make it the current axes (since its handle
was saved only within the creating function). Then get the link object’s
handle from application data (getappdata).

hlink = getappdata(gca,'graphics_linkprop');

2 Use the addprop method to add a new property to the link object.

addprop(hlink,'PlotBoxAspectRatio')

Since hlink is a reference to the link object (i.e., not a copy), addprop can
change the object that is stored in application data.

See Also getappdata, linkaxes, setappdata

linsolve

2-1353

2linsolvePurpose Solve a linear system of equations

Syntax X = linsolve(A,B)
X = linsolve(A,B,opts)

Description X = linsolve(A,B) solves the linear system A*X = B using LU factorization
with partial pivoting when A is square and QR factorization with column
pivoting otherwise. The number of columns of A must equal the number of rows
of B must have the same number of rows. If A is m-by-n and B is n-by-k, then X
is m-by-k. linsolve returns a warning if A is square and ill conditioned or if it
is not square and rank deficient.

[X, R] = linsolve(A,B) suppresses these warnings and returns R, which is
the reciprocal of the condition number of A if A is square, or the rank of A if A is
not square.

X = linsolve(A,B,opts) solves the linear system A*X = B or A'*X = B, using
the solver that is most appropriate given the properties of the matrix A, which
you specify in opts. For example, if A is upper triangular, you can set
opts.UT = true to make linsolve use a solver designed for upper triangular
matrices. If A has the properties in opts, linsolve is faster than mldivide,
because linsolve does not perform any tests to verify that A has the specified
properties.

Caution If A does not have the properties that you specify in opts, linsolve
returns incorrect results and does not return an error message. If you are not
sure whether A has the specified properties, use mldivide instead.

The TRANSA field of the opts structure specifies the form of the linear system
you want to solve:

• If you set opts.TRANSA = false, linsolve(A,B,opts) solves A*X = B.

• If you set opts.TRANSA = true, linsolve(A,B,opts) solves A'*X = B.

linsolve

2-1354

The following table lists all the field of opts and their corresponding matrix
properties. The values of the fields of opts must be logical and the default
value for all fields is false.

The following table lists all combinations of field values in opts that are valid
for linsolve. A true/false entry indicates that linsolve accepts either true or
false.

Example The following code solves the system A'x = b for an upper triangular matrix A
using both mldivide and linsolve.

A = triu(rand(5,3)); x = [1 1 1 0 0]'; b = A'*x;
y1 = (A')\b

Field Name Matrix Property

LT Lower triangular

UT Upper triangular

UHESS Upper Hessenberg

SYM Real symmetric or complex Hermitian

POSDEF Positive definite

RECT General rectangular

TRANSA Conjugate transpose — specifies whether
the function solves A*X = B or A'*X = B

LT UT UHESS SYM POSDEF RECT TRANS

true false false false false true/false true/false

false true false false false true/false true/false

false false true false false false true/false

false false false true true false true/false

false false false false false true/false true/false

linsolve

2-1355

opts.UT = true; opts.TRANSA = true;
y2 = linsolve(A,b,opts)

y1 =

 1.0000
 1.0000
 1.0000
 0
 0

y2 =

 1.0000
 1.0000
 1.0000
 0
 0

Note If you are working with matrices having different properties, it is
useful to create an options structure for each type of matrix, such as opts_sym.
This way you do not need to change the fields whenever you solve a system
with a different type of matrix A.

See Also mldivide, slash

linspace

2-1356

2linspacePurpose Generate linearly spaced vectors

Syntax y = linspace(a,b)
y = linspace(a,b,n)

Description The linspace function generates linearly spaced vectors. It is similar to the
colon operator “:”, but gives direct control over the number of points.

y = linspace(a,b) generates a row vector y of 100 points linearly spaced
between and including a and b.

y = linspace(a,b,n) generates a row vector y of n points linearly spaced
between and including a and b.

See Also logspace

The colon operator :

listdlg

2-1357

2listdlgPurpose Create list selection dialog box

Syntax [Selection,ok] = listdlg('ListString',S,...)

Description [Selection,ok] = listdlg('ListString',S) creates a modal dialog box that
enables you to select one or more items from a list. Selection is a vector of
indices of the selected strings (in single selection mode, its length is 1).
Selection is [] when ok is 0. ok is 1 if you click the OK button, or 0 if you click
the Cancel button or close the dialog box. Double-clicking on an item or
pressing Return when multiple items are selected has the same effect as
clicking the OK button. The dialog box has a Select all button (when in
multiple selection mode) that enables you to select all list items.

Inputs are in parameter/value pairs:

Parameter Description

'ListString' Cell array of strings that specify the list box items.

'SelectionMode' String indicating whether one or many items can be
selected: 'single' or 'multiple' (the default).

'ListSize' List box size in pixels, specified as a two-element
vector [width height]. Default is [160 300].

'InitialValue' Vector of indices of the list box items that are
initially selected. Default is 1, the first item.

'Name' String for the dialog box’s title. Default is ''.

'PromptString' String matrix or cell array of strings that appears
as text above the list box. Default is {}.

'OKString' String for the OK button. Default is 'OK'.

'CancelString' String for the Cancel button. Default is 'Cancel'.

'uh' Uicontrol button height, in pixels. Default is 18.

'fus' Frame/uicontrol spacing, in pixels. Default is 8.

'ffs' Frame/figure spacing, in pixels. Default is 8.

listdlg

2-1358

Example This example displays a dialog box that enables the user to select a file from
the current directory. The function returns a vector. Its first element is the
index to the selected file; its second element is 0 if no selection is made, or 1 if
a selection is made.

d = dir;
str = {d.name};
[s,v] = listdlg('PromptString','Select a file:',...

'SelectionMode','single',...
'ListString',str)

See Also dir

“Predefined Dialog Boxes” for related functions

load

2-1359

2loadPurpose Load workspace variables from disk

Syntax load
load('filename')
load('filename', 'X', 'Y', 'Z')
load('filename', '-regexp', exprlist)
load('-mat', 'filename')
load('-ascii', 'filename')
S = load(...)
load filename -regexp expr1 expr2 ...

Description load loads all the variables from the MAT-file matlab.mat, if it exists, and
returns an error if it doesn’t exist.

load('filename') loads all the variables from filename given a full pathname
or a MATLABPATH relative partial pathname. If filename has no extension, load
looks for a file named filename.mat and treats it as a binary MAT-file. If
filename has an extension other than .mat, load treats the file as ASCII data.

load('filename', 'X', 'Y', 'Z') loads just the specified variables from
the MAT-file. The wildcard '*' loads variables that match a pattern (MAT-file
only).

load('filename', '-regexp', exprlist) loads those variables that match
any of the regular expressions in exprlist, where exprlist is a
comma-delimited list of quoted regular expressions.

load('-mat', 'filename') forces load to treat the file as a MAT-file,
regardless of file extension. If the file is not a MAT-file, load returns an error.

load('-ascii', 'filename') forces load to treat the file as an ASCII file,
regardless of file extension. If the file is not numeric text, load returns an error.

S = load(...) returns the contents of a MAT-file in the variable S. If the file
is a MAT-file, S is a struct containing fields that match the variables retrieved.
When the file contains ASCII data, S is a double-precision array.

load filename -regexp expr1 expr2 ... is the command form of the
syntax.

load

2-1360

Use the functional form of load, such as load('filename'), when the file name
is stored in a string, when an output argument is requested, or if filename
contains spaces. To specify a command-line option with this functional form,
specify any option as a string argument, including the hyphen. For example,

load('myfile.dat', '-mat')

Remarks For information on any of the following topics related to saving to MAT-files,
see “Importing Data from MAT-Files” in the “MATLAB Programming”
documentation:

• Previewing MAT-file contents

• Loading binary data

• Loading ASCII data

Examples Example 1 — Loading From a Binary MAT-file
To see what is in the MAT-file prior to loading it, use whos -file:

whos -file mydata.mat
 Name Size Bytes Class

 javArray 10x1 java.lang.Double[][]
 spArray 5x5 84 double array (sparse)
 strArray 2x5 678 cell array
 x 3x2x2 96 double array
 y 4x5 1230 cell array

Clear the workspace and load it from MAT-file mydata.mat:

clear
load mydata

whos
 Name Size Bytes Class

 javArray 10x1 java.lang.Double[][]
 spArray 5x5 84 double array (sparse)
 strArray 2x5 678 cell array
 x 3x2x2 96 double array
 y 4x5 1230 cell array

load

2-1361

Example 2 — Loading From an ASCII File

Create several 4-columnn matrices and save them to an ASCII file:

a = magic(4); b = ones(2, 4) * -5.7; c = [8 6 4 2];
save -ascii mydata.dat

Clear the workspace and load it from the file mydata.dat. If the filename has
an extension other than .mat, MATLAB assumes that it is ASCII:

clear
load mydata.dat

MATLAB loads all data from the ASCII file, merges it into a single matrix, and
assigns the matrix to a variable named after the filename:

mydata
mydata =
 16.0000 2.0000 3.0000 13.0000
 5.0000 11.0000 10.0000 8.0000
 9.0000 7.0000 6.0000 12.0000
 4.0000 14.0000 15.0000 1.0000
 -5.7000 -5.7000 -5.7000 -5.7000
 -5.7000 -5.7000 -5.7000 -5.7000
 8.0000 6.0000 4.0000 2.0000

Example 3 — Using Regular Expressions
Using regular expressions, load from MAT-file mydata.mat those variables
with names that begin with Mon, Tue, or Wed:

load('mydata', '-regexp', '^Mon|^Tue|^Wed');

Here is another way of doing the same thing. In this case, there are three
separate expression arguments:

load('mydata', '-regexp', '^Mon', '^Tue', '^Wed');

See Also clear, fprintf, fscanf, partialpath, save, spconvert, who

loadobj

2-1362

2loadobjPurpose User-defined extension of the load function for user objects

Syntax b = loadobj(a)

Description b = loadobj(a) extends the load function for user objects. When an object is
loaded from a MAT-file, the load function calls the loadobj method for the
object’s class if it is defined. The loadobj method must have the calling
sequence shown; the input argument a is the object as loaded from the
MAT-file, and the output argument b is the object that the load function will
load into the workspace.

These steps describe how an object is loaded from a MAT-file into the
workspace:

1 The load function detects the object a in the MAT-file.

2 The load function looks in the current workspace for an object of the same
class as the object a. If there isn’t an object of the same class in the
workspace, load calls the default constructor, registering an object of that
class in the workspace. The default constructor is the constructor function
called with no input arguments.

3 The load function checks to see if the structure of the object a matches the
structure of the object registered in the workspace. If the objects match, a is
loaded. If the objects don’t match, load converts a to a structure variable.

4 The load function calls the loadobj method for the object’s class if it is
defined. load passes the object a to the loadobj method as an input
argument. Note that the format of the object a is dependent on the results of
step 3 (object or structure). The output argument of loadobj, b, is loaded
into the workspace in place of the object a.

Remarks loadobj can be overloaded only for user objects. load will not call loadobj for
built-in data types (such as double).

loadobj is invoked separately for each object in the MAT-file. The load
function recursively descends cell arrays and structures, applying the loadobj
method to each object encountered.

A child object does not inherit the loadobj method of its parent class. To
implement loadobj for any class, including a class that inherits from a parent,
you must define a loadobj method within that class directory.

loadobj

2-1363

See Also load, save, saveobj

log

2-1364

2logPurpose Natural logarithm

Syntax Y = log(X)

Description The log function operates element-wise on arrays. Its domain includes complex
and negative numbers, which may lead to unexpected results if used
unintentionally.

Y = log(X) returns the natural logarithm of the elements of X. For complex or
negative , where , the complex logarithm is returned.

log(z) = log(abs(z)) + i*atan2(y,x)

Examples The statement abs(log(-1)) is a clever way to generate .

ans =

3.1416

See Also exp, log10, log2, logm

z z x y*i+=

π

log1p

2-1365

2log1pPurpose Compute log(1+x) accurately for small values of x

Syntax y = log1p(x)

Description y = log1p(x) computes log(1+x), compensating for the roundoff in 1+x.
log1p(x) is more accurate than log(1+x) for small values of x. For small x,
log1p(x) is approximately x, whereas log(1+x) can be zero.

See Also log, expm1

log2

2-1366

2log2Purpose Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

Syntax Y = log2(X)
[F,E] = log2(X)

Description Y = log2(X) computes the base 2 logarithm of the elements of X.

[F,E] = log2(X) returns arrays F and E. Argument F is an array of real
values, usually in the range 0.5 <= abs(F) < 1. For real X, F satisfies the
equation: X = F.*2.^E. Argument E is an array of integers that, for real X,
satisfy the equation: X = F.*2.^E.

Remarks This function corresponds to the ANSI C function frexp() and the IEEE
floating-point standard function logb(). Any zeros in X produce F = 0 and
E = 0.

Examples For IEEE arithmetic, the statement [F,E] = log2(X) yields the values:

See Also log, pow2

X F E

1 1/2 1

pi pi/4 2

-3 -3/4 2

eps 1/2 -51

realmax 1-eps/2 1024

realmin 1/2 -1021

log10

2-1367

2log10Purpose Common (base 10) logarithm

Syntax Y = log10(X)

Description The log10 function operates element-by-element on arrays. Its domain
includes complex numbers, which may lead to unexpected results if used
unintentionally.

Y = log10(X) returns the base 10 logarithm of the elements of X.

Examples log10(realmax) is 308.2547

and

log10(eps) is -15.6536

See Also exp, log, log2, logm

logical

2-1368

2logicalPurpose Convert numeric values to logical

Syntax K = logical(A)

Description K = logical(A) returns an array that can be used for logical indexing or
logical tests.

A(B), where B is a logical array, returns the values of A at the indices where the
real part of B is nonzero. B must be the same size as A.

Remarks Most arithmetic operations remove the logicalness from an array. For example,
adding zero to a logical array removes its logical characteristic. A = +A is the
easiest way to convert a logical array, A, to a numeric double array.

Logical arrays are also created by the relational operators (==,<,>,~, etc.) and
functions like any, all, isnan, isinf, and isfinite.

Examples Given A = [1 2 3; 4 5 6; 7 8 9], the statement B = logical(eye(3))
returns a logical array

B =
 1 0 0
 0 1 0
 0 0 1

which can be used in logical indexing that returns A’s diagonal elements:

A(B)

ans =
 1
 5
 9

However, attempting to index into A using the numeric array eye(3) results in:

A(eye(3))
??? Subscript indices must either be real positive integers or
logicals.

See Also islogical, logical operators (elementwise and short-circuit)

loglog

2-1369

2loglog Purpose Log-log scale plot

Syntax loglog(Y)
loglog(X1,Y1,...)
loglog(X1,Y1,LineSpec,...)
loglog(...,'PropertyName',PropertyValue,...)
h = loglog(...)
hline = loglog('v6',...)

Description loglog(Y) plots the columns of Y versus their index if Y contains real numbers.
If Y contains complex numbers, loglog(Y) and loglog(real(Y),imag(Y)) are
equivalent. loglog ignores the imaginary component in all other uses of this
function.

loglog(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn is a matrix,
loglog plots the vector argument versus the rows or columns of the matrix,
depending on whether the vector’s row or column dimension matches the
matrix.

loglog(X1,Y1,LineSpec,...) plots all lines defined by the Xn,Yn,LineSpec
triples, where LineSpec determines line type, marker symbol, and color of the
plotted lines. You can mix Xn,Yn,LineSpec triples with Xn,Yn pairs, for
example,

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)

loglog(...,'PropertyName',PropertyValue,...) sets property values for
all lineseries graphics objects created by loglog. See the line reference page
for more information.

h = loglog(...) returns a column vector of handles to lineseries graphics
objects, one handle per line.

Backward Compatible Version

hlines = loglog('v6',...) returns the handles to line objects instead of
lineseries objects.

loglog

2-1370

Remarks If you do not specify a color when plotting more than one line, loglog
automatically cycles through the colors and line styles in the order specified by
the current axes.

Examples Create a simple loglog plot with square markers.

x = logspace(-1,2);
loglog(x,exp(x),'-s')
grid on

See Also LineSpec, plot, semilogx, semilogy

“Basic Plots and Graphs” for related functions

10
−1

10
0

10
1

10
2

10
0

10
5

10
10

10
15

10
20

10
25

10
30

10
35

10
40

10
45

logm

2-1371

2logmPurpose Matrix logarithm

Syntax Y = logm(X)
[Y,esterr] = logm(X)

Description Y = logm(X) returns the matrix logarithm: the inverse function of expm(X).
Complex results are produced if X has negative eigenvalues. A warning
message is printed if the computed expm(Y) is not close to X.

[Y,esterr] = logm(X) does not print any warning message, but returns an
estimate of the relative residual, norm(expm(Y)-X)/norm(X).

Remarks If X is real symmetric or complex Hermitian, then so is logm(X).

Some matrices, like X = [0 1; 0 0], do not have any logarithms, real or
complex, and logm cannot be expected to produce one.

Limitations For most matrices:

logm(expm(X)) = X = expm(logm(X))

These identities may fail for some X. For example, if the computed eigenvalues
of X include an exact zero, then logm(X) generates infinity. Or, if the elements
of X are too large, expm(X) may overflow.

Examples Suppose A is the 3-by-3 matrix

 1 1 0
 0 0 2
 0 0 -1

and X = expm(A) is

X =

 2.7183 1.7183 1.0862
 0 1.0000 1.2642
 0 0 0.3679

Then A = logm(X) produces the original matrix A.

A =

logm

2-1372

 1.0000 1.0000 0.0000
 0 0 2.0000
 0 0 -1.0000

But log(X) involves taking the logarithm of zero, and so produces

ans =

 1.0000 0.5413 0.0826
 -Inf 0 0.2345
 -Inf -Inf -1.0000

Algorithm The matrix functions are evaluated using an algorithm due to Parlett, which is
described in [1]. The algorithm uses the Schur factorization of the matrix and
may give poor results or break down completely when the matrix has repeated
eigenvalues. A warning message is printed when the results may be
inaccurate.

See Also expm, funm, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns Hopkins
University Press, 1983, p. 384.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute the
Exponential of a Matrix,” SIAM Review 20, 1979,pp. 801-836.

logspace

2-1373

2logspacePurpose Generate logarithmically spaced vectors

Syntax y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description The logspace function generates logarithmically spaced vectors. Especially
useful for creating frequency vectors, it is a logarithmic equivalent of linspace
and the “:” or colon operator.

y = logspace(a,b) generates a row vector y of 50 logarithmically spaced
points between decades 10^a and 10^b.

y = logspace(a,b,n) generates n points between decades 10^a and 10^b.

y = logspace(a,pi) generates the points between 10^a and pi, which is
useful for digital signal processing where frequencies over this interval go
around the unit circle.

Remarks All the arguments to logspace must be scalars.

See Also linspace

The colon operator :

lookfor

2-1374

2lookforPurpose Search for specified keyword in all help entries

Syntax lookfor topic
lookfor topic -all

Description lookfor topic searches for the string topic in the first comment line (the H1
line) of the help text in all M-files found on the MATLAB search path. For all
files in which a match occurs, lookfor displays the H1 line.

lookfor topic -all searches the entire first comment block of an M-file
looking for topic.

Examples For example

lookfor inverse

finds at least a dozen matches, including H1 lines containing “inverse
hyperbolic cosine,” “two-dimensional inverse FFT,” and “pseudoinverse.”
Contrast this with

which inverse

or

what inverse

These functions run more quickly, but probably fail to find anything because
MATLAB does not have a function inverse.

In summary, what lists the functions in a given directory, which finds the
directory containing a given function or file, and lookfor finds all functions in
all directories that might have something to do with a given keyword.

Even more extensive than the lookfor function is the find feature in the
Current Directory browser. It looks for all occurrences of a specified word in all
the M-files in the current directory. For instructions, see Finding Files and
Content Within Files.

See Also dir, doc, filebrowser, findstr, help, helpdesk, helpwin, regexp, what,
which, who

lower

2-1375

2lowerPurpose Convert string to lowercase

Syntax t = lower('str')
B = lower(A)

Description t = lower('str') returns the string formed by converting any uppercase
characters in str to the corresponding lowercase characters and leaving all
other characters unchanged.

B = lower(A) when A is a cell array of strings, returns a cell array the same
size as A containing the result of applying lower to each string within A.

Examples lower('MathWorks') is mathworks.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also upper

ls

2-1376

2lsPurpose List directory on UNIX

Syntax ls

Description ls displays the results of the ls command on UNIX. You can pass any flags to
ls that your operating system supports. On UNIX, ls returns a \n delimited
string of filenames. On all other platforms, ls executes dir.

See Also dir

lscov

2-1377

2lscovPurpose Least squares solution in the presence of known covariance

Syntax x = lscov(A,b)
x = lscov(A,b,w)
x = lscov(A,b,V)
[x,stdx] = lscov(A,b,V)
[x,stdx,mse] = lscov(...)
[x,stdx,mse,S] = lscov(...)

Description x = lscov(A,b) returns the ordinary least squares solution to the linear
system of equations A*x = b, i.e., x is the n-by-1 vector that minimizes the
sum of squared errors (b - A*x)'*(b - A*x), where A is m-by-n, and b is
m-by-1. b can also be an m-by-k matrix, and lscov returns one solution for
each column of b. When rank(A) < n, lscov sets the maximum possible
number of elements of x to zero to obtain a "basic solution".

x = lscov(A,b,w), where w is a vector length m of real positive weights,
returns the weighted least squares solution to the linear system A*x = b, that
is, x minimizes (b - A*x)'*diag(w)*(b - A*x). w typically contains either
counts or inverse variances.

x = lscov(A,b,V), where V is an m-by-m real symmetric positive definite
matrix, returns the generalized least squares solution to the linear system
A*x = b with covariance matrix proportional to V, that is, x minimizes
(b - A*x)'*inv(V)*(b - A*x).

More generally, V can be positive semidefinite, and lscov returns x that
minimizes e'*e, subject to A*x + T*e = b, where the minimization is over x
and e, and T*T' = V. When V is semidefinite, this problem has a solution only
if b is consistent with A and V (that is, b is in the column space of [A T]),
otherwise lscov returns an error.

By default, lscov computes the Cholesky decomposition of V and, in effect,
inverts that factor to transform the problem into ordinary least squares.
However, if lscov determines that V is semidefinite, it uses an orthogonal
decomposition algorithm that avoids inverting V.

x = lscov(A,b,V,alg) specifies the algorithm used to compute x when V is a
matrix. alg can have the following values:

• 'chol' uses the Cholesky decomposition of V.

lscov

2-1378

• 'orth' uses orthogonal decompositions, and is more appropriate when V is
ill-conditioned or singular, but is computationally more expensive.

[x,stdx] = lscov(...) returns the estimated standard errors of x. When A
is rank deficient, stdx contains zeros in the elements corresponding to the
necessarily zero elements of x.

[x,stdx,mse] = lscov(...) returns the mean squared error.

[x,stdx,mse,S] = lscov(...) returns the estimated covariance matrix of x.
When A is rank deficient, S contains zeros in the rows and columns
corresponding to the necessarily zero elements of x. lscov cannot return S if it
is called with multiple right-hand sides, that is, if size(B,2) > 1.

The standard formulas for these quantities, when A and V are full rank, are

• x = inv(A'*inv(V)*A)*A'*inv(V)*B
• mse = B'*(inv(V) - inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B./(m-n)
• S = inv(A'*inv(V)*A)*mse
• stdx = sqrt(diag(S))

However, lscov uses methods that are faster and more stable, and are
applicable to rank deficient cases.

lscov assumes that the covariance matrix of B is known only up to a scale
factor. mse is an estimate of that unknown scale factor, and lscov scales the
outputs S and stdx appropriately. However, if V is known to be exactly the
covariance matrix of B, then that scaling is unnecessary. To get the appropriate
estimates in this case, you should rescale S and stdx by 1/mse and
sqrt(1/mse), respectively.

Algorithm The vector x minimizes the quantity (A*x-b)'*inv(V)*(A*x-b). The classical
linear algebra solution to this problem is

 x = inv(A'*inv(V)*A)*A'*inv(V)*b

but the lscov function instead computes the QR decomposition of A and then
modifies Q by V.

See Also lsqnonneg, qr

The arithmetic operator \

lscov

2-1379

Reference [1] Strang, G., Introduction to Applied Mathematics, Wellesley-Cambridge,
1986, p. 398.

lsqnonneg

2-1380

2lsqnonnegPurpose Linear least squares with nonnegativity constraints

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d) subject
to x >= 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0; otherwise,
the default is used. The default start point is the origin (the default is used
when x0==[] or when only two input arguments are provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. lsqnonneg uses these options
structure fields:

[x,resnorm] = lsqnonneg(...) returns the value of the squared 2-norm of
the residual: norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual, C*x-d.

Display Level of display. 'off' displays no output; 'final' displays
just the final output; 'notify' (default) dislays output only if
the function does not converge.

TolX Termination tolerance on x.

lsqnonneg

2-1381

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg:

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns a
structure output that contains information about the operation:

[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)
returns the dual vector (Lagrange multipliers) lambda, where lambda(i)<=0
when x(i) is (approximately) 0, and lambda(i) is (approximately) 0 when
x(i)>0.

Examples Compare the unconstrained least squares solution to the lsqnonneg solution
for a 4-by-2 problem:

C = [
 0.0372 0.2869
 0.6861 0.7071
 0.6233 0.6245
 0.6344 0.6170];

d = [
 0.8587
 0.1781
 0.0747
 0.8405];

[C\d lsqnonneg(C,d)] =
-2.5627 0

 3.1108 0.6929

[norm(C*(C\d)-d) norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

>0 Indicates that the function converged to a solution x.

 0 Indicates that the iteration count was exceeded.
Increasing the tolerance (TolX parameter in options)
may lead to a solution.

output.algorithm The algorithm used

output.iterations The number of iterations taken

lsqnonneg

2-1382

The solution from lsqnonneg does not fit as well (has a larger residual), as the
least squares solution. However, the nonnegative least squares solution has no
negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts with a set
of possible basis vectors and computes the associated dual vector lambda. It
then selects the basis vector corresponding to the maximum value in lambda in
order to swap out of the basis in exchange for another possible candidate. This
continues until lambda <= 0.

See Also The arithmetic operator \, optimset

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23, p. 161.

lsqr

2-1383

2lsqrPurpose LSQR implementation of Conjugate Gradients on the Normal Equations

Syntax x = lsqr(A,b)
lsqr(A,b,tol)
lsqr(A,b,tol,maxit)
lsqr(A,b,tol,maxit,M)
lsqr(A,b,tol,maxit,M1,M2)
lsqr(A,b,tol,maxit,M1,M2,x0)
lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...)
[x,flag] = lsqr(A,b,...)
[x,flag,relres] = lsqr(A,b,...)
[x,flag,relres,iter] = lsqr(A,b,...)
[x,flag,relres,iter,resvec] = lsqr(A,b,...)
[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,...)

Description x = lsqr(A,b) attempts to solve the system of linear equations A*x=b for x if
A is consistent, otherwise it attempts to solve the least squares solution x that
minimizes norm(b-A*x). The m-by-n coefficient matrix A need not be square but
it should be large and sparse. The column vector b must have length m. A can
be a function afun such that afun(x) returns A*x and afun(x,'transp')
returns A'*x.

If lsqr converges, a message to that effect is displayed. If lsqr fails to converge
after the maximum number of iterations or halts for any reason, a warning
message is printed displaying the relative residual norm(b-A*x)/norm(b) and
the iteration number at which the method stopped or failed. You can suppress
these messages by calling lsqr with the syntax

[x,flag] = lsqr(A,b,...)

which returns an integer flag instead of the message, as described in the
following table.

lsqr(A,b,tol) specifies the tolerance of the method. If tol is [], then lsqr
uses the default, 1e-6.

lsqr(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then lsqr uses the default, min([m,n,20]).

lsqr

2-1384

lsqr(A,b,tol,maxit,M1) and lsqr(A,b,tol,maxit,M1,M2) use n-by-n
preconditioner M or M = M1*M2 and effectively solve the system A*inv(M)*y = b
for y, where x = M*y. If M is [] then lsqr applies no preconditioner. M can be
a function mfun such that mfun(x) returns M\x and mfun(x,'transp') returns
M'\x.

lsqr(A,b,tol,maxit,M1,M2,x0) specifies the n-by-1 initial guess. If x0 is [],
then lsqr uses the default, an all zero vector.

lsqr(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...) and
afun(x,p1,p2,...,'transp') and similarly to the preconditioner functions
m1fun and m2fun.

[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if you
specify the flag output.

[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns an
estimate of the relative residual norm(b-A*x)/norm(b). If flag is 0,
relres <= tol.

[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.

Flag Convergence

0 lsqr converged to the desired tolerance tol within maxit
iterations.

1 lsqr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 lsqr stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during lsqr became
too small or too large to continue computing.

lsqr

2-1385

[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0) also
returns a vector of the residual norm estimates at each iteration, including
norm(b-A*x0).

[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns a vector of estimates of the scaled normal equations residual at
each iteration: norm((A*inv(M))'*(B-A*X))/norm(A*inv(M),'fro'). Note
that the estimate of norm(A*inv(M),'fro') changes, and hopefully improves,
at each iteration.

Examples n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = lsqr(A,b,tol,maxit,M1,M2,[]);
lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

Alternatively, use this matrix-vector product function

function y = afun(x,n,transp_flag)
if (nargin > 2) & strcmp(transp_flag,'transp')
 y = 4 * x;
 y(1:n-1) = y(1:n-1) - 2 * x(2:n);
 y(2:n) = y(2:n) - x(1:n-1);
else
 y = 4 * x;
 y(2:n) = y(2:n) - 2 * x(1:n-1);
 y(1:n-1) = y(1:n-1) - x(2:n);
end

as input to lsqr

x1 = lsqr(@afun,b,tol,maxit,M1,M2,[],n);

See Also bicg, bicgstab, cgs, gmres, minres, norm, pcg, qmr, symmlq

lsqr

2-1386

@ (function handle)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “LSQR: An Algorithm for Sparse Linear
Equations And Sparse Least Squares,” ACM Trans. Math. Soft., Vol.8, 1982,
pp. 43-71.

lu

2-1387

2luPurpose LU matrix factorization

Syntax [L,U] = lu(X)
[L,U,P] = lu(X)
Y = lu(X)
[L,U,P,Q] = lu(X)
[L,U,P] = lu(X,thresh)
[L,U,P,Q] = lu(X,thresh)

Description The lu function expresses a matrix X as the product of two essentially
triangular matrices, one of them a permutation of a lower triangular matrix
and the other an upper triangular matrix. The factorization is often called the
LU, or sometimes the LR, factorization. X can be rectangular. For a full matrix
X, lu uses the Linear Algebra Package (LAPACK) routines described in
“Algorithm” on page 2-1392.

[L,U] = lu(X) returns an upper triangular matrix in U and a permuted lower
triangular matrix L (that is, a product of lower triangular and permutation
matrices), such that X = L*U.

[L,U,P] = lu(X) returns an upper triangular matrix in U, a lower triangular
matrix L with a unit diagonal, and a permutation matrix P, so that L*U = P*X.

Y = lu(X) returns a matrix Y, which contains the strictly lower triangular L,
i.e., without its unit diagonal, and the upper triangular U as submatrices. That
is, if [L,U,P] = lu(X), then Y = U+L-eye(size(X)). The permutation matrix
P is not returned by Y = lu(X).

[L,U,P,Q] = lu(X) for sparse nonempty X, returns a unit lower triangular
matrix L, an upper triangular matrix U, a row permutation matrix P, and a
column reordering matrix Q, so that P*X*Q = L*U. This syntax uses
UMFPACK and is significantly more time and memory efficient than the other
syntaxes, even when used with colamd. If X is empty or not sparse, lu displays
an error message.

[L,U,P] = lu(X,thresh) controls pivoting in sparse matrices, where thresh
is a pivot threshold in the interval [0,1]. Pivoting occurs when the diagonal
entry in a column has magnitude less than thresh times the magnitude of any

lu

2-1388

sub-diagonal entry in that column. thresh = 0 forces diagonal pivoting.
thresh = 1 (conventional partial pivoting) is the default.

[L,U,P,Q] = lu(X,thresh) controls pivoting in UMFPACK, where thresh is
a pivot threshold in the interval [0,1]. Given a pivot column j, UMFPACK
selects the sparsest candidate pivot row i such that the absolute value of the
pivot entry is greater than or equal to thresh times the absolute value of the
largest entry in the column j. For complex matrices, absolute values are
computed as abs(real(a)) + abs(imag(a)). The magnitude of entries in L is
limited to 1/thresh.

Setting thresh to 1.0 results in conventional partial pivoting. The default
value is 0.1. Smaller values of thresh lead to sparser LU factors, but the
solution might be inaccurate. Larger values usually (but not always) lead to a
more accurate solution, but increase the number of steps the algorithm
performs.

Note In rare instances, incorrect factorization results in P*X*Q ≠ L*U.
Increase thresh, to a maximum of 1.0 (regular partial pivoting), and try
again.

Remarks Most of the algorithms for computing LU factorization are variants of Gaussian
elimination. The factorization is a key step in obtaining the inverse with inv
and the determinant with det. It is also the basis for the linear equation
solution or matrix division obtained with \ and /.

Arguments X Rectangular matrix to be factored.

thresh Pivot threshold for sparse matrices. Valid values are in the interval
[0,1]. If you specify the fourth output Q, the default is 0.1.
Otherwise the default is 1.0.

L Factor of X. Depending on the form of the function, L is either a unit
lower triangular matrix, or else the product of a unit lower
triangular matrix with P'.

U Upper triangular matrix that is a factor of X.

lu

2-1389

Examples Example 1. Start with

A = [1 2 3
 4 5 6
 7 8 0];

To see the LU factorization, call lu with two output arguments.

[L1,U] = lu(A)

L1 =
 0.1429 1.0000 0
 0.5714 0.5000 1.0000
 1.0000 0 0

U =
 7.0000 8.0000 0
 0 0.8571 3.0000
 0 0 4.5000

Notice that L1 is a permutation of a lower triangular matrix: if you switch rows
2 and 3, and then switch rows 1 and 2, the resulting matrix is lower triangular
and has 1s on the diagonal. Notice also that U is upper triangular. To check that
the factorization does its job, compute the product

L1*U

which returns the original A. The inverse of the example matrix, X = inv(A),
is actually computed from the inverses of the triangular factors

X = inv(U)*inv(L1)

Using three arguments on the left side to get the permutation matrix as well

[L2,U,P] = lu(A)

P Row permutation matrix satisfying the equation L*U = P*X, or
L*U = P*X*Q. Used for numerical stability.

Q Column permutation matrix satisfying the equation P*X*Q = L*U.
Used to reduce fill-in in the sparse case.

lu

2-1390

returns a truly lower triangular L2, the the same value of U, and the
permutation matrix P.

L2 =

 1.0000 0 0
 0.1429 1.0000 0
 0.5714 0.5000 1.0000

U =
 7.0000 8.0000 0
 0 0.8571 3.0000
 0 0 4.5000

P =
 0 0 1
 1 0 0
 0 1 0

Note that L2 = P*L1.

P*L1

ans =

 1.0000 0 0
 0.1429 1.0000 0
 0.5714 0.5000 1.0000

To verify that L2*U is a permuted version of A, compute L2*U and subtract it
from P*A:

P*A - L2*U

ans =
 0 0 0
 0 0 0
 0 0 0

In this case, inv(U)*inv(L) results in the permutation of inv(A) given by
inv(P)*inv(A).

lu

2-1391

The determinant of the example matrix is

d = det(A)

d =
 27

It is computed from the determinants of the triangular factors

d = det(L)*det(U)

The solution to is obtained with matrix division

x = A\b

The solution is actually computed by solving two triangular systems

y = L\b
x = U\y

Example 2. Generate a 60-by-60 sparse adjacency matrix of the connectivity
graph of the Buckminster-Fuller geodesic dome.

B = bucky;

Use the sparse matrix syntax with four outputs to get the row and column
permutation matrices.

[L,U,P,Q] = lu(B);

Apply the permutation matrices to B, and subtract the product of the lower and
upper triangular matrices.

Z = P*B*Q - L*U;
norm(Z,1)

ans =
 7.9936e-015

The 1-norm of their difference is within roundoff error, indicating that
L*U = P*B*Q.

Ax b=

lu

2-1392

Algorithm For full matrices X, lu uses the LAPACK routines listed in the following table.

For sparse X, with four outputs, lu uses UMFPACK. With three or fewer
outputs, lu uses code introduced in MATLAB 4.

See Also cond, det, inv, luinc, qr, rref

The arithmetic operators \ and /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra,
J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen,
LAPACK User’s Guide (http://www.netlib.org/lapack/lug/lapack_lug.html),
Third Edition, SIAM, Philadelphia, 1999.

[2] Davis, T. A., UMFPACK Version 4.0 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack/v4.0/UserGuide.pdf),
Dept. of Computer and Information Science and Engineering, Univ. of Florida,
Gainesville, FL, 2002.

Real Complex

X double DGETRF ZGETRF

X single SGETRF CGETRF

luinc

2-1393

2luincPurpose Incomplete LU matrix factorizations

Syntax luinc(X,'0')
[L,U] = luinc(X,'0')
[L,U,P] = luinc(X,'0')
luinc(X,droptol)
luinc(X,options)
[L,U] = luinc(X,options)
[L,U] = luinc(X,droptol)
[L,U,P] = luinc(X,options)
[L,U,P] = luinc(X,droptol)

Description luinc produces a unit lower triangular matrix, an upper triangular matrix,
and a permutation matrix.

luinc(X,'0') computes the incomplete LU factorization of level 0 of a square
sparse matrix. The triangular factors have the same sparsity pattern as the
permutation of the original sparse matrix X, and their product agrees with the
permuted X over its sparsity pattern. luinc(X,'0') returns the strict lower
triangular part of the factor and the upper triangular factor embedded within
the same matrix. The permutation information is lost, but
nnz(luinc(X,'0')) = nnz(X), with the possible exception of some zeros due
to cancellation.

[L,U] = luinc(X,'0') returns the product of permutation matrices and a
unit lower triangular matrix in L and an upper triangular matrix in U. The
exact sparsity patterns of L, U, and X are not comparable but the number of
nonzeros is maintained with the possible exception of some zeros in L and U due
to cancellation:

 nnz(L)+nnz(U) = nnz(X)+n, where X is n-by-n.

The product L*U agrees with X over its sparsity pattern. (L*U).*spones(X)-X
has entries of the order of eps.

[L,U,P] = luinc(X,'0') returns a unit lower triangular matrix in L, an
upper triangular matrix in U and a permutation matrix in P. L has the same
sparsity pattern as the lower triangle of the permuted X

 spones(L) = spones(tril(P*X))

luinc

2-1394

with the possible exceptions of 1s on the diagonal of L where P*X may be zero,
and zeros in L due to cancellation where P*X may be nonzero. U has the same
sparsity pattern as the upper triangle of P*X

 spones(U) = spones(triu(P*X))

with the possible exceptions of zeros in U due to cancellation where P*X may be
nonzero. The product L*U agrees within rounding error with the permuted
matrix P*X over its sparsity pattern. (L*U).*spones(P*X)-P*X has entries of
the order of eps.

luinc(X,droptol) computes the incomplete LU factorization of any sparse
matrix using a drop tolerance. droptol must be a non-negative scalar.
luinc(X,droptol) produces an approximation to the complete LU factors
returned by lu(X). For increasingly smaller values of the drop tolerance, this
approximation improves, until the drop tolerance is 0, at which time the
complete LU factorization is produced, as in lu(X).

As each column j of the triangular incomplete factors is being computed, the
entries smaller in magnitude than the local drop tolerance (the product of the
drop tolerance and the norm of the corresponding column of X)

 droptol*norm(X(:,j))

are dropped from the appropriate factor.

The only exceptions to this dropping rule are the diagonal entries of the upper
triangular factor, which are preserved to avoid a singular factor.

luinc(X,options) specifies a structure with up to four fields that may be used
in any combination: droptol, milu, udiag, thresh. Additional fields of options
are ignored.

droptol is the drop tolerance of the incomplete factorization.

If milu is 1, luinc produces the modified incomplete LU factorization that
subtracts the dropped elements in any column from the diagonal element of the
upper triangular factor. The default value is 0.

If udiag is 1, any zeros on the diagonal of the upper triangular factor are
replaced by the local drop tolerance. The default is 0.

luinc

2-1395

thresh is the pivot threshold between 0 (forces diagonal pivoting) and 1, the
default, which always chooses the maximum magnitude entry in the column to
be the pivot. thresh is desribed in greater detail in lu.

luinc(X,options) is the same as luinc(X,droptol) if options has droptol as
its only field.

[L,U] = luinc(X,options) returns a permutation of a unit lower triangular
matrix in L and an upper trianglar matrix in U. The product L*U is an
approximation to X. luinc(X,options) returns the strict lower triangular part
of the factor and the upper triangular factor embedded within the same matrix.
The permutation information is lost.

[L,U] = luinc(X,options) is the same as luinc(X,droptol) if options has
droptol as its only field.

[L,U,P] = luinc(X,options) returns a unit lower triangular matrix in L, an
upper triangular matrix in U, and a permutation matrix in P. The nonzero
entries of U satisfy

 abs(U(i,j)) >= droptol*norm((X:,j)),

with the possible exception of the diagonal entries which were retained despite
not satisfying the criterion. The entries of L were tested against the local drop
tolerance before being scaled by the pivot, so for nonzeros in L

abs(L(i,j)) >= droptol*norm(X(:,j))/U(j,j).

The product L*U is an approximation to the permuted P*X.

[L,U,P] = luinc(X,options) is the same as [L,U,P] = luinc(X,droptol) if
options has droptol as its only field.

Remarks These incomplete factorizations may be useful as preconditioners for solving
large sparse systems of linear equations. The lower triangular factors all have
1s along the main diagonal but a single 0 on the diagonal of the upper
triangular factor makes it singular. The incomplete factorization with a drop
tolerance prints a warning message if the upper triangular factor has zeros on
the diagonal. Similarly, using the udiag option to replace a zero diagonal only
gets rid of the symptoms of the problem but does not solve it. The
preconditioner may not be singular, but it probably is not useful and a warning
message is printed.

luinc

2-1396

Limitations luinc(X,'0') works on square matrices only.

Examples Start with a sparse matrix and compute its LU factorization.

load west0479;
S = west0479;
LU = lu(S);

Compute the incomplete LU factorization of level 0.

[L,U,P] = luinc(S,'0');
D = (L*U).*spones(P*S)-P*S;

spones(U) and spones(triu(P*S)) are identical.

spones(L) and spones(tril(P*S)) disagree at 73 places on the diagonal,
where L is 1 and P*S is 0, and also at position (206,113), where L is 0 due to
cancellation, and P*S is -1. D has entries of the order of eps.

0 100 200 300 400

0

100

200

300

400

nz = 1887

S = west0479

0 100 200 300 400

0

100

200

300

400

nz = 16777

lu(S)

luinc

2-1397

[IL0,IU0,IP0] = luinc(S,0);
[IL1,IU1,IP1] = luinc(S,1e-10);
 .
 .
 .

A drop tolerance of 0 produces the complete LU factorization. Increasing the
drop tolerance increases the sparsity of the factors (decreases the number of
nonzeros) but also increases the error in the factors, as seen in the plot of drop
tolerance versus norm(L*U-P*S,1)/norm(S,1) in the second figure below.

0 100 200 300 400

0

100

200

300

400

nz = 1244

L: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1121

U: luinc(S,’0’)

0 100 200 300 400

0

100

200

300

400

nz = 1887

P*S

0 100 200 300 400

0

100

200

300

400

nz = 3097

L*U

luinc

2-1398

0 100 200 300 400

0

100

200

300

400

nz = 11679

luinc(S,1e−8)

0 100 200 300 400

0

100

200

300

400

nz = 8004

luinc(S,1e−4)

0 100 200 300 400

0

100

200

300

400

nz = 4229

luinc(S,1e−2)

0 100 200 300 400

0

100

200

300

400

nz = 397

luinc(S,1)

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

0

5000

10000

15000
Drop tolerance vs nnz(luinc(S,droptol))

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
−15

10
−10

10
−5

10
0

Drop tolerance vs norm(L*U−P*S)/norm(S)

magic

2-1399

2magic
Purpose Magic square

Syntax M = magic(n)

Description M = magic(n) returns an n-by-n matrix constructed from the integers 1
through n^2 with equal row and column sums. The order n must be a scalar
greater than or equal to 3.

Remarks A magic square, scaled by its magic sum, is doubly stochastic.

Examples The magic square of order 3 is

M = magic(3)

M =

 8 1 6
 3 5 7
 4 9 2

This is called a magic square because the sum of the elements in each column
is the same.

 sum(M) =

 15 15 15

And the sum of the elements in each row, obtained by transposing twice, is the
same.

 sum(M')' =

 15
 15
 15

This is also a special magic square because the diagonal elements have the
same sum.

sum(diag(M)) =

magic

2-1400

 15
The value of the characteristic sum for a magic square of order n is

sum(1:n^2)/n

which, when n = 3, is 15.

Algorithm There are three different algorithms:

• n odd

• n even but not divisible by four

• n divisible by four

To make this apparent, type

for n = 3:20
 A = magic(n);
 r(n) = rank(A);
end

For n odd, the rank of the magic square is n. For n divisible by 4, the rank is 3.
For n even but not divisible by 4, the rank is n/2 + 2.

[(3:20)',r(3:20)']
ans =
 3 3
 4 3
 5 5
 6 5
 7 7
 8 3
 9 9
 10 7
 11 11
 12 3
 13 13
 14 9
 15 15
 16 3
 17 17
 18 11
 19 19

magic

2-1401

 20 3

Plotting A for n = 18, 19, 20 shows the characteristic plot for each category.

Limitations If you supply n less than 3, magic returns either a nonmagic square, or else the
degenerate magic squares 1 and [].

See Also ones, rand

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

350
n = 18

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400
n = 19

0 2 4 6 8 10 12 14 16 18 20
0

50

100

150

200

250

300

350

400
n = 20

makehgtform

2-1402

2makehgtformPurpose Create 4-by-4 transform matrix

Syntax M = makehgtform
M = makehgtform('translate',[tx ty tz])
M = makehgtform('scale',s)
M = makehgtform('scale',[sx,sy,sz])
M = makehgtform('xrotate',t)
M = makehgtform('yrotate',t)
M = makehgtform('zrotate',t)
M = makehgtform('axisrotate',[ax,ay,az],t)

Description Use makehgtform to create transform matrices for translation, scaling, and
rotation of graphics objects. Apply the transform to graphics objects by
assigning the transform to the Matrix property of a parent hgtransform object.
See Examples for more information.

M = makehgtform returns an identity transform.

M = makehgtform('translate',[tx ty tz]) or M =
makehgtform('translate',tx,ty,tz) returns a transform that translates
along the x-axis by tx, along the y-axis by ty, and along the z-axis by tz.

M = makehgtform('scale',s) returns a transform that scales uniformly
along the x-, y-, and z-axes.

M = makehgtform('scale',[sx,sy,sz]) returns a transform that scales
along the x-axis by sx, along the y-axis by sy, and along the z-axis by sz.

M = makehgtform('xrotate',t) returns a transform that rotates around the
x-axis by t radians.

M = makehgtform('yrotate',t) returns a transform that rotates around the
y-axis by t radians.

M = makehgtform('zrotate',t) returns a transform that rotates around the
z-axis by t radians.

mat2cell

2-1403

2mat2cellPurpose Divide matrix into cell array of matrices

Syntax c = mat2cell(x,m,n)
c = mat2cell(x,d1,d2,d3,...,dn)
c = mat2cell(x,r)

Description c = mat2cell(x,m,n) divides the two-dimensional matrix x into adjacent
submatrices, each contained in a cell of the returned cell array c. Vectors m and
n specify the number of rows and columns, respectively, to be assigned to the
submatrices in c.

The example shown below divides a 60-by-50 matrix into six smaller matrices.
MATLAB returns the new matrices in a 3-by-2 cell array:

mat2cell(x, [10 20 30], [25 25])

The sum of the element values in m must equal the total number of rows in x.
And the sum of the element values in n must equal the number of columns in x.

The elements of m and n determine the size of each cell in c by satisfying the
following formula for i = 1:length(m) and j = 1:length(n):

size(c{i,j}) == [m(i) n(j)]

c = mat2cell(x,d1,d2,d3,...,dn) divides the multidimensional array x and
returns a multidimensional cell array of adjacent submatrices of x. Each of the
vector arguments d1 through dn should sum to the respective dimension sizes
of x such that, for p = 1:n,

size(x,p) == sum(dp)

The elements of d1 through dn determine the size of each cell in c by satisfying
the following formula for ip = 1:length(dp):

size(c{i1,i2,i3,...,in}) == [d1(i1) d2(i2) d3(i3) ... dn(in)]

If x is an empty array, mat2cell returns an empty cell array. This requires that
all dn inputs that correspond to the zero dimensions of x be equal to [].

For example,

a = rand(3,0,4);
c = mat2cell(a, [1 2], [], [2 1 1]);

mat2cell

2-1404

c = mat2cell(x,r) divides an array x by returning a single-column cell array
containing full rows of x. The sum of the element values in vector r must equal
the number of rows of x.

The elements of r determine the size of each cell in c, subject to the following
formula for i = 1:length(r):

size(c{i},1) == r(i)

Remarks mat2cell supports all array types.

Examples Divide matrix X into 2-by-3 and 2-by-2 matrices contained in a cell array:

X = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15; 16 17 18 19 20]
X =
 1 2 3 4 5
 6 7 8 9 10
 11 12 13 14 15
 16 17 18 19 20

C = mat2cell(X, [2 2], [3 2])
C =
 [2x3 double] [2x2 double]
 [2x3 double] [2x2 double]

C{1,1} C{1,2}
ans = ans =
 1 2 3 4 5
 6 7 8 9 10

C{2,1} C{2,2}
ans = ans =
 11 12 13 14 15
 16 17 18 19 20

See Also cell2mat, num2cell

mat2str

2-1405

2mat2strPurpose Convert a matrix into a string

Syntax str = mat2str(A)
str = mat2str(A, n)
str = mat2str(A, 'class')
str = mat2str(A, n, 'class')

Description str = mat2str(A) converts matrix A into a string, suitable for input to the
eval function, using full precision.

str = mat2str(A,n) converts matrix A using n digits of precision.

str = mat2str(A, 'class') creates a string with the name of the class of A
included. This option ensures that the result of evaluating str will also contain
the class information.

str = mat2str(A, n, 'class') uses n digits of precision and includes the
class information.

Limitations The mat2str function is intended to operate on scalar, vector, or rectangular
array inputs only. An error will result if A is a multidimensional array.

Examples Example 1
Consider the matrix

x = [3.85 2.91; 7.74 8.99]
x =
 3.8500 2.9100
 7.7400 8.9900

The statement

A = mat2str(x)

produces

A =
 [3.85 2.91;7.74 8.99]

where A is a string of 21 characters, including the square brackets, spaces, and
a semicolon.

mat2str

2-1406

eval(mat2str(x)) reproduces x.

Example 2

Create a 1-by-6 matrix of signed 16-bit integers, and then use mat2str to
convert the matrix to a 1-by-33 character array, A. Note that output string A
includes the class name, int16:

x1 = int16([-300 407 213 418 32 -125]);

A = mat2str(x1, 'class')
A =
 int16([-300 407 213 418 32 -125])

class(A)
ans =
 char

Evaluating the string A gives you an output x2 that is the same as the original
int16 matrix:

x2 = eval(A);

if isnumeric(x2) && isa(x2, 'int16') && all(x2 == x1)
 disp 'Conversion back to int16 worked'
end

Conversion back to int16 worked

See Also int2str, sprintf, str2num

material

2-1407

2materialPurpose Controls the reflectance properties of surfaces and patches

Syntax material shiny
material dull
material metal
material([ka kd ks])
material([ka kd ks n])
material([ka kd ks n sc])
material default

Description material sets the lighting characteristics of surface and patch objects.

material shiny sets the reflectance properties so that the object has a high
specular reflectance relative to the diffuse and ambient light, and the color of
the specular light depends only on the color of the light source.

material dull sets the reflectance properties so that the object reflects more
diffuse light and has no specular highlights, but the color of the reflected light
depends only on the light source.

material metal sets the reflectance properties so that the object has a very
high specular reflectance, very low ambient and diffuse reflectance, and the
color of the reflected light depends on both the color of the light source and the
color of the object.

material([ka kd ks]) sets the ambient/diffuse/specular strength of the
objects.

material([ka kd ks n]) sets the ambient/diffuse/specular strength and
specular exponent of the objects.

material([ka kd ks n sc]) sets the ambient/diffuse/specular strength,
specular exponent, and specular color reflectance of the objects.

material default sets the ambient/diffuse/specular strength, specular
exponent, and specular color reflectance of the objects to their defaults.

Remarks The material command sets the AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, and SpecularColorReflectance

material

2-1408

properties of all surface and patch objects in the axes. There must be visible
light objects in the axes for lighting to be enabled. Look at the materal.m M-file
to see the actual values set (enter the command type material).

See Also light, lighting, patch, surface

Lighting as a Visualization Tool for more information on lighting

“Lighting” for related functions

matlab (UNIX)

2-1409

2matlab (UNIX) Purpose Start MATLAB (UNIX systems only)

Syntax matlab helpOption
matlab archOption
matlab dispOption
matlab modeOption
matlab mgrOption
matlab -c licensefile
matlab -r MATLAB_command
matlab -logfile filename
matlab -mwvisual visualid
matlab -nosplash
matlab -timing
matlab -debug
matlab -Ddebugger options

Note You can enter more than one of these options in the same MATLAB
command. If you use -Ddebugger to start MATLAB in debug mode, the first
option in the command must be -Ddebugger.

Description matlab is a Bourne shell script that starts the MATLAB executable. (In this
document, matlab refers to this script; MATLAB refers to the application
program). Before actually initiating the execution of MATLAB, this script
configures the runtime environment by

• Determining the MATLAB root directory

• Determining the host machine architecture

• Processing any command line options

• Reading the MATLAB startup file, .matlab7rc.sh

• Setting MATLAB environment variables

There are two ways in which you can control the way the matlab script works:

• By specifying command line options

• By assigning values in the MATLAB startup file, .matlab7rc.sh

matlab (UNIX)

2-1410

Specifying Options at the Command Line
Options that you can enter at the command line are as follows:

matlab helpOption displays information that matches the specified
helpOption argument without starting MATLAB. helpOption can be any one
of the keywords shown in the table below. Enter only one helpOption keyword
in a matlab command.

matlab archOption starts MATLAB and assumes that you are running on the
system architecture specified by arch, or using the MATLAB version specified
by variant, or both. The values for the archOption argument are shown in the
table below. Enter only one of these options in a matlab command.

Values for helpOption

Option Description

-help Display matlab command usage.

-h The same as -help.

-n Display all the final values of the environment variables and
arguments passed to the MATLAB executable as well as other
diagnostic information.

-e Display all environment variables and their values just prior to
exiting. This argument must have been parsed before exiting
for anything to be displayed. The last possible exiting point is
just before the MATLAB image would have been executed and
a status of 0 is returned. If the exit status is not 0 on return,
then the variables and values may not be correct.

matlab (UNIX)

2-1411

matlab dispOption starts MATLAB using one of the display options shown in
the table below. Enter only one of these options in a matlab command.

Values for archOption

Option Description

-arch Run MATLAB assuming this architecture rather than
the actual architecture of the machine you are using.
Replace the term arch with a string representing a
recognized system architecture.

v=variant Execute the version of MATLAB found in the directory
bin/$ARCH/variant instead of bin/$ARCH. Replace the
term variant with a string representing a MATLAB
version.

v=arch/variant Execute the version of MATLAB found in the directory
bin/arch/variant instead of bin/$ARCH. Replace the
terms arch and variant with strings representing a
specific architecture and MATLAB version.

Values for dispOption

Option Description

-display xDisp Send X commands to X Window Server display xDisp.
This supersedes the value of the DISPLAY environment
variable.

-nodisplay Start the Java virtual machine (unless the -nojvm
option is also specified), but do not start the MATLAB
desktop. Do not display any X commands, and ignore
the DISPLAY environment variable,

matlab (UNIX)

2-1412

matlab modeOption starts MATLAB without its desktop or Java virtual
machine components. Enter only one of the options shown below.

matlab mgrOption starts MATLAB in the memory management mode
specified by mgrOption. Enter only one of the options shown below.

matlab -c licensefile starts MATLAB using the specified license file. The
licensefile argument can have the form port@host or it can be a colon

Values for modeOption

Option Descripton

-nodesktop Do not start the MATLAB desktop. Use the current
window for commands. The Java virtual machine will
be started.

-nojvm Shut off all Java support by not starting the Java
virtual machine. In particular, the MATLAB desktop
will not be started.

Values for mgrOption

Option Description

-memmgr manager Set environment variable MATLAB_MEM_MGR to
manager. The manager argument can have one of the
following values:

• cache — The default.

• compact — This is useful for large models or
MATLAB code that uses many structure or object
variables. It is not helpful for large arrays. (This
option applies only to 32-bit architectures.)

• debug — Does memory integrity checking and is
useful for debugging memory problems caused by
user-created MEX files.

-check_malloc The same as using '-memmgr debug'.

matlab (UNIX)

2-1413

separated list of license filenames. This option causes the LM_LICENSE_FILE
and MLM_LICENSE_FILE environment variables to be ignored.

matlab -r command starts MATLAB and executes the specified MATLAB
command.

matlab -logfile filename starts MATLAB and makes a copy of any output
to the command window in file log. This includes all crash reports.

matlab -mwvisual visualid starts MATLAB and uses visualid as the
default X visual for figure windows. visualid is a hexadecimal number that
can be found using xdpyinfo.

matlab -nosplash starts MATLAB but does not display the splash screen
during startup.

matlab -timing starts MATLAB and prints a summary of startup time to the
command window. This information is also recorded in a timing log, the name
of which is printed to the shell window in which MATLAB is started. This
option should be used only when working with a Technical Support
Representative from The MathWorks, Inc. (This option applies to glnx86
systems only.)

matlab -debug starts MATLAB and displays debugging information that can
be useful, especially for X based problems. This option should be used only
when working with a Technical Support Representative from The MathWorks,
Inc.

matlab -Ddebugger options starts MATLAB in debug mode, using the
named debugger (e.g., dbx, gdb, dde, xdb, cvd). A full path can be specified for
debugger.

The options argument can include only those options that follow the debugger
name in the syntax of the actual debug command. For most debuggers, there is
a very limited number of such options. Options that would normally be passed
to the MATLAB executable should be used as parameters of a command inside
the debugger (like run). They should not be used when running the MATLAB
script.

matlab (UNIX)

2-1414

If any other matlab command options are placed before the -Ddebugger
argument, they will be handled as if they were part of the options after the
-Ddebugger argument and will be treated as illegal options by most debuggers.
The MATLAB_DEBUG environment variable is set to the filename part of the
debugger argument.

To customize your debugging session, use a startup file. See your debugger
documentation for details.

Note For certain debuggers like gdb, the SHELL environment variable is
always set to /bin/sh.

Specifying Options in the MATLAB Startup File
The .matlab7rc.sh shell script contains definitions for a number of variables
that the matlab script uses. These variables are defined within the matlab
script, but can be redefined in .matlab7rc.sh. When invoked, matlab looks for
the first occurrence of .matlab7rc.sh in the current directory, in the home
directory ($HOME), and in the $MATLAB/bin directory, where the template
version of .matlab7rc.sh is located.

You can edit the template file to redefine information used by the matlab script.
If you do not want your changes applied systemwide, copy the edited version of
the script to your current or home directory. Ensure that you edit the section
that applies to your machine architecture.

matlab (UNIX)

2-1415

The following table lists the variables defined in the.matlab7rc.sh file. See the
comments in the .matlab7rc.sh file for more information about these
variables.

Variable Definition and Standard Assignment
Behavior

ARCH The machine architecture.

The value ARCH passed with the -arch or
-arch/ext argument to the script is tried first,
then the value of the environment variable
MATLAB_ARCH is tried next, and finally it is
computed. The first one that gives a valid
architecture is used.

AUTOMOUNT_MAP Path prefix map for automounting.

The value set in .matlab7rc.sh (initially by
the installer) is used unless the value differs
from that determined by the script, in which
case the value in the environment is used.

DISPLAY The hostname of the X Window display
MATLAB uses for output.

The value of Xdisplay passed with the
-display argument to the script is used;
otherwise, the value in the environment is
used. DISPLAY is ignored by MATLAB if the
-nodisplay argument is passed.

matlab (UNIX)

2-1416

LD_LIBRARY_PATH Final Load library path. The name
LD_LIBRARY_PATH is platform dependent.

The final value is normally a colon-separated
list of four sublists, each of which could be
empty. The first sublist is defined in
.matlab7rc.sh as LDPATH_PREFIX. The second
sublist is computed in the script and includes
directories inside the MATLAB root directory
and relevant Java directories. The third
sublist contains any nonempty value of
LD_LIBRARY_PATH from the environment
possibly augmented in .matlab7rc.sh. The
final sublist is defined in .matlab7rc.sh as
LDPATH_SUFFIX.

LM_LICENSE_FILE The FLEX lm license variable.

The license file value passed with the -c
argument to the script is used; otherwise it is
the value set in .matlab7rc.sh. In general,
the final value is a colon-separated list of
license files and/or port@host entries. The
shipping .matlab7rc.sh file starts out the
value by prepending LM_LICENSE_FILE in the
environment to a default license.file.

Later in the MATLAB script if the -c option is
not used, the $MATLAB/etc directory is
searched for the files that start with
license.dat.DEMO. These files are assumed to
contain demo licenses and are added
automatically to the end of the current list.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab (UNIX)

2-1417

MATLAB The MATLAB root directory.

The default computed by the script is used
unless MATLABdefault is reset in
.matlab7rc.sh.

Currently MATLABdefault is not reset in the
shipping .matlab7rc.sh.

MATLAB_DEBUG Normally set to the name of the debugger.

The -Ddebugger argument passed to the script
sets this variable. Otherwise, a nonempty
value in the environment is used.

MATLAB_JAVA The path to the root of the Java Runtime
Environment.

The default set in the script is used unless
MATLAB_JAVA is already set. Any nonempty
value from .matlab7rc.sh is used first, then
any nonempty value from the environment.
Currently there is no value set in the shipping
.matlab67rc.sh, so that environment alone is
used.

MATLAB_MEM_MGR Turns on MATLAB memory integrity
checking.

The -check_malloc argument passed to the
script sets this variable to 'debug'. Otherwise,
a nonempty value set in .matlab7rc.sh is
used, or a nonempty value in the environment
is used. If a nonempty value is not found, the
variable is not exported to the environment.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab (UNIX)

2-1418

MATLABPATH The MATLAB search path.

The final value is a colon-separated list with
the MATLABPATH from the environment
prepended to a list of computed defaults.

SHELL The shell to use when the "!" or unix command
is issued in MATLAB.

This is taken from the environment unless
SHELL is reset in .matlab7rc.sh. Currently
SHELL is not reset in the shipping
.matlab7rc.sh. If SHELL is empty or not
defined, MATLAB uses /bin/sh internally.

TOOLBOX Path of the toolbox directory.

A nonempty value in the environment is used
first. Otherwise, $MATLAB/toolbox, computed
by the script, is used unless TOOLBOX is reset in
.matlab7rc.sh. Currently TOOLBOX is not reset
in the shipping .matlab7rc.sh.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab (UNIX)

2-1419

The matlab script determines the path of the MATLAB root directory by
looking up the directory tree from the $MATLAB/bin directory (where the matlab
script is located). The MATLAB variable is then used to locate all files within the
MATLAB directory tree.

You can change the definition of MATLAB if, for example, you want to run a
different version of MATLAB or if, for some reason, the path determined by the
matlab script is not correct. (This can happen when certain types of
automounting schemes are used by your system.)

XAPPLRESDIR The X application resource directory.

A nonempty value in the environment is used
first unless XAPPLRESDIR is reset in
.matlab7rc.sh. Otherwise,
$MATLAB/X11/app-defaults, computed by the
script, is used.

XKEYSYMDB The X keysym database file.

A nonempty value in the environment is used
first unless XKEYSYMDB is reset in
.matlab7rc.sh. Otherwise,
$MATLAB/X11/app-defaults/XKeysymDB,
computed by the script, is used. The matlab
script determines the path of the MATLAB
root directory as one level up the directory tree
from the location of the script. Information in
the AUTOMOUNT_MAP variable is used to fix the
path so that it is correct to force a mount. This
can involve deleting part of the pathname from
the front of the MATLAB root path. The
MATLAB variable is then used to locate all
files within the MATLAB directory tree.

Variable Definition and Standard Assignment
Behavior (Continued)

matlab (UNIX)

2-1420

AUTOMOUNT_MAP is used to modify the MATLAB root directory path. The
pathname that is assigned to AUTOMOUNT_MAP is deleted from the front of the
MATLAB root path. (It is unlikely that you will need to use this option.)

See Also mex

matlab (Windows)

2-1421

2matlab (Windows) Purpose Start MATLAB (Windows systems only)

Syntax matlab helpOption
matlab modeOption
matlab mgrOption
matlab -c licensefile
matlab -r MATLAB_command
matlab -logfile filename
matlab -nosplash
matlab -timing
matlab -noFigureWindows
matlab -automation
matlab -regserver
matlab -unregserver

Note You can enter more than one of these options in the same MATLAB
command.

Description matlab is a starter program (currently a DOS batch script) that starts the main
MATLAB executable. (In this document, the term matlab refers to the starter
program, and MATLAB refers to the main executable). Before actually
initiating the execution of MATLAB, it configures the runtime environment by

• Determining the MATLAB root directory

• Determining the host machine architecture

• Selectively processing command line options with the rest passed to
MATLAB.

• Setting certain MATLAB environment variables

There are two ways in which you can control the way the matlab starter
program works:

• By specifying command line options

• By presetting environment variables before calling the program

matlab (Windows)

2-1422

Specifying Options at the Command Line
Options that you can enter at the command line are as follows:

matlab helpOption displays information that matches the specified
helpOption argument without starting MATLAB. helpOption can be any one
of the keywords shown in the table below. Enter only one helpOption keyword
in a matlab command.

matlab modeOption starts MATLAB without its desktop or Java virtual
machine components. Enter only one of the options shown below.

Values for helpOption

Option Description

-help Display matlab command usage.

-h The same as -help.

-? The same as -help.

Values for modeOption

Option Descripton

-nodesktop Do not start the MATLAB desktop. Use a V5 MATLAB
command window for commands. The Java virtual
machine will be started.

-nojvm Shut off all Java support by not starting the Java
virtual machine. In particular, the MATLAB desktop
will not be started.

matlab (Windows)

2-1423

matlab mgrOption starts MATLAB in the memory management mode
specified by mgrOption. Enter only one of the options shown below.

matlab -c licensefile starts MATLAB using the specified license file. The
licensefile argument can have the form port@host. This option causes the
LM_LICENSE_FILE and MLM_LICENSE_FILE environment variables to be ignored.

matlab -r command starts MATLAB and executes the specified MATLAB
command. Any required M-file must be on the MATLAB path.

matlab -logfile filename starts MATLAB and makes a copy of any output
to the command window in file log. This includes all crash reports.

matlab -nosplash starts MATLAB but does not display the splash screen
during startup.

matlab -timing starts MATLAB and prints a summary of startup time to the
command window. This information is also recorded in a timing log, the name
of which is printed to the MATLAB command window. This option should be
used only when working with a Technical Support Representative from The
MathWorks, Inc.

Values for mgrOption

Option Description

-memmgr manager Set environment variable MATLAB_MEM_MGR to
manager. The manager argument can have one of the
following values:

• cache — The default.

• fast — For large models or MATLAB code that uses
many structure or object variables. It is not helpful
for large arrays.

• debug — Does memory integrity checking and is
useful for debugging memory problems caused by
user-created MEX files.

-check_malloc The same as using '-memmgr debug'.

matlab (Windows)

2-1424

matlab -noFigureWindows starts MATLAB but disables the display of any
figure windows in MATLAB.

matlab -automation starts MATLAB as an automation server. The server
window is minimized, and the MATLAB splash screen is not displayed on
startup.

matlab -regserver registers MATLAB as a Component Object Model (COM)
server.

matlab -unregserver removes all MATLAB COM server entries from the
registry.

Presetting Environment Variables
You can set any of the following environment variables before starting
MATLAB.

See Also mex

Variable Name Description

LM_LICENSE_FILE This is the FLEX lm license variable. The license file
value passed with the -c argument to the script is
used; otherwise it is the value set in the environment.
The final value is a colon-separated list of license files
and/or port@host entries.

MATLAB This is the MATLAB root directory. It is used to
determine the location of the MATLAB bin directory.
If not defined in the environment, then the location of
the script is used.

MATLAB_MEM_MGR This determines the type of memory manager used by
MATLAB. If not set in the environment, it is
controlled by passing its value via the '-memmgr'
option. If no value is predefined, then MATLAB uses
'cache'.

matlabcolon (matlab:)

2-1425

2matlabcolon (matlab:)Purpose Run specified function via hyperlink

Syntax disp('hyperlink_text')

Description matlab: executes stmnt_1 through stmnt_n when you click (or press
Ctrl+Enter) in hyperlink_text. This must be used with another function,
such as disp, where disp creates and displays underlined and colored
hyperlink_text in the Command Window. Use disp, error, fprintf, help or
warning functions to display the hyperlink. The hyperlink_text is interpreted
as HTML, so use HTML character entity references or ASCII values for special
characters. Include the full hypertext string, from '<a href= to ' within
a single line, that is, do not continue a long string on a new line.

Remarks The matlab: function behaves differently with diary, notebook, type, and
similar functions than might be expected. For example, if you enter the
following statement

disp('Generate magic square')

the diary file, when viewed in a text editor, shows

disp('Generate magic square')
Generate magic square

If you view the output of diary in the Command Window, the Command
Window interprets the <a href ...> statement and does display it as a
hyperlink.

Examples Single Function
The statement

disp('Generate magic square')

displays

in the Command Window. When you click the link Generate magic square,
MATLAB runs magic(4).

matlabcolon (matlab:)

2-1426

Multiple Functions
You can include multiple functions in the statement, such as

disp('Plot x,y')

which displays

in the Command Window. When you click the link, MATLAB runs

x = 0:1:8;
y = sin(x);
plot(x,y)

Clicking the Hyperlink Again
After running the statements in the hyperlink Plot x,y defined in the previous
example, “Multiple Functions”, you can subsequently redefine x in the base
workspace, for example, as

x = -2*pi:pi/16:2*pi;

If you then click the hyperlink, Plot sin(x), it changes the current value of x
back to

 0:1:8

because the matlab: statement defines x in the base workspace. In the matlab:
statement that displayed the hyperlink, Plot x,y, x was defined as 0:1:8.

Presenting Options
Use multiple matlab: statements in an M-file to present options, such as

disp('Disable feature')
disp('Enable feature')

The Command Window displays

matlabcolon (matlab:)

2-1427

and depending on which link is clicked, will set state to 0 or 1.

Special Characters
To create a string that includes a special character such as a greater than sign,
>, you need to use the HTML character entity reference for the symbol, >.
Otherwise, the symbol will be interpreted as ending of the <a href = " ... "
element. For example, run

disp(' 0''">Positive')

and the Command Window displays

Instead of the HTML character entity reference, you can use the ASCII value
for the symbol. For example, the greater than sign, >, is ASCII 62. The above
example becomes

disp(...
'Positive')

Use these values for common special characters.

Links from M-File Help
For functions you create, you can include matlab: links within the M-file help,
but you do not need to include a disp or similar statement because the help
function already includes it for displaying hyperlinks. Use the links to display
additional help in a browser when the user clicks them. The M-file,
soundspeed, contains the following statements.

Character HTML Character Entity Reference ASCII Value

> > 62

< < 60

& & 38

" " 34

matlabcolon (matlab:)

2-1428

function c=soundspeed(s,t,p)

% Speed of sound in water, using
% Wilson's formula
% Where c is the speed of sound in water in m/s

etc.

Run help soundspeed and MATLAB displays the following in the Command
Window.

When you click the
link, Wilson's
formula, MATLAB
displays the
HTML page
http://www.zu.ed
u in the Web
browser. Note that
this URL is only an
example and is
invalid.See Also

disp, error, fprintf, input, run, warning

More about HTML character entity references at http://www.w3.org/.

matlabrc

2-1429

2matlabrcPurpose MATLAB startup M-file for single-user systems or system administrators

Description At startup time, MATLAB automatically executes the master M-file
matlabrc.m and, if it exists, startup.m. On multiuser or networked systems,
matlabrc.m is reserved for use by the system manager. The file matlabrc.m
invokes the file startup.m if it exists on the MATLAB search path.

As an individual user, you can create a startup file in your own MATLAB
directory. Use the startup file to define physical constants, engineering
conversion factors, graphics defaults, or anything else you want predefined in
your workspace.

Algorithm Only matlabrc is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements

if exist('startup') == 2
 startup
end

that invoke startup.m. Extend this process to create additional startup
M-files, if required.

Remarks You can also start MATLAB using options you define at the Command Window
prompt or in your Windows shortcut for MATLAB.

Examples Turning Off the Figure Window Toolbar
If you do not want the toolbar to appear in the figure window, remove the
comment marks from the following line in the matlabrc.m file, or create a
similar line in your own startup.m file.

% set(0,'defaultfiguretoolbar','none')

See Also matlabroot, quit, restoredefaultpath, startup
“Startup Options”

matlabroot

2-1430

2matlabrootPurpose Return root directory of MATLAB installation

Syntax matlabroot
rd = matlabroot

Description matlabroot returns the name of the directory in which the MATLAB software
is installed. In compiled M-code, it returns the path to the executable. Use
matlabroot to create a path to MATLAB and toolbox directories that does not
depend on a specific platform or MATLAB version.

rd = matlabroot returns the name of the directory in which the MATLAB
software is installed and assigns it to rd.

Note The term $matlabroot represents the directory where MATLAB files
are installed.

Examples fullfile(matlabroot,'toolbox','matlab','general')

produces a full path to the toolbox/matlab/general directory that is correct
for the platform it is executed on.

See Also fullfile, partialpath, path

max

2-1431

2maxPurpose Maximum elements of an array

Syntax C = max(A)
C = max(A,B)
C = max(A,[],dim)
[C,I] = max(...)

Description C = max(A) returns the largest elements along different dimensions of an
array.

If A is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a row
vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the first
non-singleton dimension as vectors, returning the maximum value of each
vector.

C = max(A,B) returns an array the same size as A and B with the largest
elements taken from A or B.

C = max(A,[],dim) returns the largest elements along the dimension of A
specified by scalar dim. For example, max(A,[],1) produces the maximum
values along the first dimension (the rows) of A.

[C,I] = max(...) finds the indices of the maximum values of A, and returns
them in output vector I. If there are several identical maximum values, the
index of the first one found is returned.

Remarks For complex input A, max returns the complex number with the largest complex
modulus (magnitude), computed with max(abs(A)), and ignores the phase
angle, angle(A). The max function ignores NaNs.

See Also isnan, mean, median, min, sort

mean

2-1432

2meanPurpose Average or mean value of arrays

Syntax M = mean(A)
M = mean(A,dim)

Description M = mean(A) returns the mean values of the elements along different
dimensions of an array.

If A is a vector, mean(A) returns the mean value of A.

If A is a matrix, mean(A) treats the columns of A as vectors, returning a row
vector of mean values.

If A is a multidimensional array, mean(A) treats the values along the first
non-singleton dimension as vectors, returning an array of mean values.

M = mean(A,dim) returns the mean values for elements along the dimension of
A specified by scalar dim. For matrices, mean(A,2) is a column vector
containing the mean value of each row. The default of dim is 1.

Examples A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];
mean(A)
ans =
 3.0000 4.5000 6.0000

mean(A,2)
ans =
 2.0000
 4.0000
 6.0000
 6.0000

See Also corrcoef, cov, max, median, min, std

median

2-1433

2medianPurpose Median value of arrays

Syntax M = median(A)
M = median(A,dim)

Description M = median(A) returns the median values of the elements along different
dimensions of an array.

If A is a vector, median(A) returns the median value of A.

If A is a matrix, median(A) treats the columns of A as vectors, returning a row
vector of median values.

If A is a multidimensional array, median(A) treats the values along the first
nonsingleton dimension as vectors, returning an array of median values.

M = median(A,dim) returns the median values for elements along the
dimension of A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
median(A)

ans =

 4 5 7 7

median(A,2)

ans =

 3
 5
 7
 7

See Also corrcoef, cov, max, mean, min, std

memory

2-1434

2memoryPurpose Help for memory limitations

Description If the out of memory error message is encountered, there is no more room in
memory for new variables. You must free up some space before you may
proceed. One way to free up space is to use the clear function to remove some
of the variables residing in memory. Another is to issue the pack command to
compress data in memory. This opens up larger contiguous blocks of memory
for you to use.

Here are some additional system specific tips:

 Windows: Increase virtual memory by using System in the Control Panel.

 UNIX: Ask your system manager to increase your swap space.

See Also clear, pack

The Technical Support Guide to Memory Management at
http://www.mathworks.com/support/tech-notes/1100/1106.shtml.

menu

2-1435

2menuPurpose Generate a menu of choices for user input

Syntax k = menu('mtitle','opt1','opt2',...,'optn')

Description k = menu('mtitle','opt1','opt2',...,'optn') displays the menu whose
title is in the string variable 'mtitle' and whose choices are string variables
'opt1', 'opt2', and so on. menu returns thenumber of the selected menu item.

If the user’s terminal provides a graphics capability, menu displays the menu
items as push buttons in a figure window (Example 1), otherwise they will be
given as a numbered list in the command window (Example 2).

Remarks To call menu from another ui object, set that object’s Interruptible property to
'yes'. For more information, see the MATLAB Graphics documentation.

Examples Example 1

k = menu('Choose a color','Red','Green','Blue') displays

After input is accepted, use k to control the color of a graph.

color = ['r','g','b']
plot(t,s,color(k))

Example 2

K = menu('Choose a color','Red','Blue','Green')

menu

2-1436

displays on the Command Window

----- Choose a color -----
1) Red
2) Blue
3) Green
Select a menu number:

The number entered by the user in response to the prompt is returned as K
(i.e. K = 2 implies that the user selected Blue).

See Also guide, input, uicontrol, uimenu

mesh, meshc, meshz

2-1437

2mesh, meshc, meshzPurpose Mesh plots

Syntax mesh(X,Y,Z)
mesh(Z)
mesh(...,C)
mesh(...,'PropertyName',PropertyValue,...)
mesh(axes_handles,...)
meshc(...)
meshz(...)
h = mesh(...)
h = meshc(...)
h = meshz(...)
hsurface = mesh('v6'...), = meshc('v6'...), = meshz('v6'...)

Description mesh, meshc, and meshz create wireframe parametric surfaces specified by X, Y,
and Z, with color specified by C.

mesh(X,Y,Z) draws a wireframe mesh with color determined by Z so color is
proportional to surface height. If X and Y are vectors, length(X) = n and
length(Y) = m, where [m,n] = size(Z). In this case,
are the intersections of the wireframe grid lines; X and Y correspond to the
columns and rows of Z, respectively. If X and Y are matrices,

 are the intersections of the wireframe grid lines.

mesh(Z) draws a wireframe mesh using X = 1:n and Y = 1:m, where [m,n] =
size(Z). The height, Z, is a single-valued function defined over a rectangular
grid. Color is proportional to surface height.

mesh(...,C) draws a wireframe mesh with color determined by matrix C.
MATLAB performs a linear transformation on the data in C to obtain colors
from the current colormap. If X, Y, and Z are matrices, they must be the same
size as C.

mesh(...,'PropertyName',PropertyValue,...) sets the value of the
specified surface property. Multiple property values can be set with a single
statement.

mesh(axes_handles,...) plots into the axes with handle axes_handle instead
of the current axes (gca).

X j() Y i() Z i j,(), ,()

X i j,() Y i j,() Z i j,(), ,()

mesh, meshc, meshz

2-1438

meshc(...) draws a contour plot beneath the mesh.

meshz(...) draws a curtain plot (i.e., a reference plane) around the mesh.

h = mesh(...), h = meshc(...), and h = meshz(...) return a handle to a
surfaceplot graphics object.

Backward Compatible Version

hsurface = mesh('v6',...) hsurface = meshc('v6',...), and hsurface
= meshc('v6',...) returns the handles of surface objects instead of
surfaceplot objects for compatibility with MATLAB 6.5 and earlier.

Remarks A mesh is drawn as a surface graphics object with the viewpoint specified by
view(3). The face color is the same as the background color (to simulate a
wireframe with hidden-surface elimination), or none when drawing a standard
see-through wireframe. The current colormap determines the edge color. The
hidden command controls the simulation of hidden-surface elimination in the
mesh, and the shading command controls the shading model.

Examples Produce a combination mesh and contour plot of the peaks surface:

[X,Y] = meshgrid(3:.125:3);
Z = peaks(X,Y);
meshc(X,Y,Z);
axis([3 3 3 3 10 5])

mesh, meshc, meshz

2-1439

Generate the curtain plot for the peaks function:

[X,Y] = meshgrid(3:.125:3);
Z = peaks(X,Y);
meshz(X,Y,Z)

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3
−10

−5

0

5

mesh, meshc, meshz

2-1440

Algorithm The range of X, Y, and Z, or the current settings of the axes XLimMode, YLimMode,
and ZLimMode properties determine the axis limits. axis sets these properties.

The range of C, or the current settings of the axes CLim and CLimMode properties
(also set by the caxis function), determine the color scaling. The scaled color
values are used as indices into the current colormap.

The mesh rendering functions produce color values by mapping the z data
values (or an explicit color array) onto the current colormap. The MATLAB
default behavior is to compute the color limits automatically using the
minimum and maximum data values (also set using caxis auto). The
minimum data value maps to the first color value in the colormap and the
maximum data value maps to the last color value in the colormap. MATLAB
performs a linear transformation on the intermediate values to map them to
the current colormap.

meshc calls mesh, turns hold on, and then calls contour and positions the
contour on the x-y plane. For additional control over the appearance of the
contours, you can issue these commands directly. You can combine other types
of graphs in this manner, for example surf and pcolor plots.

−3
−2

−1
0

1
2

3

−4

−2

0

2

4
−10

−5

0

5

10

mesh, meshc, meshz

2-1441

meshc assumes that X and Y are monotonically increasing. If X or Y is irregularly
spaced, contour3 calculates contours using a regularly spaced contour grid,
then transforms the data to X or Y.

See Also contour, hidden, meshgrid, surface, surf, surfc, surfl, waterfall

“Creating Surfaces and Meshes” for related functions

“Surfaceplot Properties” for a list of surfaceplot properties

The functions axis, caxis, colormap, hold, shading, and view all set graphics
object properties that affect mesh, meshc, and meshz.

For a discussion of parametric surfaces plots, refer to surf.

meshgrid

2-1442

2meshgridPurpose Generate X and Y matrices for three-dimensional plots

Syntax [X,Y] = meshgrid(x,y)
[X,Y] = meshgrid(x)
[X,Y,Z] = meshgrid(x,y,z)

Description [X,Y] = meshgrid(x,y) transforms the domain specified by vectors x and y
into arrays X and Y, which can be used to evaluate functions of two variables
and three-dimensional mesh/surface plots. The rows of the output array X are
copies of the vector x; columns of the output array Y are copies of the vector y.

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x).

[X,Y,Z] = meshgrid(x,y,z) produces three-dimensional arrays used to
evaluate functions of three variables and three-dimensional volumetric plots.

Remarks The meshgrid function is similar to ndgrid except that the order of the first two
input and output arguments is switched. That is, the statement

[X,Y,Z] = meshgrid(x,y,z)

produces the same result as

[Y,X,Z] = ndgrid(y,x,z)

Because of this, meshgrid is better suited to problems in two- or
three-dimensional Cartesian space, while ndgrid is better suited to
multidimensional problems that aren’t spatially based.

meshgrid is limited to two- or three-dimensional Cartesian space.

Examples [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3
 1 2 3
 1 2 3
 1 2 3
 1 2 3

meshgrid

2-1443

Y =

10 10 10
 11 11 11
 12 12 12
 13 13 13
 14 14 14

See Also griddata, mesh, ndgrid, slice, surf

methods

2-1444

2methodsPurpose Display method names

Syntax m = methods('classname')
m = methods('object')
m = methods(..., '-full')

Description m = methods('classname') returns, in a cell array of strings, the names of all
methods for the MATLAB, COM, or Java class classname.

m = methods('object') returns the names of all methods for the MATLAB,
COM, or Java class of which object is an instance.

m = methods(..., '-full') returns the full description of the methods
defined for the class, including inheritance information and, for COM and Java
methods, attributes and signatures. For any overloaded method, the returned
array includes a description of each of its signatures.

For MATLAB classes, inheritance information is returned only if that class has
been instantiated.

Examples List the methods of MATLAB class stock:

m = methods('stock')
m =
 'display'
 'get'
 'set'
 'stock'
 'subsasgn'
 'subsref'

Create a MathWorks sample COM control and list its methods:

h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
methods(h)

Methods for class com.mwsamp.mwsampctrl.1:

AboutBox GetR8Array SetR8 move
Beep GetR8Vector SetR8Array propedit
FireClickEvent GetVariantArray SetR8Vector release

methods

2-1445

GetBSTR GetVariantVector addproperty save
GetBSTRArray Redraw delete send
GetI4 SetBSTR deleteproperty set
GetI4Array SetBSTRArray events
GetI4Vector SetI4 get
GetIDispatch SetI4Array invoke
GetR8 SetI4Vector load

Display a full description of all methods on Java object java.awt.Dimension:

methods java.awt.Dimension -full

Dimension(java.awt.Dimension)
Dimension(int,int)
Dimension()
void wait() throws java.lang.InterruptedException
 % Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException
 % Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException
 % Inherited from java.lang.Object
java.lang.Class getClass() % Inherited from java.lang.Object
 .
 .

See Also methodsview, invoke, ismethod, help, what, which

methodsview

2-1446

2methodsviewPurpose Display information on all methods implemented by a class

Syntax methodsview packagename.classname
methodsview classname
methodsview(object)

Description methodsview packagename.classname displays information describing the
Java class classname that is available from the package of Java classes
packagename.

methodsview classname displays information describing the MATLAB, COM,
or imported Java class classname.

methodsview(object) displays information describing the object
instantiated from a COM or Java class.

MATLAB creates a new window in response to the methodsview command.
This window displays all the methods defined in the specified class. For each of
these methods, the following additional information is supplied:

• Name of the method

• Method type qualifiers (for example, abstract or synchronized)

• Data type returned by the method

• Arguments passed to the method

• Possible exceptions thrown

• Parent of the specified class

Examples The following command lists information on all methods in the
java.awt.MenuItem class.

methodsview java.awt.MenuItem

MATLAB displays this information in a new window, as shown below

See Also methods, import, class, javaArray

mex

2-1447

2mexPurpose Compile MEX-function from C or Fortran source code

Syntax mex options filenames

Description mex options filenames compiles a MEX-function from the C, C++, or Fortran
source code files specified in filenames. All nonsource code filenames passed
as arguments are passed to the linker without being compiled.

All valid options are shown in the MEX Script Switches table. These options
are available on all platforms except where noted.

MEX’s execution is affected both by command-line options and by an options
file. The options file contains all compiler-specific information necessary to
create a MEX-function. The default name for this options file, if none is
specified with the -f option, is mexopts.bat (Windows) and mexopts.sh
(UNIX).

Note The MathWorks provides an option, setup, for the mex script that lets
you set up a default options file on your system.

On UNIX, the options file is written in the Bourne shell script language. The
mex script searches for the first occurrence of the options file called mexopts.sh
in the following list:

• The current directory

• The user profile directory (returned by the prefdir function)

• The directory specified by [matlabroot '/bin']

mex uses the first occurrence of the options file it finds. If no options file is
found, mex displays an error message. You can directly specify the name of the
options file using the -f switch.

Any variable specified in the options file can be overridden at the command line
by use of the <name>=<def> command-line argument. If <def> has spaces in it,
then it should be wrapped in single quotes (e.g., OPTFLAGS='opt1 opt2'). The
definition can rely on other variables defined in the options file; in this case the
variable referenced should have a prefixed $ (e.g., OPTFLAGS='$OPTFLAGS
opt2').

mex

2-1448

On Windows, the options file is written in the Perl script language. The default
options file is placed in your user profile directory after you configure your
system by running mex -setup. The mex script searches for the first occurrence
of the options file called mexopts.bat in the following list:

• The current directory

• The user profile directory (returned by the prefdir function)

• The directory specified by [matlabroot '\bin\win32\mexopts']

mex uses the first occurrence of the options file it finds. If no options file is
found, mex searches your machine for a supported C compiler and uses the
factory default options file for that compiler. If multiple compilers are found,
you are prompted to select one.

No arguments can have an embedded equal sign (=); thus, -DFOO is valid, but
-DFOO=BAR is not.

Remarks mex compiles and links source files into a shared library called a MEX-file,
executable from within MATLAB. The resulting file has a platform-dependent
extension, as shown in the table below:

See Also dbmex, mexext, inmem

System Type MEX File Extension

Sun Solaris .mexsol

HP-UX .mexhpux

Linux .mexglx

MacIntosh .mexmac

Windows .dll

mexext

2-1449

2mexextPurpose Return the MEX-filename extension

Syntax ext = mexext

Description ext = mexext returns the filename extension for the current platform.

Remarks The file built by the mex function has a platform-dependent extension, as shown
in the table below:

Examples ext = mexext

ext =
dll

See Also mex

System Type MEX File Extension

Sun Solaris .mexsol

HP-UX .mexhpux

Linus .mexglx

MacIntosh .mexmac

Windows .dll

mfilename

2-1450

2mfilenamePurpose The name of the currently running M-file

Syntax mfilename
p = mfilename('fullpath')
c = mfilename('class')

Description mfilename returns a string containing the name of the most recently invoked
M-file. When called from within an M-file, it returns the name of that M-file,
allowing an M-file to determine its name, even if the filename has been
changed.

p = mfilename('fullpath') returns the full path and name of the M-file in
which the call occurs, not including the filename extension.

c = mfilename('class') in a method, returns the class of the method, not
including the leading @ sign. If called from a nonmethod, it yields the empty
string.

Remarks If mfilename is called with any argument other than the above two, it behaves
as if it were called with no argument.

When called from the command line, mfilename returns an empty string.

To get the names of the callers of an M-file, use dbstack with an output
argument.

See Also dbstack, function, nargin, nargout, inputname

mget (ftp)

2-1451

2mget (ftp)Purpose Download file from FTP site

Syntax mget(f,'filename')
mget(f,'dirname')
mget(f,'wildcard')
mget(...,'target')

Description mget(f,'filename') retrieves filename from the FTP server f into the
MATLAB current directory, where f was created using ftp.

mget(f,'dirname') retrieves the directory dirname and its contents from the
FTP server f into the MATLAB current directory, where f was created using
ftp. You can use a wildcard (*) in dirname.

mget(...,'target') retrieves the specified items from the FTP server f,
where f was created using ftp, into the local directory specified by target,
where target is an absolute pathname.

Examples Connect to The MathWorks FTP server, change to the pub/pentium directory,
and retrieve the file Moler_1.txt into the MATLAB current directory.

tmw=ftp('ftp.mathworks.com');
cd(tmw,'pub/pentium');
mget(tmw,'Moler_1.txt');

Then retrieve all files containing the term Moler into the directory d:/myfiles.

mget(tmw,'*Moler*','d:/myfiles');

See Also cd (ftp), ftp, mput (ftp)

min

2-1452

2minPurpose Minimum elements of an array

Syntax C = min(A)
C = min(A,B)
C = min(A,[],dim)
[C,I] = min(...)

Description C = min(A) returns the smallest elements along different dimensions of an
array.

If A is a vector, min(A) returns the smallest element in A.

If A is a matrix, min(A) treats the columns of A as vectors, returning a row
vector containing the minimum element from each column.

If A is a multidimensional array, min operates along the first nonsingleton
dimension.

C = min(A,B) returns an array the same size as A and B with the smallest
elements taken from A or B.

C = min(A,[],dim) returns the smallest elements along the dimension of A
specified by scalar dim. For example, min(A,[],1) produces the minimum
values along the first dimension (the rows) of A.

[C,I] = min(...) finds the indices of the minimum values of A, and returns
them in output vector I. If there are several identical minimum values, the
index of the first one found is returned.

Remarks For complex input A, min returns the complex number with the largest complex
modulus (magnitude), computed with min(abs(A)), and ignores the phase
angle, angle(A). The min function ignores NaNs.

See Also max, mean, median, sort

minres

2-1453

2minresPurpose Minimum Residual method

Syntax x = minres(A,b)
minres(A,b,tol)
minres(A,b,tol,maxit)
minres(A,b,tol.maxit,M)
minres(A,b,tol,maxit,M1,M2)
minres(A,b,tol,maxit,M1,M2,x0)
minres(afun,b,tol,maxit,mifun,m2fun,x0,p1,p2,...)
[x,flag] = minres(A,b,...)
[x,flag,relres] = minres(A,b,...)
[x,flag,relres,iter] = minres(A,b,...)
[x,flag,relres,iter,resvec] = minres(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)

Description x = minres(A,b) attempts to find a minimum norm residual solution x to the
system of linear equations A*x=b. The n-by-n coefficient matrix A must be
symmetric but need not be positive definite. It should be large and sparse. The
column vector b must have length n. A can be a function afun such that afun(x)
returns A*x.

If minres converges, a message to that effect is displayed. If minres fails to
converge after the maximum number of iterations or halts for any reason, a
warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method stopped
or failed.

minres(A,b,tol) specifies the tolerance of the method. If tol is [], then
minres uses the default, 1e-6.

minres(A,b,tol,maxit) specifies the maximum number of iterations. If maxit
is [], then minres uses the default, min(n,20).

minres(A,b,tol,maxit,M) and minres(A,b,tol,maxit,M1,M2) use
symmetric positive definite preconditioner M or M = M1*M2 and effectively solve
the system inv(sqrt(M))*A*inv(sqrt(M))*y = inv(sqrt(M))*b for y and
then return x = inv(sqrt(M))*y. If M is [] then minres applies no
preconditioner. M can be a function that returns M\x.

minres

2-1454

minres(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [], then
minres uses the default, an all-zero vector.

minres(afun,b,tol,maxit,m1fun,m2fun,x0,p1,p2,...) passes parameters
p1,p2,... to functions afun(x,p1,p2,...), m1fun(x,p1,p2,...), and
m2fun(x,p1,p2,...).

[x,flag] = minres(A,b,...) also returns a convergence flag.

Whenever flag is not 0, the solution x returned is that with minimal norm
residual computed over all the iterations. No messages are displayed if the
flag output is specified.

[x,flag,relres] = minres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = minres(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = minres(A,b,...) also returns a vector of
estimates of the minres residual norms at each iteration, including
norm(b-A*x0).

[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...) also returns a
vector of estimates of the Conjugate Gradients residual norms at each
iteration.

Flag Convergence

0 minres converged to the desired tolerance tol within maxit
iterations.

1 minres iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 minres stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during minres became
too small or too large to continue computing.

minres

2-1455

Examples Example 1.

n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M1 = spdiags(4*on,0,n,n);

x = minres(A,b,tol,maxit,M1,[],[]);
minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Alternatively, use this matrix-vector product function

function y = afun(x,n)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - 2 * x(2:n);

as input to minres.

x1 = minres(@afun,b,tol,maxit,M1,[],n);

Example 2.

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1, -1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, minres can handle the indefinite matrix A.

x = minres(A,b,1e-6,40);
minres converged at iteration 39 to a solution with relative
residual 1.3e-007

minres

2-1456

See Also bicg, bicgstab, cgs, cholinc, gmres, lsqr, pcg, qmr, symmlq

@ (function handle), / (slash),

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution of Linear
Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “Solution of Sparse Indefinite Systems of
Linear Equations.” SIAM J. Numer. Anal., Vol.12, 1975, pp. 617-629.

mislocked

2-1457

2mislockedPurpose True if M-file or MEX-file cannot be cleared

Syntax mislocked
mislocked(fun)

Description mislocked by itself returns logical 1 (true) if the currently running M-file or
MEX-file is locked, and logical 0 (false) otherwise.

mislocked(fun) returns logical 1 (true) if the function named fun is locked in
memory, and logical 0 (false) otherwise. Locked M-files and MEX-files cannot
be removed with the clear function.

See Also mlock, munlock

mkdir

2-1458

2mkdirPurpose Make new directory

Graphical
Interface

As an alternative to the mkdir function, you can click the icon in the Current
Directory browser to add a directory.

Syntax mkdir('dirname')
mkdir('parentdir','dirname')
[status,message,messageid] = mkdir(...,'dirname')

Description mkdir('dirname') creates the directory dirname in the current directory, if
dirname represents a relative path. Otherwise, dirname represents an absolute
path and dirname attempts to create the absolute directory dirname in the root
of the current volume. An absolute path starts in any one of a Windows drive
letter, a UNC path '\\' string or a UNIX '/' character.

mkdir('parentdir','dirname') creates the directory dirname in the existing
directory parentdir, where parentdir is an absolute or relative pathname.

[status,message,messageid] = mkdir(...,'dirname') creates the
directory dirname in the existing directory parentdir, returning the status, a
message, and the MATLAB error message ID (see error and lasterr). Here,
status is 1 for success and is 0 for error. Only one output argument is required.

Examples Create a Subdirectory in Current Directory
To create a subdirectory in the current directory called newdir, type

mkdir('newdir')

Create a Subdirectory in Specified Parent Directory
To create a subdirectory called newdir in the directory testdata, which is at
the same level as the current directory, type

mkdir('../testdata','newdir')

Return Status When Creating Directory
In this example, the first attempt to create newdir succeeds, returning a status
of 1, and no error or warning message or message identifier:

[s, mess, messid] = mkdir('../testdata', 'newdir')

mkdir

2-1459

s =
 1
mess =
 ''
messid =
 ''

If you attempt to create the same directory again, mkdir again returns a
success status, and also a warning and message identifier informing you that
the directory already existed:

[s,mess,messid] = mkdir('../testdata','newdir')
s =
 1
mess =
 Directory "newdir" already exists.
messid =
 MATLAB:MKDIR:DirectoryExists

See Also copyfile, cd, dir, fileattrib, filebrowser, fileparts, ls, mfilename,
movefile, rmdir

mkdir (ftp)

2-1460

2mkdir (ftp)Purpose Create new directory on FTP server

Syntax mkdir(f,'dirname')

Description mkdir(f,'dirname') creates the directory dirname in the current directory of
the FTP server f, where f was created using ftp, and where dirname is a
pathname relative to the current directory on f.

Examples Connect to server testsite, view the contents, and create the directory newdir
in the directory testdir.

test=ftp('ftp.testsite.com')
dir(test)
. .. otherfile.m testdir
mkdir(test,'testdir/newdir');
dir(test,'testdir)
. .. newdir

See Also dir (ftp), ftp, rmdir (ftp)

mkpp

2-1461

2mkppPurpose Make a piecewise polynomial

Syntax pp = mkpp(breaks,coefs)
pp = mkpp(breaks,coefs,d)

Description pp = mkpp(breaks,coefs) builds a piecewise polynomial pp from its breaks
and coefficients. breaks is a vector of length L+1 with strictly increasing
elements which represent the start and end of each of L intervals. coefs is an
L-by-k matrix with each row coefs(i,:) containing the coefficients of the
terms, from highest to lowest exponent, of the order k polynomial on the
interval [breaks(i),breaks(i+1)].

pp = mkpp(breaks,coefs,d) indicates that the piecewise polynomial pp is
d-vector valued, i.e., the value of each of its coefficients is a vector of length d.
breaks is an increasing vector of length L+1. coefs is a d-by-L-by-k array with
coefs(r,i,:) containing the k coefficients of the ith polynomial piece of the
rth component of the piecewise polynomial.

Use ppval to evaluate the piecwise polynomial at specific points. Use unmkpp to
extract details of the piecewise polynomial.

Note. The order of a polynomial tells you the number of coefficients used in its
description. A kth order polynomial has the form

It has k coefficients, some of which can be 0, and maximum exponent k-1. So
the order of a polynomial is usually one greater than its degree. For example,
a cubic polynomial is of order 4.

Examples The first plot shows the quadratic polynomial

shifted to the interval [-8,-4]. The second plot shows its negative

c1xk 1– c2xk 2– … ck 1– x ck+ + + +

1 x
2
--- 1– 
  2

– x– 2

4
--------- x+=

x
2
--- 1– 
  2

1– x2

4
----- x–=

mkpp

2-1462

but shifted to the interval [-4,0].

The last plot shows a piecewise polynomial constructed by alternating these
two quadratic pieces over four intervals. It also shows its first derivative, which
was constructed after breaking the piecewise polynomial apart using unmkpp.

subplot(2,2,1)
cc = [-1/4 1 0];
pp1 = mkpp([-8 -4],cc);
xx1 = -8:0.1:-4;
plot(xx1,ppval(pp1,xx1),'k-')

subplot(2,2,2)
pp2 = mkpp([-4 0],-cc);
xx2 = -4:0.1:0;
plot(xx2,ppval(pp2,xx2),'k-')

subplot(2,1,2)
pp = mkpp([-8 -4 0 4 8],[cc;-cc;cc;-cc]);
xx = -8:0.1:8;
plot(xx,ppval(pp,xx),'k-')
[breaks,coefs,l,k,d] = unmkpp(pp);
dpp = mkpp(breaks,repmat(k-1:-1:1,d*l,1).*coefs(:,1:k-1),d);
hold on, plot(xx,ppval(dpp,xx),'r-'), hold off

−8 −7 −6 −5 −4
0

0.2

0.4

0.6

0.8

1

−4 −3 −2 −1 0
−1

−0.8

−0.6

−0.4

−0.2

0

−8 −6 −4 −2 0 2 4 6 8
−1

−0.5

0

0.5

1

mkpp

2-1463

See Also ppval, spline, unmkpp

mldivide \, mrdivide /

2-1464

2mldivide \, mrdivide /Purpose Left or right matrix division

Syntax mldivide(A,B) A\B
mrdivide(B,A) B/A

Description mldivide(A,B) and the equivalent A\B perform matrix left division (back
slash). A and B must be matrices that have the same number of rows, unless A
is a scalar, in which case A\B performs element-wise division — that is,
A\B = A.\B.

If A is a square matrix, A\B is roughly the same as inv(A)∗ B, except it is
computed in a different way. If A is an n-by-n matrix and B is a column vector
with n elements, or a matrix with several such columns, then X = A\B is the
solution to the equation AX = B computed by Gaussian elimination with partial
pivoting (see “Algorithm” on page 2-1468 for details). A warning message is
displayed if A is badly scaled or nearly singular.

If A is an m-by-n matrix with m ~= n and B is a column vector with m components,
or a matrix with several such columns, then X = A\B is the solution in the least
squares sense to the under- or overdetermined system of equations AX = B. In
other words, X minimizes norm(A*X - B), the length of the vector AX - B. The
rank k of A is determined from the QR decomposition with column pivoting (see
“Algorithm” on page 2-1468 for details). The computed solution X has at most k
nonzero elements per column. If k < n, this is usually not the same solution as
x = pinv(A)*B, which returns a least squares solution.

mrdivide(B,A) and the equivalent B/A perform matrix right division (forward
slash). B and A must have the same number of columns.

If A is a square matrix, B/A is roughly the same as B*inv(A). If A is an n-by-n
matrix and B is a row vector with n elements, or a matrix with several such
rows, then X = B/A is the solution to the equation XA = B computed by
Gaussian elimination with partial pivoting. A warning message is displayed if
A is badly scaled or nearly singular.

If B is an m-by-n matrix with m ~= n and A is a column vector with m components,
or a matrix with several such columns, then X = B/A is the solution in the least
squares sense to the under- or overdetermined system of equations XA = B.

mldivide \, mrdivide /

2-1465

Note Matrix right division and matrix left division are related by the
equation B/A = (A'\B')'.

Least Squares Solutions
If the equation Ax = b does not have a solution (and A is not a square matrix),
x = A\b returns a least squares solution — in other words, a solution that
minimizes the length of the vector Ax - b, which is equal to norm(A*x - b). See
“Example 3” on page 2-1467 for an example of this.

Examples Example 1
Suppose that A and b are the following.

A = magic(3)

A =

 8 1 6
 3 5 7
 4 9 2

b = [1;2;3]

b =

 1
 2
 3

To solve the matrix equation Ax = b, enter

x=A\b

x =

 0.0500
 0.3000
 0.0500

mldivide \, mrdivide /

2-1466

You can verify that x is the solution to the equation as follows.

A*x

ans =

 1.0000
 2.0000
 3.0000

Example 2 — A Singular
If A is singular, A\b returns the following warning.

Warning: Matrix is singular to working precision.

In this case, Ax = b might not have a solution. For example,

A = magic(5);
A(:,1) = zeros(1,5); % Set column 1 of A to zeros
b = [1;2;5;7;7];
x = A\b
Warning: Matrix is singular to working precision.

ans =

 NaN
 NaN
 NaN
 NaN
 NaN

If you get this warning, you can still attempt to solve Ax = b using the
pseudoinverse function pinv.

x = pinv(A)*b

x =

 0
 0.0209
 0.2717
 0.0808

mldivide \, mrdivide /

2-1467

 -0.0321

The result x is least squares solution to Ax = b. To determine whether x is a
exact solution — that is, a solution for which Ax - b = 0 — simply compute

A*x-b

ans =

 -0.0603
 0.6246
 -0.4320
 0.0141
 0.0415

The answer is not the zero vector, so x is not an exact solution.

“Pseudoinverses,” in the online MATLAB documentation, provides more
examples of solving linear systems using pinv.

Example 3
Suppose that

A = [1 0 0;1 0 0];
b = [1; 2];

Note that Ax = b cannot have a solution, because A*x has equal entries for any
x. Entering

x = A\b

returns the least squares solution

x =

 1.5000
 0
 0

along with a warning that A is rank deficient. Note that x is not an exact
solution:

A*x-b

mldivide \, mrdivide /

2-1468

ans =

 0.5000
 -0.5000

Data Type
Support

When computing X = A\B or X = A/B, the matrices A and B can have data type
double or single. The following rules determine the data type of the result:

• If both A and B have type double, X has type double.

• If either A or B has type single, X has type single.

Algorithm The specific algorithm used for solving the simultaneous linear equations
denoted by X = A\B and X = B/A depends upon the structure of the coefficient
matrix A. To determine the structure of A and select the appropriate algorithm,
MATLAB follows this precedence:

1 If A is sparse and diagonal, X is computed by dividing by the diagonal
elements of A.

2 If A is sparse, square, and banded, then banded solvers are used. Band
density is (# nonzeros in the band)/(# nonzeros in a full band).
Band density = 1.0 if there are no zeros on any of the three diagonals.

- If A is real and tridiagonal, i.e., band density = 1.0, and B is real with only
one column, X is computed quickly using Gaussian elimination without
pivoting.

- If the tridiagonal solver detects a need for pivoting, or if A or B is not real,
or if B has more than one column, but A is banded with band density
greater than the spparms parameter 'bandden' (default = 0.5), then X is
computed using the Linear Algebra Package (LAPACK) routines in the
following table.

3 If A is an upper or lower triangular matrix, then X is computed quickly
with a backsubstitution algorithm for upper triangular matrices, or a

Real Complex

A and B double DGBTRF, DGBTRS ZGBTRF, ZGBTRS

A or B single SGBTRF, SGBTRS CGBTRF, CGBTRS

mldivide \, mrdivide /

2-1469

forward substitution algorithm for lower triangular matrices. The check for
triangularity is done for full matrices by testing for zero elements and for
sparse matrices by accessing the sparse data structure.

If A is a full matrix, computations are performed using the Basic Linear
Algebra Subprograms (BLAS) routines in the following table.

4 If A is a permutation of a triangular matrix, then X is computed with a
permuted backsubstitution algorithm.

5 If A is symmetric, or Hermitian, and has real positive diagonal
elements, then a Cholesky factorization is attempted (see chol). If A is
found to be positive definite, the Cholesky factorization attempt is
successful and requires less than half the time of a general factorization.
Nonpositive definite matrices are usually detected almost immediately, so
this check also requires little time.

If successful, the Cholesky factorization for full A is
A = R'∗ R

where R is upper triangular. The solution X is computed by solving two
triangular systems,

Real Complex

A and B double DTRSV, DTRSM ZTRSV, ZTRSM

A or B single STRSV, STRSM CTRSV, CTRSM

mldivide \, mrdivide /

2-1470

X = R\(R'\B)

Computations are performed using the LAPACK routines in the following
table.

If A is sparse, a symmetric minimum degree preordering is applied first (see
symmmd and spparms) before X is computed. The algorithm is
perm = symmmd(A); % Symmetric approximate minimum
 % degree reordering
R = chol(A(perm,perm)); % Cholesky factorization
Y = R'\B(perm); % Lower triangular solve
X(perm,:) = R\Y; % Upper triangular solve

6 If A is Hessenberg, but not sparse, it is reduced to an upper triangular
matrix and that system is solved via substitution.

7 If A is square and does not satisfy criteria 1 through 5, then a general
triangular factorization is computed by Gaussian elimination with partial
pivoting (see lu). This results in
A = L∗ U

where L is a permutation of a lower triangular matrix and U is an upper
triangular matrix. Then X is computed by solving two permuted triangular
systems.

Real Complex

A and B double DLANGE, DPOTRF,
DPOTRS, DPOCON

ZLANGE, ZPOTRF, ZPOTRS,
ZPOCON

A or B single SLANGE, SPOTRF,
SPOTRS, SDPOCON

CLANGE, CPOTRF, CPOTRS,
CPOCON

mldivide \, mrdivide /

2-1471

X = U\(L\B)

If A is not sparse, computations are performed using the LAPACK routines
in the following table.

If A is sparse, then UMFPACK is used to compute X. The computations
result in
P∗ A∗ Q = L∗ U

where P is a row permutation matrix and Q is a column reordering matrix.
Then X = Q∗ (U\L\(P∗ B)).

8 If A is not square, then Householder reflections are used to compute an
orthogonal-triangular factorization.
A∗ P = Q∗ R

where P is a permutation, Q is orthogonal and R is upper triangular (see qr).
The least squares solution X is computed with
X = P∗ (R\(Q'∗ B))

If A is sparse, MATLAB computes a least squares solution using the sparse
qr factorization of A.

If A is full, MATLAB uses the LAPACK routines listed in the following table
to compute these matrix factorizations.

Real Complex

A and B double DLANGE, DGESV, DGECON ZLANGE, ZGESV, ZGECON

A or B single SLANGE, SGESV, SGECON CLANGE, CGESV, CGECON

Real Complex

A and B double DGEQP3, DORMQR,
DTRTRS

ZGEQP3, ZORMQR,
ZTRTRS

A or B single SGEQP3, SORMQR,
STRTRS

CGEQP3, CORMQR,
CTRTRS

mldivide \, mrdivide /

2-1472

Note To see information about choice of algorithm and storage allocation for
sparse matrices, , set the spparms parameter 'spumoni' = 1.

Note mldivide and mrdivide are not implemented for sparse matrices A that
are complex but not square.

See Also Arithmetic operators, linsolve, ldivide, rdivide

mlint

2-1473

2mlintPurpose Check M-files for possible problems, and report results

Graphical
Interface

In the Current Directory browser, select the M-Lint Code Check Report from
the list of Directory Reports presented on the toolbar.

Syntax mlint(filename)
info=mlint(filename,'-struct')
msg=mlint(filename,'-string')
[info,filepaths]=mlint(filename)
info=mlint(filename,'-id')
info=mlint(filename,'-fullpath')

Description mlint(filename) displays M-Lint information about filename. If filename is
a cell array, information is displayed for each file. mlint(F1,F2,F3,...),
where each input is a character array, displays information about each input
filename. You cannot combine cell arrays and character arrays of filenames.

info=mlint(filename,'-struct') returns the M-Lint information in a
structure array whose length is the number of suspicious constructs found. The
structure has the following fields:

If multiple filenames are input, or if a cell array is input, info will contain a
cell array of structures.

msg=mlint(filename,'-string') returns the M-Lint information as a string
to the variable msg. If multiple filenames are input, or if a cell array is input,
msg will contain a string where each file’s information is separated by ten “=”
characters, a space, the filename, a space, and ten “=” characters.

If the -struct or -string argument is omitted and an output argument is
specified, the default behavior is -struct. If the argument is omitted and there

Field Description

line vector of line numbers to which the message refers

column two-column array of column extents for each line

message message describing the suspect that M-Lint caught

mlint

2-1474

are no output arguments, the default behavior is to display the information to
the command line.

[info,filepaths]=mlint(filename) will additionally return filepaths, the
absolute paths to the filenames in the same order as they were input.

info=mlint(filename,'-id') requests the message ID from M-Lint as well.
When returned to a structure, the output will have the following additional
field:

info=mlint(filename,'-fullpath') assumes that the input filenames are
absolute paths, rather than requiring M-Lint to locate them.

To force M-Lint to ignore a line of code, add %#ok at the end of the line. This tag
can be followed by comments. For example:

unsuppressed1 = 10 % This line will get caught
suppressed2 = 20 %#ok These next two lines will not get caught
suppressed3 = 30 %#ok

Examples lengthofline.m is an example M-file with suspicious M-Lint constructs. It is
found in $matlabroot/matlab/help/techdoc/matlab_env/examples. To
display to the command line, run

mlint lengthofline

To store to a struct with ID, run

info=mlint('lengthofline','-id')

See Also mlintrpt

Field Description

id ID associated with the message

mlintrpt

2-1475

2mlintrptPurpose Run mlint for file or directory, reporting results in Web browser

Graphical
Interface

In the Current Directory browser, select the M-Lint Code Check Report
button.

Syntax mlintrpt
mlinkrpt(filename)
mlintrpt(dirname,'dir')

Description mlintrpt scans all M-files in the current directory for M-Lint messages, and
reports the results in a browser.

mlintrpt(filename) scans the M-file filename for messages as does the
command mlintrpt(filename,'file') .

mlintrpt(dirname,'dir') scans the specified directory. Here, dirname can be
in the current directory or can be a full pathname.

Examples Run

mlintrpt('d:\MATLAB\work','dir')

See Also mlint

and MATLAB displays a report of potential problems and improvements for all
M-files in the mydemos directory.

mlintrpt

2-1476

mlintrpt

2-1477

For more information about using this report, see the M-Lint Graphical
Interface documentation. (Although the mlintrpt results appear in the
MATLAB Web browser and the M-Lint Graphical Interface uses the Current
Directory browser, instructions for using the report are the same.)

See Also mlint

mlock

2-1478

2mlockPurpose Prevent M-file or MEX-file clearing

Syntax mlock

Description mlock locks the currently running M-file or MEX-file in memory so that
subsequent clear functions do not remove it.

Use the munlock function to return the file to its normal, clearable state.

Locking an M-file or MEX-file in memory also prevents any persistent
variables defined in the file from getting reinitialized.

 Examples The function testfun begins with an mlock statement.

function testfun
mlock
 .
 .

When you execute this function, it becomes locked in memory. You can check
this using the mislocked function.

testfun

mislocked('testfun')
ans =
 1

Using munlock, you unlock the testfun function in memory. Checking its
status with mislocked shows that it is indeed unlocked at this point.

munlock('testfun')

mislocked('testfun')
ans =
 0

See Also mislocked, munlock, persistent

mmfileinfo

2-1479

2mmfileinfoPurpose Information about a multimedia file

Syntax info = mmfileinfo(filename)

Description info = mmfileinfo(filename) returns a structure, info, whose fields contain
information about the contents of the multimedia file identifed by the string
filename.

Note mmfileinfo can be used only on Windows systems.

If filename is a URL, mmfileinfo might take a long time to return because it
must first download the file. For large files, downloading can take several
minutes. To avoid blocking the MATLAB command line while this processing
takes place, download the file before calling mmfileinfo.

The info structure contains the following fields, listed in the order they appear
in the structure.

Field Description

Filename String indicating the name of the file

Duration Length of the file in seconds

Audio Structure containing information about the audio
data in the file. See “Audio Data” on page 2-1480
for more information about this data structure.

Video Structure containing information about the video
data in the file. See “Video Data” on page 2-1480 for
more information about this data structure.

mmfileinfo

2-1480

Audio Data
The Audio structure contains the following fields, listed in the order they
appear in the structure. If the file does not contain audio data, the fields in the
structure are empty.

Video Data
The Video structure contains the following fields, listed in the order they
appear in the structure.

Examples This example gets information about the contents of a file containing audio
data.

info = mmfileinfo('my_audio_data.mp3')

info =

 Filename: 'my_audio_data.mp3'
 Duration: 1.6030e+002
 Audio: [1x1 struct]
 Video: [1x1 struct]

To look at the information returned about the audio data in the file, examine
the fields in the Audio structure.

audio_data = info.Audio

Field Description

Format Text string, indicating the audio format

NumberOfChannels Number of audio channels

Field Description

Format Text string, indicating the video format

Height Height of the video frame

Width Width of the video frame

mmfileinfo

2-1481

audio_data =

 Format: 'MPEGLAYER3'
 NumberOfChannels: 2

Because the file contains only audio data, the fields in the Video structure are
empty.

info.Video

ans =

 Format: ''
 Height: []
 Width: []

mod

2-1482

2modPurpose Modulus after division

Syntax M = mod(X,Y)

Definition mod(x,y) is mod .

Description M = mod(X,Y) if Y ~= 0, returns X - n.*Y where n = floor(X./Y) . If Y is not
an integer and the quotient X./Y is within roundoff error of an integer, then n
is that integer. By convention, mod(X,0) is X. The inputs X and Y must be real
arrays of the same size, or real scalars.

Remarks So long as operands X and Y are of the same sign, the function mod(X,Y) returns
the same result as does rem(X,Y). However, for positive X and Y,

mod(-X,Y) = rem(-X,Y)+Y

The mod function is useful for congruence relationships:
x and y are congruent (mod m) if and only if mod(x,m) == mod(y,m).

Examples mod(13,5)
ans =
 3

mod([1:5],3)
ans =
 1 2 0 1 2

mod(magic(3),3)
ans =
 2 1 0
 0 2 1
 1 0 2

See Also rem

x y

more

2-1483

2morePurpose Display Command Window output one screenful at a time

Syntax more on
more off
more(n)

Description more on enables paging of the output in the MATLAB Command Window.
MATLAB displays output one screenful at a time.

more off disables paging of the output in the MATLAB Command Window.

more(n) displays n lines per page.

To see the status of more, type get(0,'More'). MATLAB returns either on or
off indicating the more status. You can also set status for more by using
get(0,'More', 'status'), where 'status' is either 'on' or 'off'.

When you have enabled more and are examining output, you can do the
following.

By default, more is disabled. When enabled, more defaults to displaying 23 lines
per page.

See Also diary

Press the... To...

Return key Advance to the next line of output.

Space bar Advance to the next page of output.

Q (for quit) key Terminate display of the text. Do not use Ctrl+C to
terminate more or you might generate error messages
in the Command Window.

movefile

2-1484

2movefilePurpose Move file or directory

Graphical
Interface

As an alternative to the movefile function, you can use the Current Directory
browser to move files and directories.

Syntax movefile('source')
movefile('source','destination')
movefile('source','destination','f')
[status,message,messageid] = movefile('source','destination','f')

Description movefile('source') moves the file or directory named source to the current
directory, where source is the absolute or relative pathname for the directory
or file. Use the wildcard * at the end of source to move all matching files. Note
that the archive attribute of source is not preserved.

movefile('source','destination') moves the file or directory named
source to the location destination, where source and destination are the
absolute or relative pathnames for the directory or files. To rename a file or
directory when moving it, make destination a different name than source.
Use the wildcard * at the end of source to move all matching files.

movefile('source','destination','f') moves the file or directory named
source to the location destination, regardless of the read-only attribute of
destination.

[status,message,messageid]=movefile('source','destination','f')
moves the file or directory named source to the location destination,
returning the status, a message, and the MATLAB error message ID (see error
and lasterr). Here, status is 1 for success and is 0 for error. Only one output
argument is required and the f input argument is optional.

The * wildcard in a path string is supported.

Examples Move Source To Current Directory
To move the file myfiles/myfunction.m to the current directory, type

movefile('myfiles/myfunction.m')

movefile

2-1485

If the current directory is projects/testcases and you want to move
projects/myfiles and its contents to the current directory, use ../ in the
source pathname to navigate up one level to get to the directory.

movefile('../myfiles')

Move All Matching Files By Using a Wildcard
To move all files in the directory myfiles whose names begin with my to the
current directory, type

movefile('myfiles/my*')

Move Source to Destination
To move the file myfunction.m from the current directory to the directory
projects, where projects and the current directory are at the same level, type

movefile('myfunction.m','../projects')

Move Directory Down One Level
This example moves the a directory down a level. For example to move the
directory projects/testcases and all its contents down a level in projects to
projects/myfiles, type

movefile('projects/testcases','projects/myfiles/')

The directory testcases and its contents now appear in the directory myfiles.

Rename When Moving File to Read-Only Directory
Move the file myfile.m from the current directory to d:/work/restricted,
assigning it the name test1.m, where restricted is a read-only directory.

movefile('myfile.m','d:/work/restricted/test1.m','f')

The read-only file myfile.m is no longer in the current directory. The file
test1.m is in d:/work/restricted and is read only.

Return Status When Moving Files
In this example, all files in the directory myfiles whose names start with new
are to be moved to the current directory. However, if new* is accidentally
written as nex*. As a result, the move is unsuccessful, as seen in the status and
messages returned:

movefile

2-1486

[s,mess,messid]=movefile('myfiles/nex*')

s =
 0

mess =

A duplicate filename exists, or the file cannot be found.

messid =

MATLAB:MOVEFILE:OSError

See Also cd, copyfile, delete, dir, fileattrib, filebrowser, ls, mkdir, rmdir

movegui

2-1487

2moveguiPurpose Move GUI figure to specified location on screen

Syntax movegui(h,'position')
movegui('position')
movegui(h)
movegui

Description movegui(h,'position') moves the figure identified by handle h to the
specified screen location, preserving the figure’s size. The position argument
can be any of the following strings:

• north – top center edge of screen

• south – bottom center edge of screen

• east – right center edge of screen

• west – left center edge of screen

• northeast – top right corner of screen

• northwest – top left corner of screen

• southeast – bottom right corner of screen

• southwest – bottom left corner

• center – center of screen

• onscreen – nearest location with respect to current location that is on screen

The position argument can also be a two-element vector [h,v], where
depending on sign, h specifies the figure's offset from the left or right edge of
the screen, and v specifies the figure's offset from the top or bottom of the
screen, in pixels. The following table summarizes the possible values.

movegui('position') move the callback figure (gcbf) or the current figure
(gcf) to the specified position.

h (for h >= 0) offset of left side from left edge of screen

h (for h < 0) offset of right side from right edge of screen

v (for v >= 0) offset of bottom edge from bottom of screen

v (for v < 0) offset of top edge from top of screen

movegui

2-1488

movegui(h) moves the figure identified by the handle h to the onscreen
position.

movegui moves the callback figure (gcbf) or the current figure (gcf) to the
onscreen position. This is useful as a string-based CreateFcn callback for a
saved figure. It ensures the figure appears on screen when reloaded, regardless
of its saved position.

Examples This example demonstrates the usefulness of movegui to ensure that saved
GUIs appear on screen when reloaded, regardless of the target computer’s
screen sizes and resolution. It creates a figure off the screen, assigns movegui
as its CreateFcn callback, then saves and reloads the figure.

f = figure('Position',[10000,10000,400,300]);
set(f,'CreateFcn','movegui')
hgsave(f,'onscreenfig')
close(f)
f2 = hgload('onscreenfig');

See Also guide

“Creating GUIs” in the MATLAB documentation

movie

2-1489

2movie Purpose Play recorded movie frames

Syntax movie(M)
movie(M,n)
movie(M,n,fps)
movie(h,...)
movie(h,M,n,fps,loc)

Description movie plays the movie defined by a matrix whose columns are movie frames
(usually produced by getframe).

movie(M) plays the movie in matrix M once.

movie(M,n) plays the movie n times. If n is negative, each cycle is shown
forward then backward. If n is a vector, the first element is the number of times
to play the movie, and the remaining elements make up a list of frames to play
in the movie.

For example, if M has four frames then n = [10 4 4 2 1] plays the movie ten
times, and the movie consists of frame 4 followed by frame 4 again, followed by
frame 2 and finally frame 1.

movie(M,n,fps) plays the movie at fps frames per second. The default is 12
frames per second. Computers that cannot achieve the specified speed play as
fast as possible.

movie(h,...) plays the movie centered in the figure or axes identified by the
handle h.

movie(h,M,n,fps,loc) specifies a four-element location vector, [x y 0 0],
where the lower left corner of the movie frame is anchored (only the first two
elements in the vector are used). The location is relative to the lower left corner
of the figure or axes specified by handle h and in units of pixels, regardless of
the object’s Units property.

Remarks The movie function displays each frame as it loads the data into memory, and
then plays the movie. This eliminates long delays with a blank screen when you
load a memory-intensive movie. The movie’s load cycle is not considered one of
the movie repetitions.

movie

2-1490

Examples Animate the peaks function as you scale the values of Z:

Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');

% Record the movie
for j = 1:20

surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end

% Play the movie twenty times
movie(F,20)

See Also aviread, getframe, frame2im, im2frame

“Animation” for related functions

See Example – Visualizing an FFT as a Movie for another example

movie2avi

2-1491

2movie2aviPurpose Create an Audio/Video Interleaved (AVI) movie from MATLAB movie

Syntax movie2avi(mov,filename)
movie2avi(mov,filename,param,value,param,value...)

Description movie2avi(mov,filename) creates the AVI movie filename from the
MATLAB movie mov.

movie2avi(mov,filename,param,value,param,value...) creates the AVI
movie filename from the MATLAB movie mov using the specified parameter
settings.

Parameter Value Default

'colormap' An m-by-3 matrix defining the colormap
to be used for indexed AVI movies, where
m must be no greater than 256 (236 if
using Indeo compression).

There is no
default
colormap.

'compression' A text string specifying the compression
codec to use.

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'RLE'
'None'

On UNIX:
'None'

'Indeo5'
on
Windows.
'None' on
UNIX.

To use a custom compression codec,
specify the four-character code that
identifies the codec (typically included in
the codec documentation). The addframe
function reports an error if it can not find
the specified custom compressor.

'fps' A scalar value specifying the speed of the
AVI movie in frames per second (fps).

15 fps

movie2avi

2-1492

See Also avifile, aviread, aviinfo, movie

'keyframe' For compressors that support temporal
compression, this is the number of key
frames per second.

2 key
frames per
second.

'quality' A number between 0 and 100 the
specifies the desired quality of the
output. Higher numbers result in higher
video quality and larger file sizes. Lower
numbers result in lower video quality
and smaller file sizes. This parameter
has no effect on uncompressed movies.

75

'videoname' A descriptive name for the video stream.
This parameter must be no greater than
64 characters long.

The default
is the
filename.

Parameter Value Default

mput (ftp)

2-1493

2mput (ftp)Purpose Upload file or directory to FTP server

Syntax mput(f,'name')
mput(f,'wildcard')

Description mput(f,'filename') uploads name from the MATLAB current directory to the
current directory of the FTP server f, where name is a file or a directory and its
contents, and where f was created using ftp. You can use a wildcard (*) in
filename.

See Also ftp, methods, mkdir (ftp), rename (ftp)

msgbox

2-1494

2msgboxPurpose Display message box

Syntax msgbox(message)
msgbox(message,title)
msgbox(message,title,'icon')
msgbox(message,title,'custom',iconData,iconCmap)
msgbox(...,'createMode')
h = msgbox(...)

Description msgbox(message) creates a message box that automatically wraps message to
fit an appropriately sized figure. message is a string vector, string matrix, or
cell array.

msgbox(message,title) specifies the title of the message box.

msgbox(message,title,'icon') specifies which icon to display in the message
box. 'icon' is 'none', 'error', 'help', 'warn', or 'custom'. The default is
'none'.

msgbox(message,title,'custom',iconData,iconCmap) defines a customized
icon. iconData contains image data defining the icon; iconCmap is the colormap
used for the image.

msgbox(...,'createMode') specifies whether the message box is modal or
nonmodal, and if it is nonmodal, whether to replace another message box with
the same title. Valid values for 'createMode' are 'modal', 'non-modal', and
'replace'.

h = msgbox(...) returns the handle of the box in h, which is a handle to a
Figure graphics object.

See Also dialog, errordlg, inputdlg, helpdlg, questdlg, textwrap, warndlg
“Predefined Dialog Boxes” for related functions

Error Icon Help Icon Warning Icon

mtimes

2-1495

2mtimesPurpose Matrix multiplication

Syntax C = A∗ B

Description C = A∗ B is the linear algebraic product of the matrices A and B. The i,j entry
of the product is defined by

For nonscalar A and B, the number of columns of A must equal the number of
rows of B. If A is m-by-p and B is p-by-n, the product C is m-by-n. You can
multiply a scalar by a matrix of any size.

The preceding definition says that C(i,j) is the inner product of the ith row of A
with the jth column of B. You can write this definition using the MATLAB colon
operator as

C(i,j) = A(i,:)*B(:,j)

where A(i,:) is the ith row of A and B(:,j) is the jth row of B.

Note If A is an m-by-0 empty matrix and B is a 0-by-n empty matrix, where m
and n are positive integers, A*B is an m-by-n matrix of all zeros.

Examples Example 1
If A is a row vector and B is a column vector with the same number of elements
as A, A*B is simply the inner product of A and B. For example,

A = [5 3 2 6]

A =

 5 3 2 6
B = [-4 9 0 1]'

B =

C i j,() A i k,()B k j,()

k 1=

p

∑=

mtimes

2-1496

 -4
 9
 0
 1
A*B

ans =

 13

Example 2
A = [1 3 5; 2 4 7]

A =

 1 3 5
 2 4 7
B = [-5 8 11; 3 9 21;4 0 8]

B =

 -5 8 11
 3 9 21
 4 0 8

The product of A and B is

C = A*B

C =

 24 35 114
 30 52 162

Note that the second row of A is

A(2,:)

ans =

 2 4 7

mtimes

2-1497

while the third column of B is

B(:,3)

ans =

 11
 21
 8

The inner product of A(2,:) and B(:,3) is

A(2,:)*B(:,3)

ans =

 162

which is the same as C(2,3).

See Also Arithmetic operators

mu2lin

2-1498

2mu2linPurpose Convert mu-law audio signal to linear

Syntax y = mu2lin(mu)

Description y = mu2lin(mu) converts mu-law encoded 8-bit audio signals, stored as “flints”
in the range 0 ≤ mu ≤ 255, to linear signal amplitude in the range -s < Y < s
where s = 32124/32768 ~= .9803. The input mu is often obtained using
fread(...,'uchar') to read byte-encoded audio files. “Flints” are MATLAB
integers — floating-point numbers whose values are integers.

See Also auread, lin2mu

multibandread

2-1499

2multibandreadPurpose Read band interleaved data from a binary file

Syntax X = multibandread(filename, size, precision, offset, interleave,
byteorder)

X = multibandread(...,subset1,subset2,subset3)

Description X = multibandread(filename, size, precision, offset, interleave,
byteorder) reads multiband data from the binary file filename. This function
defines band as the third dimension in a 3-D array, as shown in this figure.

You can use the parameters to multibandread to specify many aspects of the
read operation, such as which bands to read. See “Parameters” on page 2-1500
for more information.

If you only read one band, the return value X is a 2-D array. If you read multiple
bands, X is 3-D. By default, X is an array of type double; however, you can use
the precision parameter to specify any other data type.

X = multibandread(...,subset1,subset2,subset3) reads a subset of the
data in the file. You can use up to three subsetting parameters to specify the
data subset along row, column, and band dimensions. See “Subsetting
Parameters” on page 2-1501 for more information.

Row

Band n
Band

Band 1

Band 2

Column
...

multibandread

2-1500

Parameters This table describes the arguments accepted by multibandread.

filename String containing the name of the file to be read.

size Three-element vector of integers consisting of
[height, width, N], where

• height is the total number of rows

• width is the total number of elements in each row

• N is the total number of bands.

This will be the dimensions of the data if it is read in its
entirety.

precision String specifying the format of the data to be read, such as
'uint8', 'double', 'integer*4', or any of the other
precisions supported by the fread function.

Note: You can also use the precision parameter to specify
the format of the output data. For example, to read uint8
data and output a uint8 array, specify a precision of
'uint8=>uint8' (or '*uint8'). To read uint8 data and
output it in MATLAB in single precision, specify
'uint8=>single'. See fread for more information.

offset Scalar specifying the zero-based location of the first data
element in the file. This value represents the number of
bytes from the beginning of the file to where the data begins.

multibandread

2-1501

Subsetting
Parameters

You can specify up to three subsetting parameters. Each subsetting parameter
is a three-element cell array, {dim, method, index}, where

interleave String specifying the format in which the data is stored

• 'bsq' — Band-Sequential

• 'bil'— Band-Interleaved-by-Line

• 'bip'— Band-Interleaved-by-Pixel

For more information about these interleave methods, see
the multibandwrite reference page.

byteorder String specifying the byte ordering (machine format) in
which the data is stored, such as

• 'ieee-le' — Little-endian

• 'ieee-be' — Big-endian

See fopen for a complete list of supported formats.

dim Text string specifying the dimension to subset along. It can have
any of these values:

• 'Column'

• 'Row'

• 'Band'

multibandread

2-1502

Examples Read data from a multiband file into an 864-by-702-by-3 uint8 matrix, im.

im = multibandread('bipdata.img',...
[864,702,3],'uint8=>uint8',0,'bip','ieee-le');

Read all rows and columns, but only bands 3, 4, and 6.

im = multibandread('bsqdata.img',...
[512,512,6],'uint8',0,'bsq','ieee-le',...
{'Band','Direct',[3 4 6]});

Read all bands and subset along the rows and columns.

im = multibandread('bildata.int',...
[350,400,50],'uint16',0,'bil','ieee-le',...
{'Row','Range',[2 2 350]},...
{'Column','Range',[1 4 350]});

See Also fread, fopen, multibandwrite

method Text string specifying the subsetting method. It can have either
of these values:

• 'Direct'

• 'Range'

If you leave out this element of the subset cell array,
multibandread uses 'Direct' as the default.

index If method is 'Direct', index is a vector specifying the indices to
read along the Band dimension.

If method is 'Range', index is a three-element vector of [start,
increment, stop] specifying the range and step size to read
along the dimension specified in dim. If index is a two-element
vector, multibandread assumes that the value of increment is 1.

multibandwrite

2-1503

2multibandwritePurpose Write multiband data to a file

Syntax multibandwrite(data,filename,interleave)
multibandwrite(data,filename,interleave,start,totalsize)
multibandwrite(...,param,value,...)

Description multibandwrite(data,filename,interleave) writes data, a two- or
three-dimensional numeric or logical array, to the binary file specified by
filename. The length of the third dimension of data determines the number of
bands written to the file. The bands are written to the file in the form specified
by interleave. See “Interleave Methods” on page 2-1504 for more information
about this argument.

If filename already exists, multibandwrite overwrites it unless you specify the
optional offset parameter. See the last alternate syntax for multibandwrite
for information about other optional parameters.

multibandwrite(data,filename,interleave,start,totalsize) writes data
to the binary file filename in chunks. In this syntax, data is a subset of the
complete data set.

start is a 1-by-3 array [firstrow firstcolumn firstband] that specifies the
location to start writing data. firstrow and firstcolumn specify the location
of the upper left image pixel. firstband gives the index of the first band to
write. For example, data(I,J,K) contains the data for the pixel at
[firstrow+I-1, firstcolumn+J-1] in the (firstband+K-1)-th band.

totalsize is a 1-by-3 array, [totalrows,totalcolumns,totalbands], which
specifies the full, three-dimensional size of the data to be written to the file.

Note In this syntax, you must call multibandwrite multiple times to write
all the data to the file. The first time it is called, multibandwrite writes the
complete file, using the fill value for all values outside the data subset. In each
subsequent call, multibandwrite overwrites these fill values with the data
subset in data. The parameters filename, interleave, offset, and
totalsize must remain constant throughout the writing of the file.

multibandwrite

2-1504

multibandwrite(...,param,value...) writes the multiband data to a file,
specifying any of these optional parameter/value pairs.

Interleave
Methods

interleave is a string that specifies how multibandwrite interleaves the
bands as it writes data to the file. If data is two-dimensional, multibandwrite
ignores the interleave argument. The following table lists the supported
methods and uses this example multiband file to illustrate each method.

Parameter Description

'precision' String specifying the form and size of each element
written to the file. See the help for fwrite for a list of
valid values. The default precision is the class of the
data.

'offset' The number of bytes to skip before the first data
element. If the file does not already exist,
multibandwrite writes ASCII null values to fill the
space. To specify a different fill value, use the parameter
'fillvalue'.

This option is useful when you are writing a header to
the file before or after writing the data. When writing
the header to the file after the data is written, open the
file with fopen using 'r+' permission.

machfmt String to control the format in which the data is written
to the file. Typical values are 'ieee-le' for little endian
and 'ieee-be' for big endian. See the help for fopen for
a complete list of available formats. The default
machine format is the local machine format.

fillvalue A number specifying the value to use in place of missing
data. 'fillvalue' can be a single number, specifying
the fill value for all missing data, or a
1-by-Number-of-bands vector of numbers specifying the
fill value for each band. This value is used to fill space
when data is written in chunks.

multibandwrite

2-1505

Supported methods of interleaving bands include those listed below.

Examples In this example, all the data is written to the file with one function call. The
bands are interleaved by line.

multibandwrite(data,'data.img','bil');

This example uses multibandwrite in a loop to write each band to a file
separately.

for i=1:totalBands

Row Band 3

Band

Band 1

Band 2

Column

C C C C C
C C C C C
C C C C C

B B B B B
B B B B B

A A A A A
A A A A A
A A A A A

Column

Method String Description Example

Band-Interleaved-by-Line 'bil' Write an entire row from
each band

AAAAABBBBBCCCCC
AAAAABBBBBCCCCC
AAAAABBBBBCCCCC

Band-Interleaved-by-Pixel 'bip' Write a pixel from each
band

ABCABCABCABCABC...

Band-Sequential 'bsq' Write each band in its
entirety

AAAAA
AAAAA
AAAAA
BBBBB
BBBBB
BBBBB
CCCCC
CCCCC
CCCCC

multibandwrite

2-1506

 multibandwrite(bandData,'data.img','bip',[1 1 i],...
 [totalColumns, totalRows, totalBands]);
end

In this example, only a subset of each band is available for each call to
multibandwrite. For example, an entire data set can have three bands with
1024-by-1024 pixels each (a 1024-by-1024-by-3 matrix). Only 128-by-128
chunks are available to be written to the file with each call to multibandwrite.

numBands = 3;
totalDataSize = [1024 1024 numBands];
for i=1:numBands
 for k=1:8
 for j=1:8
 upperLeft = [(k-1)*128 (j-1)*128 i];
 multibandwrite(data,'banddata.img','bsq',...
 upperLeft,totalDataSize);
 end
 end
end

See Also multibandread, fwrite, fread

munlock

2-1507

2munlockPurpose Allow M-file or MEX-file clearing

Syntax munlock
munlock fun
munlock('fun')

Description munlock unlocks the currently running M-file or MEX-file in memory so that
subsequent clear functions can remove it.

munlock fun unlocks the M-file or MEX-file named fun from memory. By
default, these files are unlocked so that changes to the file are picked up. Calls
to munlock are needed only to unlock M-files or MEX-files that have been
locked with mlock.

munlock('fun') is the function form of munlock.

Examples The function testfun begins with an mlock statement.

function testfun
mlock
 .
 .

When you execute this function, it becomes locked in memory. You can check
this using the mislocked function.

testfun

mislocked testfun
ans =
 1

Using munlock, you unlock the testfun function in memory. Checking its
status with mislocked shows that it is indeed unlocked at this point.

munlock testfun

mislocked testfun
ans =
 0

munlock

2-1508

See Also mlock, mislocked, persistent

namelengthmax

2-1509

2namelengthmax
Purpose Return maximum identifier length

Syntax len = namelengthmax

Description len = namelengthmax returns the maximum length allowed for MATLAB
identifiers. MATLAB identifiers are

• Variable names

• Function and subfunction names

• Structure fieldnames

• Object names

• M-file names

• MEX-file names

• MDL-file names

Rather than hard-coding a specific maximum name length into your programs,
use the namelengthmax function. This saves you the trouble of having to update
these limits should the identifier length change in some future MATLAB
release.

Examples Call namelengthmax to get the maximum identifier length:

maxid = namelengthmax
maxid =
 63

See Also isvarname, genvarname

NaN

2-1510

2NaNPurpose Not-a-Number

Syntax NaN

Description NaN returns the IEEE arithmetic representation for Not-a-Number (NaN).
These result from operations which have undefined numerical results.

NaN('double') is the same as NaN with no inputs.

NaN('single') is the single precision representation of NaN.

NaN(n) is an n-by-n matrix of NaNs.

NaN(m,n) or inf([m,n]) is an m-by-n matrix of NaNs.

NaN(m,n,p,...) or NaN([m,n,p,...]) is an m-by-n-by-p-by-... array of NaNs.

NaN(...,classname) is an array of NaNs of class specified by classname.
classname must be either 'single' or 'double'.

Examples These operations produce NaN:

• Any arithmetic operation on a NaN, such as sqrt(NaN)

• Addition or subtraction, such as magnitude subtraction of infinities as
(+Inf)+(-Inf)

• Multiplication, such as 0*Inf

• Division, such as 0/0 and Inf/Inf

• Remainder, such as rem(x,y) where y is zero or x is infinity

Remarks Because two NaNs are not equal to each other, logical operations involving NaNs
always return false, except ~= (not equal). Consequently,

NaN ~= NaN
ans =
 1

NaN == NaN
ans =
 0

and the NaNs in a vector are treated as different unique elements.

NaN

2-1511

unique([1 1 NaN NaN])
ans =
 1 NaN NaN

Use the isnan function to detect NaNs in an array.
isnan([1 1 NaN NaN])
ans =
 0 0 1 1

See Also Inf, isnan

nargchk

2-1512

2nargchkPurpose Check number of input arguments

Syntax msgstring = nargchk(minargs, maxargs, numargs)
msgstring = nargchk(minargs, maxargs, numargs, 'string')
msgstruct = nargchk(minargs, maxargs, numargs, 'struct')

Description Use nargchk inside an M-file function to check that the desired number of input
arguments is specified in the call to that function.

msgstring = nargchk(minargs, maxargs, numargs) returns an error
message string msgstring if the number of inputs specified in the call numargs
is less than minargs or greater than maxargs. If numargs is between minargs
and maxargs (inclusive), nargchk returns an empty matrix.

It is common to use the nargin function to determine the number of input
arguments specified in the call.

msgstring = nargchk(minargs, maxargs, numargs, 'string') is
essentially the same as the command shown above, as nargchk returns a string
by default.

msgstruct = nargchk(minargs, maxargs, numargs, 'struct') returns an
error message structure msgstruct instead of a string. The fields of the return
structure contain the error message string and a message identifier. If numargs
is between minargs and maxargs (inclusive), nargchk returns an empty
structure.

When too few inputs are supplied, the message string and identifier are

 message: 'Not enough input arguments.'
 identifier: 'MATLAB:nargchk:notEnoughInputs'

When too many inputs are supplied, the message string and identifier are

 message: 'Too many input arguments.'
 identifier: 'MATLAB:nargchk:tooManyInputs'

Remarks nargchk is often used together with the error function. The error function
accepts either type of return value from nargchk: a message string or message
structure. For example, this command provides the error function with a
message string and identifier regarding which error was caught:

nargchk

2-1513

error(nargchk(2, 4, nargin, 'struct'))

If nargchk detects no error, it returns an empty string or structure. When
nargchk is used with the error function, as shown here, this empty string or
structure is passed as an input to error. When error receives an empty string
or structure, it simply returns and no error is generated.

Examples Given the function foo,

function f = foo(x, y, z)
error(nargchk(2, 3, nargin))

Then typing foo(1) produces

Not enough input arguments.

See Also nargoutchk, nargin, nargout, varargin, varargout, error

nargin, nargout

2-1514

2nargin, nargoutPurpose Number of function arguments

Syntax n = nargin
n = nargin('fun')
n = nargout
n = nargout('fun')

Description In the body of a function M-file, nargin and nargout indicate how many input
or output arguments, respectively, a user has supplied. Outside the body of a
function M-file, nargin and nargout indicate the number of input or output
arguments, respectively, for a given function. The number of arguments is
negative if the function has a variable number of arguments.

nargin returns the number of input arguments specified for a function.

nargin('fun') returns the number of declared inputs for the function fun or
-1 if the function has a variable number of input arguments.

nargout returns the number of output arguments specified for a function.

nargout('fun') returns the number of declared outputs for the function fun.

Examples This example shows portions of the code for a function called myplot, which
accepts an optional number of input and output arguments:

function [x0, y0] = myplot(x, y, npts, angle, subdiv)
% MYPLOT Plot a function.
% MYPLOT(x, y, npts, angle, subdiv)
% The first two input arguments are
% required; the other three have default values.
 ...
if nargin < 5, subdiv = 20; end
if nargin < 4, angle = 10; end
if nargin < 3, npts = 25; end
 ...
if nargout == 0
 plot(x, y)
else
 x0 = x;
 y0 = y;

nargin, nargout

2-1515

end

See Also inputname, varargin, varargout, nargchk, nargoutchk

nargoutchk

2-1516

2nargoutchkPurpose Validate number of output arguments

Syntax msgstring = nargoutchk(minargs, maxargs, numargs)
msgstring = nargoutchk(minargs, maxargs, numargs, 'string')
msgstruct = nargoutchk(minargs, maxargs, numargs, 'struct')

Description Use nargoutchk inside an M-file function to check that the desired number of
output arguments is specified in the call to that function.

msgstring = nargoutchk(minargs, maxargs, numargs) returns an error
message string msgstring if the number of outputs specified in the call,
numargs, is less than minargs or greater than maxargs. If numargs is between
minargs and maxargs (inclusive), nargoutchk returns an empty matrix.

It is common to use the nargout function to determine the number of output
arguments specified in the call.

msgstring = nargoutchk(minargs, maxargs, numargs, 'string') is
essentially the same as the command shown above, as nargoutchk returns a
string by default.

msgstruct = nargoutchk(minargs, maxargs, numargs, 'struct') returns
an error message structure msgstruct instead of a string. The fields of the
return structure contain the error message string and a message identifier. If
numargs is between minargs and maxargs (inclusive), nargoutchk returns an
empty structure.

When too few outputs are supplied, the message string and identifier are

 message: 'Not enough output arguments.'
 identifier: 'MATLAB:nargoutchk:notEnoughOutputs'

When too many outputs are supplied, the message string and identifier are

 message: 'Too many output arguments.'
 identifier: 'MATLAB:nargoutchk:tooManyOutputs'

Remarks nargoutchk is often used together with the error function. The error function
accepts either type of return value from nargoutchk: a message string or
message structure. For example, this command provides the error function
with a message string and identifier regarding which error was caught:

nargoutchk

2-1517

error(nargoutchk(2, 4, nargout, 'struct'))

If nargoutchk detects no error, it returns an empty string or structure. When
nargoutchk is used with the error function, as shown here, this empty string
or structure is passed as an input to error. When error receives an empty
string or structure, it simply returns and no error is generated.

Examples You can use nargoutchk to determine if an M-file has been called with the
correct number of output arguments. This example uses nargout to return the
number of output arguments specified when the function was called. The
function is designed to be called with one, two, or three output arguments. If
called with no arguments or more than three arguments, nargoutchk returns
an error message:

function [s, varargout] = mysize(x)
msg = nargoutchk(1, 3, nargout);
if isempty(msg)
 nout = max(nargout, 1) - 1;
 s = size(x);
 for k = 1:nout, varargout(k) = {s(k)}; end
else
 disp(msg)
end

See Also nargchk, nargout, nargin, varargout, varargin, error

nchoosek

2-1518

2nchoosekPurpose Binomial coefficient or all combinations

Syntax C = nchoosek(n,k)
C = nchoosek(v,k)

Description C = nchoosek(n,k) where n and k are nonnegative integers, returns
. This is the number of combinations of things taken at a

time.

C = nchoosek(v,k), where v is a row vector of length n, creates a matrix whose
rows consist of all possible combinations of the elements of v taken at a
time. Matrix C contains rows and columns.

Examples The command nchoosek(2:2:10,4) returns the even numbers from two to ten,
taken four at a time:

 2 4 6 8
 2 4 6 10
 2 4 8 10
 2 6 8 10
 4 6 8 10

Limitations This function is only practical for situations where n is less than about 15.

See Also perms

n! n k–()! k!()⁄ n k

n k
n! n k–()! k!()⁄ k

ndgrid

2-1519

2ndgridPurpose Generate arrays for multidimensional functions and interpolation

Syntax [X1,X2,X3,...] = ndgrid(x1,x2,x3,...)
[X1,X2,...] = ndgrid(x)

Description [X1,X2,X3,...] = ndgrid(x1,x2,x3,...) transforms the domain specified
by vectors x1,x2,x3... into arrays X1,X2,X3... that can be used for the
evaluation of functions of multiple variables and multidimensional
interpolation. The ith dimension of the output array Xi are copies of elements
of the vector xi.

[X1,X2,...] = ndgrid(x) is the same as [X1,X2,...] = ndgrid(x,x,...).

Examples Evaluate the function over the range .

[X1,X2] = ndgrid(-2:.2:2, -2:.2:2);
Z = X1 .* exp(-X1.^2 - X2.^2);
mesh(Z)

x1e
x1

2– x2
2–

2– x1 2< < 2– x2 2< <,

0
5

10
15

20
25

0

5

10

15

20

25
−0.5

0

0.5

ndgrid

2-1520

Remarks The ndgrid function is like meshgrid except that the order of the first two input
arguments are switched. That is, the statement

[X1,X2,X3] = ndgrid(x1,x2,x3)

produces the same result as

[X2,X1,X3] = meshgrid(x2,x1,x3)

Because of this, ndgrid is better suited to multidimensional problems that
aren’t spatially based, while meshgrid is better suited to problems in two- or
three-dimensional Cartesian space.

See Also meshgrid, interpn

ndims

2-1521

2ndimsPurpose Number of array dimensions

Syntax n = ndims(A)

Description n = ndims(A) returns the number of dimensions in the array A. The number of
dimensions in an array is always greater than or equal to 2. Trailing singleton
dimensions are ignored. A singleton dimension is any dimension for which
size(A,dim) = 1.

Algorithm ndims(x) is length(size(x)).

See Also size

newplot

2-1522

2newplotPurpose Determine where to draw graphics objects

Syntax newplot
h = newplot
h = newplot(hsave)

Description newplot prepares a figure and axes for subsequent graphics commands.

h = newplot prepares a figure and axes for subsequent graphics commands
and returns a handle to the current axes.

h = newplot(hsave) prepares and returns an axes, but does not delete any
objects whose handles appear in hsave. If hsave is specified, the figure and axes
containing hsave are prepared for plotting instead of the current axes of the
current figure. If hsave is empty, newplot behaves as if it were called without
any inputs.

Remarks Use newplot at the beginning of high-level graphics M-files to determine which
figure and axes to target for graphics output. Calling newplot can change the
current figure and current axes. Basically, there are three options when you
are drawing graphics in existing figures and axes:

• Add the new graphics without changing any properties or deleting any
objects.

• Delete all existing objects whose handles are not hidden before drawing the
new objects.

• Delete all existing objects regardless of whether or not their handles are
hidden, and reset most properties to their defaults before drawing the new
objects (refer to the following table for specific information).

The figure and axes NextPlot properties determine how newplot behaves. The
following two tables describe this behavior with various property values.

newplot

2-1523

First, newplot reads the current figure’s NextPlot property and acts
accordingly.

After newplot establishes which figure to draw in, it reads the current axes’
NextPlot property and acts accordingly.

NextPlot What Happens

add Draw to the current figure without clearing any
graphics objects already present.

replacechildren Remove all child objects whose HandleVisibility
property is set to on and reset figure NextPlot
property to add.
This clears the current figure and is equivalent to
issuing the clf command.

replace Remove all child objects (regardless of the setting of
the HandleVisibility property) and reset figure
properties to their defaults, except

• NextPlot is reset to add regardless of user-defined
defaults.

• Position, Units, PaperPosition, and PaperUnits
are not reset.

This clears and resets the current figure and is
equivalent to issuing the clf reset command.

NextPlot Description

add Draw into the current axes, retaining all graphics
objects already present.

replacechildren Remove all child objects whose HandleVisibility
property is set to on, but do not reset axes properties.
This clears the current axes like the cla command.

newplot

2-1524

See Also axes, cla, clf, figure, hold, ishold, reset

The NextPlot property for figure and axes graphics objects

“Figure Windows” for related functions

replace Remove all child objects (regardless of the setting of
the HandleVisibility property) and reset axes
properties to their defaults, except Position and
Units.
This clears and resets the current axes like the cla
reset command.

NextPlot Description

nextpow2

2-1525

2nextpow2Purpose Next power of two

Syntax p = nextpow2(A)

Description p = nextpow2(A) returns the smallest power of two that is greater than or
equal to the absolute value of A. (That is, p that satisfies 2^p >= abs(A)).

This function is useful for optimizing FFT operations, which are most efficient
when sequence length is an exact power of two.

If A is non-scalar, nextpow2 returns the smallest power of two greater than or
equal to length(A).

Examples For any integer n in the range from 513 to 1024, nextpow2(n) is 10.

For a 1-by-30 vector A, length(A) is 30 and nextpow2(A) is 5.

See Also fft, log2, pow2

nnz

2-1526

2nnzPurpose Number of nonzero matrix elements

Syntax n = nnz(X)

Description n = nnz(X) returns the number of nonzero elements in matrix X.

The density of a sparse matrix is nnz(X)/prod(size(X)).

Examples The matrix

 w = sparse(wilkinson(21));

is a tridiagonal matrix with 20 nonzeros on each of three diagonals, so
nnz(w) = 60.

See Also find, isa, nonzeros, nzmax, size, whos

noanimate

2-1527

2noanimatePurpose Change EraseMode of all objects to normal

Syntax noanimate(state,fig_handle)
noanimate(state)

Description noanimate(state,fig_handle) sets the EraseMode of all image, line, patch
surface, and text graphics objects in the specified figure to normal. state can
be the following strings:

• 'save' — Set the values of the EraseMode properties to normal for all the
appropriate objects in the designated figure.

• 'restore' — Restore the EraseMode properties to the previous values (i.e.,
the values before calling noanimate with the 'save' argument).

noanimate(state) operates on the current figure.

noanimate is useful if you want to print the figure to a TIFF or JPEG format.

See Also print

“Animation” for related functions

nonzeros

2-1528

2nonzerosPurpose Nonzero matrix elements

Syntax s = nonzeros(A)

Description s = nonzeros(A) returns a full column vector of the nonzero elements in A,
ordered by columns.

This gives the s, but not the i and j, from [i,j,s] = find(A). Generally,

length(s) = nnz(A) <= nzmax(A) <= prod(size(A))

See Also find, isa, nnz, nzmax, size, whos

norm

2-1529

2normPurpose Vector and matrix norms

Syntax n = norm(A)
n = norm(A,p)

Description The norm of a matrix is a scalar that gives some measure of the magnitude of
the elements of the matrix. The norm function calculates several different types
of matrix norms:

n = norm(A) returns the largest singular value of A, max(svd(A)).

n = norm(A,p) returns a different kind of norm, depending on the value of p.

When A is a vector:

Remarks Note that norm(x) is the Euclidean length of a vector x. On the other hand,
MATLAB uses "length" to denote the number of elements n in a vector. This
example uses norm(x)/sqrt(n) to obtain the root-mean-square (RMS) value of
an n-element vector x.

If p is... Then norm returns...

1 The 1-norm, or largest column sum of A, max(sum(abs(A)).

2 The largest singular value (same as norm(A)).

inf The infinity norm, or largest row sum of A,
max(sum(abs(A'))).

'fro' The Frobenius-norm of matrix A, sqrt(sum(diag(A'∗ A))).

norm(A,p) Returns sum(abs(A).^p)^(1/p), for any 1 <= p <= ∞.

norm(A) Returns norm(A,2).

norm(A,inf) Returns max(abs(A)).

norm(A,-inf) Returns min(abs(A)).

norm

2-1530

x = [0 1 2 3]
x =
 0 1 2 3

sqrt(0+1+4+9) % Euclidean length
ans =
 3.7417

norm(x)
ans =
 3.7417

n = length(x) % Number of elements
n =
 4

rms = 3.7417/2 % rms = norm(x)/sqrt(n)
rms =
 1.8708

See Also cond, condest, normest, rcond, svd

normest

2-1531

2normestPurpose 2-norm estimate

Syntax nrm = normest(S)
nrm = normest(S,tol)
[nrm,count] = normest(...)

Description This function is intended primarily for sparse matrices, although it works
correctly and may be useful for large, full matrices as well.

nrm = normest(S) returns an estimate of the 2-norm of the matrix S.

nrm = normest(S,tol) uses relative error tol instead of the default tolerance
1.e-6. The value of tol determines when the estimate is considered
acceptable.

[nrm,count] = normest(...) returns an estimate of the 2-norm and also
gives the number of power iterations used.

Examples The matrix W = gallery('wilkinson',101) is a tridiagonal matrix. Its order,
101, is small enough that norm(full(W)), which involves svd(full(W)), is
feasible. The computation takes 4.13 seconds (on one computer) and produces
the exact norm, 50.7462. On the other hand, normest(sparse(W)) requires
only 1.56 seconds and produces the estimated norm, 50.7458.

Algorithm The power iteration involves repeated multiplication by the matrix S and its
transpose, S'. The iteration is carried out until two successive estimates agree
to within the specified relative tolerance.

See Also cond, condest, norm, rcond, svd

notebook

2-1532

2notebookPurpose Open M-book in Microsoft Word (Windows only)

Syntax notebook
notebook('filename')
notebook('-setup')
notebook('-setup', wordver, wordloc, templateloc)

Description notebook by itself, launches Microsoft Word and creates a new M-book called
Document 1.

notebook('filename') launches Microsoft Word and opens the M-book
filename.

notebook('-setup') runs an interactive setup function for the Notebook. You
are prompted for the version of Microsoft Word, and if necessary, for the
locations of several files.

notebook('-setup', wordver, wordloc, templateloc) sets up the
Notebook using the specified information.

See Also Notebook for Publishing to Word

wordver Version of Microsoft Word, either 97, 2000, or 2002 (for XP)

wordloc Directory containing winword.exe

templateloc Directory containing Microsoft Word template directory

now

2-1533

2nowPurpose Current date and time

Syntax t = now

Description t = now returns the current date and time as a serial date number. To return
the time only, use rem(now,1). To return the date only, use floor(now).

Examples t1 = now, t2 = rem(now,1)

t1 =

 7.2908e+05

t2 =

 0.4013

See Also clock, date, datenum

nthroot

2-1534

2nthrootPurpose Real nth root of real numbers

Syntax y = nthroot(X, n)

Description y = nthroot(X, n) returns the real nth root of the elements of X. Both X and
n must be real and n must be a scalar. If X has negative entries, n must be an
odd integer.

Example nthroot(-2, 3)

returns the real cube root of -2.

ans =

 -1.2599

By comparison,

(-2)^(1/3)

returns a complex cube root of -2.

ans =

 0.6300 + 1.0911i

See Also power

null

2-1535

2nullPurpose Null space of a matrix

Syntax Z = null(A)
Z = null(A,'r')

Description Z = null(A) is an orthonormal basis for the null space of A obtained from the
singular value decomposition. That is, A*Z has negligible elements, size(Z,2)
is the nullity of A, and Z'*Z = I.

Z = null(A,'r') is a "rational" basis for the null space obtained from the
reduced row echelon form. A*Z is zero, size(Z,2) is an estimate for the nullity
of A, and, if A is a small matrix with integer elements, the elements of the
reduced row echelon form (as computed using rref) are ratios of small integers.

The orthonormal basis is preferable numerically, while the rational basis may
be preferable pedagogically.

Example Example 1. Compute the orthonormal basis for the null space of a matrix A.

A = [1 2 3
 1 2 3
 1 2 3];

Z = null(A)

Z =
 0.9636 0
 -0.1482 -0.8321
 -0.2224 0.5547

A*Z

ans =
 1.0e-015 *
 0.2220 0.2220
 0.2220 0.2220
 0.2220 0.2220

Z'*Z

null

2-1536

ans =
 1.0000 -0.0000
 -0.0000 1.0000

Example 2. Compute the rational basis for the null space of the same matrix A.

ZR = null(A,'r')

ZR =
 -2 -3
 1 0
 0 1

A*ZR

ans =

 0 0
 0 0
 0 0

See Also orth, rank, rref, svd

num2cell

2-1537

2num2cellPurpose Convert a numeric array into a cell array

Syntax c = num2cell(A)
c = num2cell(A,dims)

Description c = num2cell(A) converts the matrix A into a cell array by placing each
element of A into a separate cell. Cell array c will be the same size as matrix A.

c = num2cell(A,dims) converts the matrix A into a cell array by placing the
dimensions specified by dims into separate cells. C will be the same size as A
except that the dimensions matching dims will be 1.

Examples The statement

num2cell(A,2)

places the rows of A into separate cells. Similarly

num2cell(A,[1 3])

places the column-depth pages of A into separate cells.

See Also cat, mat2cell, cell2mat

num2hex

2-1538

2num2hexPurpose Convert singles and doubles to IEEE hexadecimal strings.

Syntax num2hex(X)

Description If X is a single or double precision array with n elements, num2hex(X) is an
n-by-8 or n-by-16 char array of the hexadecimal floating-point representation.
The same representation is printed with format hex.

Examples num2hex([1 0 0.1 -pi Inf NaN])

returns

ans =

3ff0000000000000
0000000000000000
3fb999999999999a
c00921fb54442d18
7ff0000000000000
fff8000000000000

num2hex(single([1 0 0.1 -pi Inf NaN]))

returns

ans =

3f800000
00000000
3dcccccd
c0490fdb
7f800000
ffc00000

See Also hex2num, dec2hex, format

num2str

2-1539

2num2strPurpose Number to string conversion

Syntax str = num2str(A)
str = num2str(A,precision)
str = num2str(A,format)

Description The num2str function converts numbers to their string representations. This
function is useful for labeling and titling plots with numeric values.

str = num2str(a) converts array A into a string representation str with
roughly four digits of precision and an exponent if required.

str = num2str(a,precision) converts the array A into a string
representation str with maximum precision specified by precision. Argument
precision specifies the number of digits the output string is to contain. The
default is four.

str = num2str(A,format) converts array A using the supplied format. By
default, this is '%11.4g', which signifies four significant digits in exponential
or fixed-point notation, whichever is shorter. (See fprintf for format string
details.)

Examples num2str(pi) is 3.142.

num2str(eps) is 2.22e-16.

num2str with a format of %10.5e\n returns a matrix of strings in exponential
format, having 5 decimal places, with each element separated by a newline
character:

x = rand(3) * 9999; % Create a 2-by-3 matrix.
x(3,:) = [];

A = num2str(x, '%10.5e\n') % Convert to string array.
A =
 6.87255e+003
 1.55597e+003
 8.55890e+003

 3.46077e+003

num2str

2-1540

 1.91097e+003
 4.90201e+003

See Also fprintf, int2str, sprintf

numel

2-1541

2numelPurpose Number of elements in array or subscripted array expression

Syntax n = numel(A)
n = numel(A,varargin)

Description n = numel(A) returns the the number of elements, n, in array A.

n = numel(A,varargin) returns the number of subscripted elements, n, in
A(index1,index2,...,indexn), where varargin is a cell array whose
elements are index1, index2, ..., indexn.

MATLAB implicitly calls the numel built-in function whenever an expression
such as A{index1,index2,...,indexN} or A.fieldname generates a
comma-separated list.

numel works with the overloaded subsref and subsasgn functions. It computes
the number of expected outputs (nargout) returned from subsref. It also
computes the number of expected inputs (nargin) to be assigned using
subsasgn. The nargin value for the overloaded subsasgn function consists of
the variable being assigned to, the structure array of subscripts, and the value
returned by numel.

As a class designer, you must ensure that the value of n returned by the built-in
numel function is consistent with the class design for that object. If n is different
from either the nargout for the overloaded subsref function or the nargin for
the overloaded subsasgn function, then you need to overload numel to return a
value of n that is consistent with the class' subsref and subsasgn functions.
Otherwise, MATLAB produces errors when calling these functions.

Examples Create a 4-by-4-by-2 matrix. numel counts 32 elments in the matrix.

a = magic(4);
a(:,:,2) = a'

a(:,:,1) =
 16 2 3 13
 5 11 10 8
 9 7 6 12
 4 14 15 1

a(:,:,2) =

numel

2-1542

 16 5 9 4
 2 11 7 14
 3 10 6 15
 13 8 12 1

numel(a)
ans =
 32

See Also nargin, nargout, prod, size, subsasgn, subsref

ode15i

2-1543

2ode15i
Purpose Solve fully implicit differential equations, variable order method

Syntax [t,Y] = ode15i(odefun,tspan,y0,yp0)
[t,Y] = ode15i(odefun,tspan,y0,yp0,options)
[t,Y,TE,YE,IE] = ode15i(...)
sol = ode15i(...)

Arguments The following table lists the input arguments for ode15i.

The following table lists the output arguments for ode15i.

Description [t,Y] = ode15i(odefun,tspan,y0,yp0) with tspan = [t0 tf] integrates the
system of differential equations from time t0 to tf with initial
conditions y0 and yp0. Function ode15i solves ODEs and DAEs of index 1. The
initial conditions must be consistent, meaning that . You can
use the function decic to compute consistent initial conditions close to guessed
values. Function odefun(t,y,yp), for a scalar t and column vectors y and yp,
must return a column vector corresponding to . Each row in the
solution array Y corresponds to a time returned in the column vector t. To
obtain solutions at specific times t0,t1,...,tf (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

odefun A function that evaluates the left side of the differential equations,
which are of the form .

tspan A vector specifying the interval of integration, [t0,tf]. To obtain
solutions at specific times (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

y0, yp0 Vectors of initial conditions for and respectively.

options Optional integration argument created using the odeset function.
See odeset for details.

t Column vector of time points

Y Solution array. Each row in y corresponds to the solution at a time
returned in the corresponding row of t.

f t y y ′, ,() 0=

y y ′

f t y y′, ,() 0=

f t0 y0 yp0, ,() 0=

f t y y ′, ,()

ode15i

2-1544

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function odefun, if necessary.

[t,Y] = ode15i(odefun,tspan,y0,yp0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly used
options include a scalar relative error tolerance RelTol (1e-3 by default) and a
vector of absolute error tolerances AbsTol (all components 1e-6 by default). See
odeset for details.

[t,Y,TE,YE,IE] = ode15i(odefun,tspan,y0,yp0,options...) with the
'Events' property in options set to a function events, solves as above while
also finding where functions of , called event functions, are zero. The
function events is of the form
[value,isterminal,direction] = events(t,y,yp) and includes the
necessary event functions. Code the function events so that the ith element of
each output vector corresponds to the ith event. For the ith event function in
events:

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this event
function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1 if only the
zeros where the event function increases, and -1 if only the zeros where the
event function decreases.

Output TE is a column vector of times at which events occur. Rows of YE are the
corresponding solutions, and indices in vector IE specify which event occurred.
See “Changing ODE Integration Properties” in the MATLAB documentation
for more information.

sol = ode15i(odefun,[t0 tfinal],y0,yp0,...) returns a structure that
can be used with deval to evaluate the solution at any point between t0 and tf.
The structure sol always includes these fields:

t y y ′, ,()

ode15i

2-1545

If you specify the Events option and events are detected, sol also includes
these fields:

Options ode15i accepts the following parameters in options. For more information, see
odeset and “Changing ODE Integration Properties” in the MATLAB
documentation.

Solver Output
If you specify an output function as the value of the OutputFcn property, the
solver calls it with the computed solution after each time step. Four output
functions are provided: odeplot, odephas2, odephas3, odeprint. When you call
the solver with no output arguments, it calls the default odeplot to plot the
solution as it is computed. odephas2 and odephas3 produce two- and
three-dimensional phase plane plots, respectively. odeprint displays the
solution components on the screen. By default, the ODE solver passes all
components of the solution to the output function. You can pass only specific
components by providing a vector of indices as the value of the OutputSel

sol.x Steps chosen by the solver. If you specify the Events option
and a terminal event is detected, sol.x(end) contains the
end of the step at which the event occurred.

sol.y Each column sol.y(:,i) contains the solution at sol.x(i).

sol.xe Points at which events, if any, occurred. sol.xe(end)
contains the exact point of a terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function specified in
the Events option. The values indicate which event the solver
detected.

Error control RelTol, AbsTol, NormControl

Solver output OutputFcn, OutputSel, Refine, Stats

Event location Events

Step size MaxStep, InitialStep

Jacobian matrix Jacobian, JPattern, Vectorized

ode15i

2-1546

property. For example, if you call the solver with no output arguments and set
the value of OutputSel to [1,3], the solver plots solution components 1 and 3
as they are computed.

Jacobian Matrices
The Jacobian matrices and are critical to reliability and
efficiency. You can provide these matrices as one of the following:

• Function of the form [dfdy,dfdyp] = FJAC(t,y,yp) that computes the
Jacobian matrices. If FJAC returns an empty matix [] for either dfdy or
dfdyp, then ode15i approximates that matrix by finite differences.

• Cell array of two constant matrices {dfdy,dfdyp}, either of which could be
empty.

Use odeset to set the Jacobian option to the function or cell array. If you do
not set the Jacobian option, ode15i approximates both Jacobian matrices by
finite differences.

For ode15i, Vectorized is a two-element cell array. Set the first element to
'on' if odefun(t,[y1,y2,...],yp) returns
[odefun(t,y1,yp),odefun(t,y2,yp),...]. Set the second element to 'on' if
odefun(t,y,[yp1,yp2,...]) returns
[odefun(t,y,yp1),odefun(t,y,yp2),...]. The default value of Vectorized
is {'off','off'}.

For ode15i, JPattern is also a two-element sparse matrix cell array. If
or is a sparse matrix, set JPattern to the sparsity patterns,
{SPDY,SPDYP}. A sparsity pattern of is a sparse matrix SPDY with
SPDY(i,j) = 1 if component i of f(t,y,yp) depends on component j of y, and
0 otherwise. Use SPDY = [] to indicate that is a full matrix. Similarly
for and SPDYP. The default value of JPattern is {[],[]}.

Examples Example 1. This example uses uses a helper function decic to hold fixed the
initial value for and compute a consistent intial value for for the
Weissinger implicit ODE. The Weissinger function evaluates the residual of
the implicit ODE.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;

∂f ∂y⁄ ∂f ∂y ′⁄

∂f ∂y⁄
∂f ∂y ′⁄

∂f ∂y⁄

∂f ∂y⁄
∂f ∂y ′⁄

y t0() y ′ t0()

ode15i

2-1547

[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

The example uses ode15i to solve the ODE, and then plots the numerical
solution against the analytical solution.

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);
ytrue = sqrt(t.^2 + 0.5);
plot(t,y,t,ytrue,'o');

Other Examples. These demos provide examples of implicit ODEs: ihb1dae,
iburgersode.

See Also decic, deval, odeget, odeset, @ (function handle)

Other ODE initial value problem solvers: ode45, ode23, ode113, ode15s,
ode23s, ode23t, ode23tb

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

11

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1548

2ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tbPurpose Solve initial value problems for ordinary differential equations (ODEs)

Syntax [t,Y] = solver(odefun,tspan,y0)
[t,Y] = solver(odefun,tspan,y0,options)
[t,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t, or
ode23tb.

Arguments The following table describes the input arguments to the solvers.

odefun A function that evaluates the right side of the differential
equations. All solvers solve systems of equations in the form

 or problems that involve a mass matrix,
. The ode23s solver can solve only equations

with constant mass matrices. ode15s and ode23t can solve
problems with a mass matrix that is singular, i.e.,
differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration, [t0,tf]. The solver
imposes the initial conditions at tspan(1), and integrates from
tspan(1) to tspan(end). To obtain solutions at specific times (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].
For tspan vectors with two elements [t0 tf], the solver returns
the solution evaluated at every integration step. For tspan vectors
with more than two elements, the solver returns solutions
evaluated at the given time points. The time values must be in
order, either increasing or decreasing.

y ′ f t y,()=
M t y,()y ′ f t y,()=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1549

The following table lists the output arguments for the solvers.

Description [t,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates the
system of differential equations from time t0 to tf with initial
conditions y0. Function f = odefun(t,y), for a scalar t and a column vector y,
must return a column vector f corresponding to . Each row in the solution
array Y corresponds to a time returned in column vector T. To obtain solutions
at the specific times t0, t1,...,tf (all increasing or all decreasing), use
tspan = [t0,t1,...,tf].

Parameterizing Functions Called by Function Functions, in the online
MATLAB documentation, explains how to provide addition parameters to the
function odefun, if necessary.

Specifying tspan with more than two elements does not affect the
internal time steps that the solver uses to traverse the interval
from tspan(1) to tspan(end). All solvers in the ODE suite obtain
output values by means of continuous extensions of the basic
formulas. Although a solver does not necessarily step precisely to a
time point specified in tspan, the solutions produced at the
specified time points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two elements has little effect on
the efficiency of computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change the default
integration properties. This is the fourth input argument.

[t,y] = solver(odefun,tspan,y0,options)

 You can create options using the odeset function. See odeset for
details.

t Column vector of time points

Y Solution array. Each row in y corresponds to the solution at a time
returned in the corresponding row of t.

y ′ f t y,()=

f t y,()

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1550

[t, Y] = solver(odefun,tspan,y0,options) solves as above with default
integration parameters replaced by property values specified in options, an
argument created with the odeset function. Commonly used properties include
a scalar relative error tolerance RelTol (1e-3 by default) and a vector of
absolute error tolerances AbsTol (all components are 1e-6 by default). See
odeset for details.

[t,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves as above while
also finding where functions of , called event functions, are zero. For each
event function, you specify whether the integration is to terminate at a zero
and whether the direction of the zero crossing matters. Do this by setting the
'Events' property to a function, e.g., events or @events, and creating a
function [value,isterminal,direction] = events(t,y). For the ith event
function in events:

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this event
function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1 if only the
zeros where the event function increases, and -1 if only the zeros where the
event function decreases.

Corresponding entries in TE, YE, and IE return, respectively, the time at which
an event occurs, the solution at the time of the event, and the index i of the
event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you can use
with deval to evaluate the solution at any point on the interval [t0,tf]. You
must pass odefun as a function handle. The structure sol always includes
these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution at sol.x(i).

sol.solver Solver name.

t y(,)

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1551

If you specify the Events option and events are detected, sol also includes
these fields:

If you specify an output function as the value of the OutputFcn property, the
solver calls it with the computed solution after each time step. Four output
functions are provided: odeplot, odephas2, odephas3, odeprint. When you call
the solver with no output arguments, it calls the default odeplot to plot the
solution as it is computed. odephas2 and odephas3 produce two- and
three-dimnesional phase plane plots, respectively. odeprint displays the
solution components on the screen. By default, the ODE solver passes all
components of the solution to the output function. You can pass only specific
components by providing a vector of indices as the value of the OutputSel
property. For example, if you call the solver with no output arguments and set
the value of OutputSel to [1,3], the solver plots solution components 1 and 3
as they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian matrix
 is critical to reliability and efficiency. Use odeset to set Jacobian to

@FJAC if FJAC(T,Y) returns the Jacobian or to the matrix if the
Jacobian is constant. If the Jacobian property is not set (the default), is
approximated by finite differences. Set the Vectorized property 'on' if the ODE
function is coded so that odefun(T,[Y1,Y2 ...]) returns
[odefun(T,Y1),odefun(T,Y2) ...]. If is a sparse matrix, set the JPattern
property to the sparsity pattern of , i.e., a sparse matrix S with S(i,j) =
1 if the ith component of depends on the jth component of , and 0
otherwise.

The solvers of the ODE suite can solve problems of the form
, with time- and state-dependent mass matrix . (The

ode23s solver can solve only equations with constant mass matrices.) If a
problem has a mass matrix, create a function M = MASS(t,y) that returns the

sol.xe Points at which events, if any, occurred. sol.xe(end)
contains the exact point of a terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function specified in
the Events option. The values indicate which event the solver
detected.

∂f ∂y⁄
∂f ∂y⁄ ∂f ∂y⁄

∂f ∂y⁄

∂f ∂y⁄
∂f ∂y⁄

f t y,() y

M t y,()y ′ f t y,()= M

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1552

value of the mass matrix, and use odeset to set the Mass property to @MASS. If
the mass matrix is constant, the matrix should be used as the value of the Mass
property. Problems with state-dependent mass matrices are more difficult:

• If the mass matrix does not depend on the state variable and the function
MASS is to be called with one input argument, t, set the MStateDependence
property to 'none'.

• If the mass matrix depends weakly on , set MStateDependence to 'weak' (the
default) and otherwise, to 'strong'. In either case, the function MASS is called
with the two arguments (t,y).

If there are many differential equations, it is important to exploit sparsity:

• Return a sparse .

• Supply the sparsity pattern of using the JPattern property or a
sparse using the Jacobian property.

• For strongly state-dependent , set MvPattern to a sparse matrix S
with S(i,j) = 1 if for any k, the (i,k) component of depends on
component j of , and 0 otherwise.

If the mass matrix is singular, then is a differential
algebraic equation. DAEs have solutions only when is consistent, that is, if
there is a vector such that . The ode15s and
ode23t solvers can solve DAEs of index 1 provided that y0 is sufficiently close
to being consistent. If there is a mass matrix, you can use odeset to set the
MassSingular property to 'yes', 'no', or 'maybe'. The default value of
'maybe' causes the solver to test whether the problem is a DAE. You can
provide yp0 as the value of the InitialSlope property. The default is the zero
vector. If a problem is a DAE, and y0 and yp0 are not consistent, the solver
treats them as guesses, attempts to compute consistent values that are close to
the guesses, and continues to solve the problem. When solving DAEs, it is very
advantageous to formulate the problem so that is a diagonal matrix (a
semi-explicit DAE).

y

y

M t y,()
∂f ∂y⁄

∂f ∂y⁄
M t y,()

M t y,()
y

M M t y,()y ′ f t y,()=
y0

yp0 M t0 y0,()yp0 f t0 y0,()=

M

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1553

The algorithms used in the ODE solvers vary according to order of accuracy [6]
and the type of systems (stiff or nonstiff) they are designed to solve. See
“Algorithms” on page 2-1556 for more details.

Options Different solvers accept different parameters in the options list. For more
information, see odeset and “Changing ODE Integration Properties” in the
MATLAB documentation.

Solver Problem
Type

Order of
Accuracy

When to Use

ode45 Nonstiff Medium Most of the time. This should be the first solver you
try.

ode23 Nonstiff Low For problems with crude error tolerances or for
solving moderately stiff problems.

ode113 Nonstiff Low to high For problems with stringent error tolerances or for
solving computationally intensive problems.

ode15s Stiff Low to
medium

If ode45 is slow because the problem is stiff.

ode23s Stiff Low If using crude error tolerances to solve stiff systems
and the mass matrix is constant.

ode23t Moderately
Stiff

Low For moderately stiff problems if you need a solution
without numerical damping.

ode23tb Stiff Low If using crude error tolerances to solve stiff systems.

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1554

Examples Example 1. An example of a nonstiff system is the system of equations
describing the motion of a rigid body without external forces.

To simulate this system, create a function rigid containing the equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset command and
solve on a time interval [0 12] with an initial condition vector [0 1 1] at time
0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[t,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

y ′1 y2 y3=

y ′2 y1 y3–=

y ′3 0.51 y1 y2–=

y1 0() 0=
y2 0() 1=

y3 0() 1=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1555

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

Example 2. An example of a stiff system is provided by the van der Pol
equations in relaxation oscillation. The limit cycle has portions where the
solution components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

To simulate this system, create a function vdp1000 containing the equations

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector
dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

0 2 4 6 8 10 12
−1.5

−1

−0.5

0

0.5

1

1.5

y ′1 y2=

y ′2 1000 1 y1
2–()y2 y1–=

y1 0() 0=
y2 0() 1=

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1556

For this problem, we will use the default relative and absolute tolerances (1e-3
and 1e-6, respectively) and solve on a time interval of [0 3000] with initial
condition vector [2 0] at time 0.

[t,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the solution

plot(T,Y(:,1),'-o')

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the Dormand-Prince
pair. It is a one-step solver – in computing y(tn), it needs only the solution at
the immediately preceding time point, y(tn-1). In general, ode45 is the best
function to apply as a “first try” for most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of Bogacki
and Shampine. It may be more efficient than ode45 at crude tolerances and in
the presence of moderate stiffness. Like ode45, ode23 is a one-step solver. [2]

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It may be
more efficient than ode45 at stringent tolerances and when the ODE file
function is particularly expensive to evaluate. ode113 is a multistep solver – it

0 500 1000 1500 2000 2500 3000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1557

normally needs the solutions at several preceding time points to compute the
current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they appear to
be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation formulas
(BDFs, also known as Gear’s method) that are usually less efficient. Like
ode113, ode15s is a multistep solver. Try ode15s when ode45 fails, or is very
inefficient, and you suspect that the problem is stiff, or when solving a
differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because it is a
one-step solver, it may be more efficient than ode15s at crude tolerances. It can
solve some kinds of stiff problems for which ode15s is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free” interpolant.
Use this solver if the problem is only moderately stiff and you need a solution
without numerical damping. ode23t can solve DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta formula
with a first stage that is a trapezoidal rule step and a second stage that is a
backward differentiation formula of order two. By construction, the same
iteration matrix is used in evaluating both stages. Like ode23s, this solver may
be more efficient than ode15s at crude tolerances. [8], [1]

See Also deval, ode15i, odeget, odeset, @ (function handle)

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose, and
R. Smith, “Transient Simulation of Silicon Devices and Circuits,” IEEE Trans.
CAD, 4 (1985), pp 436-451.

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta formulas,”
Appl. Math. Letters, Vol. 2, 1989, pp 1-9.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp 19-26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb

2-1558

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and Software,
Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential Equations,
Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,” SIAM
Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving Index-1
DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41, 1999, pp 538-552.

odefile

2-1559

2odefilePurpose Define a differential equation problem for ordinary differential equation (ODE)
solvers

Note This reference page describes the odefile and the syntax of the ODE
solvers used in MATLAB, Version 5. MATLAB, Version 6, supports the
odefile for backward compatibility, however the new solver syntax does not
use an ODE file. New functionality is available only with the new syntax. For
information about the new syntax, see odeset or any of the ODE solvers.

Description odefile is not a command or function. It is a help entry that describes how to
create an M-file defining the system of equations to be solved. This definition
is the first step in using any of the MATLAB ODE solvers. In MATLAB
documentation, this M-file is referred to as an odefile, although you can give
your M-file any name you like.

You can use the odefile M-file to define a system of differential equations in
one of these forms

or

where:

• is a scalar independent variable, typically representing time.

• is a vector of dependent variables.

• is a function of and returning a column vector the same length as .

• is a time-and-state-dependent mass matrix.

The ODE file must accept the arguments t and y, although it does not have to
use them. By default, the ODE file must return a column vector the same
length as y.

All of the solvers of the ODE suite can solve , except ode23s,
which can only solve problems with constant mass matrices. The ode15s and

y ′ f t y,()=

M t y,()y ′ f t y,()v=

t

y

f t y y

M t y,()

M t y,()y ′ f t y,()=

odefile

2-1560

ode23t solvers can solve some differential-algebraic equations (DAEs) of the
form .

Beyond defining a system of differential equations, you can specify an entire
initial value problem (IVP) within the ODE M-file, eliminating the need to
supply time and initial value vectors at the command line (see Examples on
page 2-1562).

To Use the ODE File Template

• Enter the command help odefile to display the help entry.

• Cut and paste the ODE file text into a separate file.

• Edit the file to eliminate any cases not applicable to your IVP.

• Insert the appropriate information where indicated. The definition of the
ODE system is required information.

switch flag
 case '' % Return dy/dt = f(t,y).
 varargout{1} = f(t,y,p1,p2);
 case 'init' % Return default [tspan,y0,options].
 [varargout{1:3}] = init(p1,p2);
 case 'jacobian' % Return Jacobian matrix df/dy.
 varargout{1} = jacobian(t,y,p1,p2);
 case 'jpattern' % Return sparsity pattern matrix S.
 varargout{1} = jpattern(t,y,p1,p2);
 case 'mass' % Return mass matrix.
 varargout{1} = mass(t,y,p1,p2);
 case 'events' % Return [value,isterminal,direction].
 [varargout{1:3}] = events(t,y,p1,p2);
 otherwise
 error(['Unknown flag ''' flag '''.']);
 end
% ---
function dydt = f(t,y,p1,p2)
 dydt = < Insert a function of t and/or y, p1, and p2 here. >
% ---
function [tspan,y0,options] = init(p1,p2)
 tspan = < Insert tspan here. >;
 y0 = < Insert y0 here. >;

M t()y ′ f t y,()=

odefile

2-1561

 options = < Insert options = odeset(...) or [] here. >;
% --
function dfdy = jacobian(t,y,p1,p2)
 dfdy = < Insert Jacobian matrix here. >;
% --
function S = jpattern(t,y,p1,p2)
 S = < Insert Jacobian matrix sparsity pattern here. >;
% --
function M = mass(t,y,p1,p2)
 M = < Insert mass matrix here. >;
% --
function [value,isterminal,direction] = events(t,y,p1,p2)
 value = < Insert event function vector here. >
 isterminal = < Insert logical ISTERMINAL vector here.>;
 direction = < Insert DIRECTION vector here.>;

Notes

1 The ODE file must accept t and y vectors from the ODE solvers and must
return a column vector the same length as y. The optional input argument
flag determines the type of output (mass matrix, Jacobian, etc.) returned
by the ODE file.

2 The solvers repeatedly call the ODE file to evaluate the system of
differential equations at various times. This is required information – you
must define the ODE system to be solved.

3 The switch statement determines the type of output required, so that the
ODE file can pass the appropriate information to the solver. (See notes 4 - 9.)

4 In the default initial conditions ('init') case, the ODE file returns basic
information (time span, initial conditions, options) to the solver. If you omit
this case, you must supply all the basic information on the command line.

5 In the 'jacobian' case, the ODE file returns a Jacobian matrix to the
solver. You need only provide this case when you want to improve the
performance of the stiff solvers ode15s, ode23s, ode23t, and ode23tb.

6 In the 'jpattern' case, the ODE file returns the Jacobian sparsity pattern
matrix to the solver. You need to provide this case only when you want to
generate sparse Jacobian matrices numerically for a stiff solver.

odefile

2-1562

7 In the 'mass' case, the ODE file returns a mass matrix to the solver. You
need to provide this case only when you want to solve a system in the form

.

8 In the 'events' case, the ODE file returns to the solver the values that it
needs to perform event location. When the Events property is set to on, the
ODE solvers examine any elements of the event vector for transitions to,
from, or through zero. If the corresponding element of the logical
isterminal vector is set to 1, integration will halt when a zero-crossing is
detected. The elements of the direction vector are -1, 1, or 0, specifying
that the corresponding event must be decreasing, increasing, or that any
crossing is to be detected.

9 An unrecognized flag generates an error.

Examples The van der Pol equation, , is equivalent to a system
of coupled first-order differential equations.

The M-file

function out1 = vdp1(t,y)
out1 = [y(2); (1-y(1)^2)*y(2) - y(1)];

defines this system of equations (with).

To solve the van der Pol system on the time interval [0 20] with initial values
(at time 0) of y(1) = 2 and y(2) = 0, use

[t,y] = ode45('vdp1',[0 20],[2; 0]);
plot(t,y(:,1),'-',t,y(:,2),'-.')

M t y,()y ′ f t y,()=

y ′ ′ 1 µ 1 y1
2–() y ′– y1+ 0=

y ′1 y2=

y ′2 µ 1 y1
2–()y2 y1–=

µ 1=

odefile

2-1563

To specify the entire initial value problem (IVP) within the M-file, rewrite vdp1
as follows.

function [out1,out2,out3] = vdp1(t,y,flag)
if nargin < 3 | isempty(flag)
 out1 = [y(1).*(1-y(2).^2)-y(2); y(1)];
else
 switch(flag)
 case 'init' % Return tspan, y0, and options.
 out1 = [0 20];
 out2 = [2; 0];
 out3 = [];
 otherwise
 error(['Unknown request ''' flag '''.']);
 end
end

You can now solve the IVP without entering any arguments from the command
line.

[t,Y] = ode23('vdp1')

0 2 4 6 8 10 12 14 16 18 20
−3

−2

−1

0

1

2

3

odefile

2-1564

In this example the ode23 function looks to the vdp1 M-file to supply the
missing arguments. Note that, once you’ve called odeset to define options, the
calling syntax

[t,Y] = ode23('vdp1',[],[],options)

also works, and that any options supplied via the command line override
corresponding options specified in the M-file (see odeset).

See Also The MATLAB Version 5 help entries for the ODE solvers and their associated
functions: ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb, odeget,
odeset

Type at the MATLAB command line: more on, type function, more off.
The Version 5 help follows the Version 6 help.

odeget

2-1565

2odegetPurpose Extract properties from options structure created with odeset

Syntax o = odeget(options,'name')
o = odeget(options,'name',default)

Description o = odeget(options,'name') extracts the value of the property specified by
string 'name' from integrator options structure options, returning an empty
matrix if the property value is not specified in options. It is only necessary to
type the leading characters that uniquely identify the property name. Case is
ignored for property names. The empty matrix [] is a valid options argument.

o = odeget(options,'name',default) returns o = default if the named
property is not specified in options.

Example Having constructed an ODE options structure,

options = odeset('RelTol',1e-4,'AbsTol',[1e-3 2e-3 3e-3]);

you can view these property settings with odeget.

odeget(options,'RelTol')
ans =

 1.0000e-04

odeget(options,'AbsTol')
ans =

0.0010 0.0020 0.0030

See Also odeset

odeset

2-1566

2odesetPurpose Create or alter options structure for input to ordinary differential equation
(ODE) solvers

Syntax options = odeset('name1',value1,'name2',value2,...)
options = odeset(oldopts,'name1',value1,...)
options = odeset(oldopts,newopts)
odeset

Description The odeset function lets you adjust the integration parameters of the ODE
solvers. The ODE solvers can integrate systems of differential equations of one
of these forms

or

See below for information about the integration parameters.

options = odeset('name1',value1,'name2',value2,...) creates an
integrator options structure in which the named properties have the specified
values. Any unspecified properties have default values. It is sufficient to type
only the leading characters that uniquely identify a property name. Case is
ignored for property names.

options = odeset(oldopts,'name1',value1,...) alters an existing options
structure oldopts.

options = odeset(oldopts,newopts) alters an existing options structure
oldopts by combining it with a new options structure newopts. Any new
options not equal to the empty matrix overwrite corresponding options in
oldopts.

odeset with no input arguments displays all property names as well as their
possible and default values.

ODE Properties The available properties depend on the ODE solver used. There are several
categories of properties:

• Error tolerance

y ′ f t y,()=

M t y,()y ′ f t y,()=

odeset

2-1567

• Solver output

• Jacobian matrix

• Event location

• Mass matrix and differential-algebraic equations (DAEs)

• Step size
• ode15s

Note This reference page describes the ODE properties for MATLAB,
Version 6. The Version 5 properties are supported only for backward
compatibility. For information on the Version 5 properties, type at the
MATLAB command line: more on, type odeset, more off.

Error Tolerance Properties

Property Value Description

RelTol Positive scalar
{1e-3}

A relative error tolerance that applies to all
components of the solution vector. The
estimated error in each integration step
satisfies
|e(i)|<=max(RelTol*abs(y(i)),AbsTol(i)

AbsTol Positive
scalar or
vector {1e-6}

The absolute error tolerance. If scalar, the
tolerance applies to all components of the
solution vector. Otherwise the tolerances
apply to corresponding components.

NormControl on | {off} Control error relative to norm of solution.
Set this property on to request that the
solvers control the error in each integration
step with
norm(e) <= max(RelTol*norm(y),AbsTol).
By default the solvers use a more stringent
component-wise error control.

odeset

2-1568

Solver Output Properties

Property Value Description

OutputFcn Function Installable output function. The ODE solvers
provide sample functions that you can use or
modify:

odeplot Time series plotting (default)

odephas2 Two-dimensional phase plane
plotting

odephas3 Three-dimensional phase plane
plotting

odeprint Print solution as it is computed

To create or modify an output function, see
ODE Solver Output Properties in the
“Differential Equations” section of the
MATLAB documentation.

OutputSel Vector of
integers

Output selection indices. Specifies the
components of the solution vector that the
solver passes to the output function. OutputSel
defaults to all components.

Refine Positive
integer

Produces smoother output, increasing the
number of output points by the specified factor.
The default value is 1 in all solvers except
ode45, where it is 4. Refine doesn’t apply if
length(tspan) > 2.

Stats on | {off} Specifies whether the solver should display
statistics about the computational cost of the
integration.

odeset

2-1569

Jacobian Matrix Properties (for ode15s, ode23s, ode23t, and ode23tb)

Property Value Description

Jacobian Function |
constant
matrix

Jacobian function. Set this property to @FJac
(if a function FJac(t,y) returns) or to
the constant value of .

JPattern Sparse
matrix of
{0,1}

Sparsity pattern. Set this property to a sparse
matrix with if component of

 depends on component of , and 0
otherwise.

Vectorized on | {off} Vectorized ODE function. Set this property on
to inform the stiff solver that the ODE
function F is coded so that F(t,[y1 y2 ...])
returns the vector [F(t,y1) F(t,y2) ...].
That is, your ODE function can pass to the
solver a whole array of column vectors at
once. A stiff function calls your ODE function
in a vectorized manner only if it is generating
Jacobians numerically (the default behavior)
and you have used odeset to set Vectorized
to on.

Event Location Property

Property Value Description

Events Function Locate events. Set this property to @Events,
where Events is the name of the events
function. See the ODE solvers for details.

∂f ∂y⁄
∂f ∂y⁄

S S i j,() 1= i
f t y,() j y

odeset

2-1570

 Mass Matrix and DAE-Related Properties

Property Value Description

Mass Constant
matrix |
function

For problems set this
property to the value of the constant
mass matrix . For problems

, set this property to
@Mfun, where Mfun is a function that
evaluates the mass matrix .

MStateDependence none |
{weak} |
strong

Dependence of the mass matrix on .
Set this property to none for problems

. Both weak and strong
indicate , but weak results in
implicit solvers using approximations
when solving algebraic equations. For
use with all solvers except ode23s.

MvPattern Sparse
matrix

 sparsity pattern. Set
this property to a sparse matrix with

 if for any , the
component of depends on
component of , and 0 otherwise. For
use with the ode15s, ode23t, and
ode23tb solvers when
MStateDependence is strong.

MassSingular yes | no |
{maybe}

Indicates whether the mass matrix is
singular. The default value of 'maybe'
causes the solver to test whether the
problem is a DAE. For use with the
ode15s and ode23t solvers.

InitialSlope Vector Consistent initial slope , where
satisfies . For
use with the ode15s and ode23t solvers
when solving DAEs.

My ′ f t y,()=

m
M t y,()y ′ f t y,()=

M t y,()

y

M t()y ′ f t y,()=
M t y,()

M t y,()v()∂ ∂y⁄
S

S i j,() 1= k i k,()
M t y,()

j y

yp0 yp0
M t0 y0,()yp0 f t0 y0,()=

odeset

2-1571

In addition there are two options that apply only to the ode15s solver.

See Also deval, odeget, ode45, ode23, ode23t, ode23tb, ode113, ode15s, ode23s,
@ (function handle)

Step Size Properties

Property Value Description

MaxStep Positive
scalar

An upper bound on the magnitude of the
step size that the solver uses. The default is
one-tenth of the tspan interval.

InitialStep Positive
scalar

Suggested initial step size. The solver tries
this first, but if too large an error results,
the solver uses a smaller step size. By
default the solver determines an initial step
size automatically.

ode15s Properties

Property Value Description

MaxOrder 1 | 2 | 3 | 4 | {5} The maximum order formula used.

BDF on | {off} Set on to specify that ode15s should use
the backward differentiation formulas
(BDFs) instead of the default numerical
differentiation formulas (NDFs).

odextend

2-1572

2odextend

Purpose Extend the solution of an initial value problem for an ordinary differential
equation (ODE)

Syntax solext = odextend(sol, odefun, tfinal)
solext = odextend(sol, [], tfinal)
solext = odextend(sol, odefun, tfinal, yinit)
solext = odextend(sol, odefun, tfinal, [yinit, ypinit])
solext = odextend(sol, odefun, tfinal, yinit, options, P1, P2...)

Description solext = odextend(sol, odefun, tfinal) extends the solution stored in sol
to an interval with upper bound tfinal for the independent variable. sol is an
ODE solution structure created using an ODE solver. The lower bound for the
independent variable in solext is the same as in sol. If you created sol with
an ODE solver other than ode15i, the function odefun computes the
right-hand side of the ODE equation, which is of the form . If you
created sol using ode15i, the function odefun computes the left-hand side of
the ODE equation, which is of the form .

odextend extends the solution by integrating odefun from the upper bound for
the independent variable in sol to tfinal, using the same ODE solver that
created sol. By default, odextend uses

• The initial conditions y = sol.y(:, end) for the subsequent integration

• The same integration properties and additional input arguments the ODE
solver originally used to compute sol. This information is stored as part of
the solution structure sol and is subsequently passed to solext. Unless you
want to change these values, you do not need to pass them to odextend.

solext = odextend(sol, [], tfinal) uses the same ODE function that the
ODE solver uses to compute sol to extend the solution. It is not necessary to
pass in odefun explicitly unless it differs from the original ODE function.

solext = odextend(sol, odefun, tfinal, yinit) uses the column vector
yinit as new initial conditions for the subsequent integration, instead of the
vector sol.y(end).

y' f t y,()=

f t y y', ,() 0=

odextend

2-1573

Note To extend solutions obtained with ode15i, use the following syntax, in
which the column vector ypinit is the initial derivative of the solution:

solext = odextend(sol, odefun, tfinal, [yinit, ypinit])

solext = odextend(sol, odefun, tfinal, yinit, options) uses the
integration properties specified in options instead of the options the ODE
solver originally used to compute sol. The new options are then stored within
the structure solext. See odeset for details on setting options properties. Set
yinit = [] as a placeholder to specify the default initial conditions.

solext = odextend(sol, odefun, tfinal, yinit, options, P1, P2...)
passes the additional parameters P1, P2,... to the ODE function as
odefun(t, y, P1, P2...) and similarly to all functions you specify in
options. You do not need to specify these parameters if their values are the
same as those used to compute sol. Set options = [] as a place holder to use
the same options used to compute sol.

Example The following command

sol=ode45(@vdp1,[0 10],[2 0]);

uses ode45 to solve the system y' = vdp1(t,y), where vdp1 is an example of
an ODE function provided with MATLAB, on the interval [0 10]. Then, the
commands

sol=odextend(sol,@vdp1,20);
plot(sol.x,sol.y(1,:));

extend the solution to the interval [0 20] and plot the first component of the
solution on [0 20].

See Also deval, ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb, ode15i,
odeset, odeget, deval

ones

2-1574

2onesPurpose Create an array of all ones

Syntax Y = ones(n)
Y = ones(m,n)
Y = ones([m n])
Y = ones(d1,d2,d3...)
Y = ones([d1 d2 d3...])
Y = ones(size(A))
ones(m, n,...,classname)
ones([m,n,...],classname)

Description Y = ones(n) returns an n-by-n matrix of 1s. An error message appears if n is
not a scalar.

Y = ones(m,n) or Y = ones([m n]) returns an m-by-n matrix of ones.

Y = ones(d1,d2,d3...) or Y = ones([d1 d2 d3...]) returns an array of 1s
with dimensions d1-by-d2-by-d3-by-....

Y = ones(size(A)) returns an array of 1s that is the same size as A.

ones(m, n,...,classname) or ones([m,n,...],classname) is an m-by-n-by-...
array of ones of data type classname. classname is a string specifying the data
type of the output. classname can have the following values: 'double',
'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', or 'uint32'.

Example x = ones(2,3,'int8');

See Also eye, zeros

open

2-1575

2openPurpose Open files based on extension

Syntax open('name')

Description open('name') opens the object specified by the string name. The specific action
taken upon opening depends on the type of object specified by name.

If more than one file with the specified filename name exists on the MATLAB
path, then open opens the file returned by which('name').

If no such file name exists, then open displays an error message.

name Action

Variable Open array name in the Array Editor (the array
must be numeric).

M-file (name.m) Open M-file name in M-file Editor.

Model (name.mdl) Open model name in Simulink.

MAT-file (name.mat) Open MAT-file and store variables in a structure
in the workspace.

Figure file (*.fig) Open figure in a figure window.

P-file (name.p) Open the corresponding M-file, name.m, if it exists,
in the M-file Editor.

HTML file (*.html) Open HTML document in Help browser.

PDF file (*.pdf) Open PDF document in Adobe Acrobat.

Other extensions
(name.xxx)

Open name.xxx by calling the helper function
openxxx, where openxxx is a user-defined function.

No extension (name) Open name in the default editor. If name does not
exist, then open checks to see if name.mdl or
name.m is on the path or in the current directory
and, if so, opens the file returned by
which('name').

open

2-1576

You can create your own openxxx functions to set up handlers for new file
types. open('filename.xxx') calls the openxxx function it finds on the path.
For example, create a function openlog if you want a handler for opening files
with file extension .log.

Examples Example 1 — Opening a File on the Path
To open the M-file copyfile.m, type

open copyfile.m

MATLAB opens the copyfile.m file that resides in toolbox\matlab\general.
If you have a copyfile.m file in a directory that is before
toolbox\matlab\general on the MATLAB path, then open opens that file
instead.

Example 2 — Opening a File Not on the Path
To open a file that is not on the MATLAB path, enter the complete file
specification. If no such file is found, then MATLAB displays an error message.

open('D:\temp\data.mat')

Example 3 — Specifying a File Without a File Extension
When you specify a file without including its file extension, MATLAB
determines which file to open for you. It does this by calling

 which('filename')

In this example, open matrixdemos could open either an M-file or a Simulink
model of the same name, since both exist on the path.

dir matrixdemos.*

 matrixdemos.m matrixdemos.mdl

Because the call which('matrixdemos') returns the name of the Simulink
model, open opens the matrixdemos model rather than the M-file of that name.

open matrixdemos % Opens model matrixdemos.mdl

open

2-1577

Example 4 — Opening a MAT-File
This example opens a MAT-file containing MATLAB data and then keeps just
one of the variables from that file. The others are overwritten when ans is
reused by MATLAB.

% Open a MAT-file containing miscellaneous data.
open D:\temp\data.mat

ans =

 x: [3x2x2 double]
 y: {4x5 cell}
 k: 8
 spArray: [5x5 double]
 dblArray: [4x1 java.lang.Double[][]]
 strArray: {2x5 cell}

% Keep the dblArray value by assigning it to a variable.
dbl = ans.dblArray

dbl =

java.lang.Double[][]:
 [5.7200] [6.7200] [7.7200]
 [10.4400] [11.4400] [12.4400]
 [15.1600] [16.1600] [17.1600]
 [19.8800] [20.8800] [21.8800]

Example 5 — Using a User-Defined Handler Function
If you create an M-file function called opencht to handle files with extension
.cht, and then issue the command

open myfigure.cht

open calls your handler function with the following syntax:

opencht('myfigure.cht')

See Also load, save, saveas, uiopen, which, file_formats, path

openfig

2-1578

2openfigPurpose Open new copy or raise existing copy of saved figure

Syntax openfig('filename.fig','new')
openfig('filename.fig','reuse')
openfig('filename.fig')
openfig('filename.fig','new','invisible')
openfig('filename.fig','new','visible')
figure_handle = openfig(...)

Description openfig is designed for use with GUI figures. Use this function to:

• Open the FIG-file creating the GUI and ensure it is displayed on screen. This
provides compatibility with different screen sizes and resolutions.

• Control whether MATLAB displays one or multiple instances of the GUI at
any given time.

• Return the handle of the figure created, which is typically hidden for GUIs
figures.

openfig('filename.fig','new') opens the figure contained in the FIG-file,
filename.fig, and ensures it is visible and positioned completely on screen.
You do not have to specify the full path to the FIG-file as long as it is on your
MATLAB path. The .fig extension is optional.

openfig('filename.fig','new','invisible') or
openfig('filename.fig','reuse','invisible') opens the figure as in the
preceding example, while forcing the figure to be invisible.

openfig('filename.fig','new','visible') or
openfig('filename.fig','new','visible') opens the figure, while forcing
the figure to be visible.

openfig('filename.fig','reuse') opens the figure contained in the FIG-file
only if a copy is not currently open; otherwise openfig brings the existing copy
forward, making sure it is still visible and completely on screen.

openfig('filename.fig') is the same as openfig('filename.fig','new').

openfig(...,'PropertyName',PropertyValue,...) opens the FIG-file
setting the specified figure properties before displaying the figure.

openfig

2-1579

figure_handle = openfig(...) returns the handle to the figure.

Remarks If the FIG-file contains an invisible figure, openfig returns its handle and
leaves it invisible. The caller should make the figure visible when appropriate.

See Also guide, guihandles, movegui, open, hgload, save

See "Deploying User Interfaces" in the MATLAB documentation for related
functions

See "Understanding the Application M-File" in the MATLAB documentation
for information on how to use openfig.

opengl

2-1580

2openglPurpose Change automatic selection mode of OpenGL rendering

Syntax opengl selection_mode
opengl info
s = opengl data

Description The OpenGL autoselection mode applies when the RendererMode of the figure
is auto. Possible values for selection_mode are

• autoselect – allows OpenGL to be automatically selected if OpenGL is
available and if there is graphics hardware on the host machine.

• neverselect – disables autoselection of OpenGL.

• advise – prints a message to the command window if OpenGL rendering is
advised, but RenderMode is set to manual.

opengl, by itself, returns the current autoselection state.

opengl info prints information with the version and vendor of the OpenGL
on your system.

s = opengl data returns a structure containing the same data that is
displayed when you call opengl info.

Note that the autoselection state only specifies that OpenGL should or not be
considered for rendering; it does not explicitly set the rendering to OpenGL.
This can be done by setting the Renderer property of the figure to OpenGL. For
example,

set(gcf,'Renderer','OpenGL')

See Also Figure Renderer property

openvar

2-1581

2openvarPurpose Open workspace variable in the Array Editor or other tool for graphical editing

Graphical
Interface

As an alternative to the openvar function, double-click on a variable in the
Workspace browser.

Syntax openvar('name')

Description openvar('name') opens the workspace variable name in the Array Editor for
graphical editing, where name is a numeric array, string, or cell array of strings.
For some toolboxes, openvar instead opens a tool appropriate for viewing or
editing that type of object.

See Also load, save, workspace

Change values of array
elements. Change the display format.

Use the tabs to view different variables
you have open in the Array Editor.

optimget

2-1582

2optimgetPurpose Get optimization options structure parameter values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
parameter in the optimization options structure options. You need to type only
enough leading characters to define the parameter name uniquely. Case is
ignored for parameter names.

val = optimget(options,'param',default) returns default if the specified
parameter is not defined in the optimization options structure options. Note
that this form of the function is used primarily by other optimization functions.

Examples This statement returns the value of the Display optimization options
parameter in the structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options
parameter in the structure called my_options (as in the previous example)
except that if the Display parameter is not defined, it returns the value
'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset, fminbnd, fminsearch, fzero, lsqnonneg

optimset

2-1583

2optimsetPurpose Create or edit an optimization options structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description The function optimset creates an options structure that you can pass as an
input argument to the following four MATLAB optimization functions:

• fminbnd
• fminsearch
• fzero
• lsqnonneg

You can use the options structure to change the default parameters for these
functions.

Note If you have purchased the Optimization Toolbox, you can also use
optimset to create an expanded options structure containing additional
options specifically designed for the functions provided in that toolbox. See
the reference page for the enhanced optimset function in the Optimization
Toolbox for more information about these additional options.

options = optimset('param1',value1,'param2',value2,...) creates an
optimization options structure called options, in which the specified
parameters (param) have specified values. Any unspecified parameters are set
to [] (parameters with value [] indicate to use the default value for that
parameter when options is passed to the optimization function). It is sufficient
to type only enough leading characters to define the parameter name uniquely.
Case is ignored for parameter names.

optimset with no input or output arguments displays a complete list of
parameters with their valid values.

optimset

2-1584

options = optimset (with no input arguments) creates an options structure
options where all fields are set to [].

options = optimset(optimfun) creates an options structure options with all
parameter names and default values relevant to the optimization function
optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy of
oldopts, modifying the specified parameters with the specified values.

options = optimset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any parameters in
newopts with nonempty values overwrite the corresponding old parameters in
oldopts.

Options The following table lists the available options for the MATLAB optimization
functions.

Option Value Description

Display 'off' | 'iter' |
{'final'} |
'notify'

Level of display. 'off' displays
no output; 'iter' displays output
at each iteration; 'final'
displays just the final output;
'notify' displays output only if
the function does not converge.

FunValCheck {'off'} | 'on' Check whether objective function
values are valid. 'on' displays a
warning when the objective
function returns a value that is
complex or NaN. 'off' displays no
warning.

MaxFunEvals positive integer Maximum number of function
evaluations allowed.

MaxIter positive integer Maximum number of iterations
allowed.

optimset

2-1585

Examples This statement creates an optimization options structure called options in
which the Display parameter is set to 'iter' and the TolFun parameter is set
to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options, changing
the value of the TolX parameter and storing new values in optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure that contains all the
parameter names and default values relevant to the function fminbnd.

optimset('fminbnd')

See Also optimset (Optimization Toolbox version), optimget, fminbnd, fminsearch,
fzero, lsqnonneg

OutputFcn function | {[]} User-defined function that an
opimization function calls at each
iteration.

TolFun positive scalar Termination tolerance on the
function value.

TolX positive scalar Termination tolerance on .

Option Value Description

x

orderfields

2-1586

2orderfieldsPurpose Order fields of a structure array

Syntax s = orderfields(s1)
s = orderfields(s1, s2)
s = orderfields(s1, c)
s = orderfields(s1, perm)
[s, perm] = orderfields(...)

Description s = orderfields(s1) orders the fields in s1 so that the new structure array s
has field names in ASCII dictionary order.

s = orderfields(s1, s2) orders the fields in s1 so that the new structure
array s has field names in the same order as those in s2. Structures sl and s2
must have the same fields.

s = orderfields(s1, c) orders the fields in s1 so that the new structure
array s has field names in the same order as those in the cell array of field
name strings c. Structure s1 and cell array c must contain the same field
names.

s = orderfields(s1, perm) orders the fields in s1 so that the new structure
array s has fieldnames in the order specified by the indices in permutation
vector perm.

If s1 has N fieldnames, the elements of perm must be an arrangement of the
numbers from 1 to N. This is particularly useful if you have more than one
structure array that you would like to reorder in the same way.

[s, perm] = orderfields(...) returns a permutation vector representing
the change in order performed on the fields of the structure array that results
in s.

Remarks orderfields only orders top-level fields. It is not recursive.

Examples Create a structure s. Then create a new structure from s, but with the fields
ordered alphabetically:

s = struct('b', 2, 'c', 3, 'a', 1)
s =
 b: 2

orderfields

2-1587

 c: 3
 a: 1

snew = orderfields(s)
snew =
 a: 1
 b: 2
 c: 3

Arrange the fields of s in the order specified by the second (cell array) argument
of orderfields. Return the new structure in snew and the permutation vector
used to create it in perm:

[snew, perm] = orderfields(s, {'b', 'a', 'c'})
snew =
 b: 2
 a: 1
 c: 3
perm =
 1
 3
 2

Now create a new structure, s2, having the same fieldnames as s. Reorder the
fields using the permutation vector returned in the previous operation:

s2 = struct('b', 3, 'c', 7, 'a', 4)
s2 =
 b: 3
 c: 7
 a: 4

snew = orderfields(s2, perm)
snew =
 b: 3
 a: 4
 c: 7

See Also struct, fieldnames, setfield, getfield, isfield, rmfield, dynamic field
names

ordqz

2-1588

2ordqzPurpose Reorder eigenvalues in QZ factorization

Syntax [AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select)
[...] = ordqz(AA,BB,Q,Z,keyword)
[...] = ordqz(AA,BB,Q,Z,clusters)

Description [AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select) reorders the QZ
factorizations Q*A*Z = AA and Q*B*Z = BB produced by the qz function for a
matrix pair (A,B). It returns the reordered pair (AAS,BBS) and the cumulative
orthogonal transformations QS and ZS such that QS*A*ZS = AAS and
QS*B*ZS = BBS. In this reordering, the selected cluster of eigenvalues appears
in the leading (upper left) diagonal blocks of the quasitriangular pair
(AAS,BBS), and the corresponding invariant subspace is spanned by the
leading columns of ZS. The logical vector select specifies the selected cluster
as E(select) where E = eig(AA,BB). Set Q = [] or Z = [] to get the
incremental QS and ZS that transforms (AA,BB) into (AAS,BBS).

[...] = ordqz(AA,BB,Q,Z,keyword) sets the selected cluster to include all
eigenvalues in the region specified by keyword:

[...] = ordqz(AA,BB,Q,Z,clusters) reorders multiple clusters at once.
Given a vector clusters of cluster indices commensurate with
E = eig(AA,BB), such that all eigenvalues with the same clusters value form
one cluster, ordqz sorts the specified clusters in descending order along the
diagonal of (AAS,BBS). The cluster with highest index appears in the upper left
corner.

See Also eig, ordschur, qz

keyword Selected Region

'lhp' Left-half plane (real(E) < 0)

'rhp' Right-half plane (real(E) > 0)

'udi' Interior of unit disk (abs(E) < 1)

'udo' Exterior of unit disk (abs(E) > 1)

ordschur

2-1589

2ordschurPurpose Reorder eigenvalues in Schur factorization

Syntax [US,TS] = ordschur(U,T,select)
[US,TS] = ordschur(U,T,keyword)
[US,TS] = ordschur(U,T,clusters)

Description [US,TS] = ordschur(U,T,select) reorders the Schur factorization
X = U*T*U' produced by the schur function and returns the reordered Schur
matrix TS and the cumulative orthogonal transformation US such that
X = US*TS*US'. In this reordering, the selected cluster of eigenvalues appears
in the leading (upper left) diagonal blocks of the quasitriangular Schur matrix
TS, and the corresponding invariant subspace is spanned by the leading
columns of US. The logical vector select specifies the selected cluster as
E(select) where E = eig(T). Set U = [] to get the incremental
transformation T = US*TS*US'.

[US,TS] = ordschur(U,T,keyword) sets the selected cluster to include all
eigenvalues in one of the following regions:

[US,TS] = ordschur(U,T,clusters) reorders multiple clusters at once.
Given a vector clusters of cluster indices, commensurate with E = eig(T),
and such that all eigenvalues with the same clusters value form one cluster,
ordschur sorts the specified clusters in descending order along the diagonal of
TS, the cluster with highest index appearing in the upper left corner.

See Also eig, ordqz, schur

keyword Selected Region

'lhp' Left-half plane (real(E) < 0)

'rhp' Right-half plane (real(E) > 0)

'udi' Interior of unit disk (abs(E) < 1)

'udo' Exterior of unit disk (abs(E) > 1)

orient

2-1590

2orientPurpose Set paper orientation for printed output

Syntax orient
orient landscape
orient portrait
orient tall
orient(fig_handle), orient(simulink_model)
orient(fig_handle,orientation), orient(simulink_model,orientation)

Description orient returns a string with the current paper orientation: portrait,
landscape, or tall.

orient landscape sets the paper orientation of the current figure to full-page
landscape, orienting the longest page dimension horizontally. The figure is
centered on the page and scaled to fit the page with a 0.25 inch border.

orient portrait sets the paper orientation of the current figure to portrait,
orienting the longest page dimension vertically. The portrait option returns
the page orientation to the MATLAB default. (Note that the result of using the
portrait option is affected by changes you make to figure properties. See the
“Algorithm” section for more specific information.)

orient tall maps the current figure to the entire page in portrait orientation,
leaving a 0.25 inch border.

orient(fig_handle), orient(simulink_model) returns the current
orientation of the specified figure or Simulink model.

orient(fig_handle,orientation), orient(simulink_model,orientation)
sets the orientation for the specified figure or Simulink model to the specified
orientation (landscape, portrait, or tall).

Algorithm orient sets the PaperOrientation, PaperPosition, and PaperUnits
properties of the current figure. Subsequent print operations use these
properties. The result of using the portrait option can be affected by default
property values as follows:

• If the current figure PaperType is the same as the default figure PaperType
and the default figure PaperOrientation has been set to landscape, then

orient

2-1591

the orient portrait command uses the current values of PaperOrientation
and PaperPosition to place the figure on the page.

• If the current figure PaperType is the same as the default figure PaperType
and the default figure PaperOrientation has been set to landscape, then
the orient portrait command uses the default figure PaperPosition with
the x, y and width, height values reversed (i.e., [y,x,height,width]) to position
the figure on the page.

• If the current figure PaperType is different from the default figure
PaperType, then the orient portrait command uses the current figure
PaperPosition with the x, y and width, height values reversed (i.e.,
[y,x,height,width]) to position the figure on the page.

See Also print, set

PaperOrientation, PaperPosition, PaperSize, PaperType, and PaperUnits
properties of figure graphics objects

“Printing” for related functions

orth

2-1592

2orthPurpose Range space of a matrix

Syntax B = orth(A)

Description B = orth(A) returns an orthonormal basis for the range of A. The columns of B
span the same space as the columns of A, and the columns of B are orthogonal,
so that B'*B = eye(rank(A)). The number of columns of B is the rank of A.

See Also null, svd, rank

otherwise

2-1593

2otherwisePurpose Default part of switch statement

Description otherwise is part of the switch statement syntax, which allows for conditional
execution. The statements following otherwise are executed only if none of the
preceding case expressions (case_expr) matches the switch expression
(sw_expr).

Examples The general form of the switch statement is

switch sw_expr
 case case_expr
 statement
 statement
 case {case_expr1,case_expr2,case_expr3}
 statement
 statement
 otherwise
 statement
 statement
end

See switch for more details.

See Also switch

otherwise

2-1594

Index-1

Index

Symbols
$matlabroot 2-1430
@ 2-915

Numerics
1-norm 2-1529
2-norm (estimate of) 2-1531

A
Adams-Bashforth-Moulton ODE solver 2-1556
aligning scattered data

multi-dimensional 2-1519
two-dimensional 2-993

alpha channels
in PNG files 2-1152

AlphaData

image property 2-1127
AlphaDataMapping

image property 2-1127
anti-diagonal 2-1010
arguments, M-file

checking number of inputs 2-1512
checking number of outputs 2-1516
number of input 2-1514
number of output 2-1514

array
finding indices of 2-829
maximum elements of 2-1431
mean elements of 2-1432
median elements of 2-1433
minimum elements of 2-1452
of all ones 2-1574
structure 2-763, 2-973
swapping dimensions of 2-1217

arrays

detecting empty 2-1227
opening 2-1575

ASCII data
reading from disk 2-1359

audio
signal conversion 2-1316, 2-1498

autoselection of OpenGL 2-794
average of array elements 2-1432
average,running 2-825
axis crossing See zero of a function

B
background color chunk

PNG files 2-1152
BackingStore, Figure property 2-775
base two operations

logarithm 2-1366
next power of two 2-1525

BeingDeleted

group property 2-776, 2-1128
hggroup property 2-1069
hgtransform property 2-1084
light property 2-1309
line property 2-1324
lineseries property 2-1332

big endian formats 2-867, 2-894
binary

data
writing to file 2-925

files
reading 2-890

mode for opened files 2-867
binary data

reading from disk 2-1359
bit depth

Index

Index-2

querying 2-1142
bit depths

See also index entries for individual file
formats

supported 2-1149
bitmaps

reading 2-1149
writing 2-1157

BMP files
reading 2-1149
writing 2-1157

browser
for help 2-1054

BusyAction

Figure property 2-776
hggroup property 2-1069
hgtransform property 2-1084
Image property 2-1128
Light property 2-1309
Line property 2-1324, 2-1332

ButtonDownFcn

Figure property 2-776
hggroup property 2-1070
hgtransform property 2-1085
Image property 2-1129
Light property 2-1310
Line property 2-1325
lineseries property 2-1332

C
case

upper to lower 2-1375
CData

Image property 2-1129
CDataMapping

Image property 2-1131

cell array
conversion to from numeric array 2-1537

characters
conversion, in format specification string 2-881
escape, in format specification string 2-882

Children

Figure property 2-777
hggroup property 2-1070
hgtransform property 2-1085
Image property 2-1131
Light property 2-1310
Line property 2-1325
lineseries property 2-1333

Cholesky factorization
(as algorithm for solving linear equations)

2-1469
class, object See object classes
classes

field names 2-763
loaded 2-1177

Clipping

Figure property 2-777
hggroup property 2-1070
hgtransform property 2-1085
Image property 2-1131
Light property 2-1310
Line property 2-1325
lineseries property 2-1333

CloseRequestFcn, Figure property 2-777
closing

files 2-741
Color

Figure property 2-779
Light property 2-1310
Line property 2-1325
lineseries property 2-1333

Colormap, Figure property 2-779

Index

Index-3

COM
object methods

inspect 2-1184
ismethod 2-1245

combinations of n elements 2-1518
combs 2-1518
command syntax 2-1051
Command Window

cursor position 2-1100
commands

help for 2-1050, 2-1059
common elements See set operations,

intersection
complex

logarithm 2-1364, 2-1367
numbers 2-1105
See also imaginary

compression
lossy 2-1159

connecting to FTP server 2-907
contents.m file 2-1050
conversion

hexadecimal to decimal 2-1062
integer to string 2-1186
matrix to string 2-1405
numeric array to cell array 2-1537
numeric array to logical array 2-1368
numeric array to string 2-1539
uppercase to lowercase 2-1375

conversion characters in format specification
string 2-881

CreateFcn

Figure property 2-779
group property 2-1085
hggroup property 2-1070
Image property 2-1132
Light property 2-1310

Line property 2-1325
lineseries property 2-1333

creating your own MATLAB functions 2-913
cubic interpolation 2-1194

piecewise Hermite 2-1189
cubic spline interpolation

multidimensional 2-1200
one-dimensional 2-1189
three-dimensional 2-1197
two-dimensional 2-1194

CUR files
reading 2-1149

CurrentAxes 2-779
CurrentAxes, Figure property 2-779
CurrentCharacter, Figure property 2-780
CurrentMenu, Figure property (obsolete) 2-780
CurrentObject, Figure property 2-780
CurrentPoint

Figure property 2-780
cursor images

reading 2-1150
cursor position 2-1100

D
data

ASCII
reading from disk 2-1359

binary
writing to file 2-925

formatted
reading from files 2-901
writing to file 2-880

formatting 2-880
isosurface from volume data 2-1258
reading binary from disk 2-1359

data, aligning scattered

Index

Index-4

multi-dimensional 2-1519
two-dimensional 2-993

debugging
M-files 2-1282

default function 2-919
DeleteFcn

Figure property 2-781
hggroup property 2-1071
hgtransform property 2-1086
Image property 2-1132
Light property 2-1310
lineseries property 2-1333

DeleteFcn, line property 2-1326
density

of sparse matrix 2-1526
Detect 2-1218
detecting

alphabetic characters 2-1241
empty arrays 2-1227
finite numbers 2-1232
global variables 2-1234
infinite elements 2-1237
logical arrays 2-1242
members of a set 2-1243
NaNs 2-1246
objects of a given class 2-1220
prime numbers 2-1262
real numbers 2-1264
sparse matrix 2-1270

diagonal
anti- 2-1010

dialog box
help 2-1057
input 2-1182
list 2-1357
message 2-1494

differential equation solvers

defining an ODE problem 2-1559
ODE initial value problems 2-1549

adjusting parameters of 2-1566
extracting properties of 2-1565

Diophantine equations 2-955
directories

creating 2-1458
listing, on UNIX 2-1376

directory
making on FTP server 2-1460
MATLAB location 2-1430
root 2-1430

discontinuous problems 2-865
display format 2-871
displaying output in Command Window 2-1483
DisplayName

lineseries property 2-1334
Dithermap 2-781
DithermapMode, Figure property 2-782
division

by zero 2-1171
modulo 2-1482

divisor
greatest common 2-955

Dockable, Figure property 2-782
documentation

displaying online 2-1054
double click, detecting 2-797
DoubleBuffer, Figure property 2-782
downloading files from FTP server 2-1451

E
eigenvalue

matrix logarithm and 2-1371
end caps for isosurfaces 2-1249
end-of-file indicator 2-744

Index

Index-5

equal arrays
detecting 2-1228, 2-1230

EraseMode

hggroup property 2-1071
hgtransform property 2-1086
Image property 2-1132
Line property 2-1326
lineseries property 2-1334

error
roundoff See roundoff error

error message
Index into matrix is negative or zero

2-1368
retrieving last generated 2-1284, 2-1288

errors
in file input/output 2-745

escape characters in format specification string
2-882

examples
calculating isosurface normals 2-1256
isosurface end caps 2-1249
isosurfaces 2-1259

executing statements repeatedly 2-869
extension, filename

.m 2-913

F
factor 2-738
factorial 2-739
factorization

LU 2-1387
factorization, Cholesky

(as algorithm for solving linear equations)
2-1469

factors, prime 2-738
false 2-740

fclose 2-741
feather 2-742
feof 2-744
ferror 2-745
feval 2-746
fft 2-748
FFT See Fourier transform
fft2 2-753
fftn 2-754
fftshift 2-755
FFTW 2-750
fftw 2-757
fgetl 2-761
fgets 2-762
field names of a structure, obtaining 2-763
fields, noncontiguous, inserting data into 2-925
fig files 2-887
figflag 2-765
Figure

creating 2-767
defining default properties 2-768
properties 2-775

figure 2-767
figure windows, displaying 2-834
figurepalette 2-806
figures

opening 2-1575
file

extension, getting 2-817
position indicator

finding 2-906
setting 2-904
setting to start of file 2-900

file formats
getting list of supported formats 2-1144
reading 2-1148
writing 2-1156

Index

Index-6

file size
querying 2-1141

fileattrib 2-807
filebrowser 2-813
filename

building from parts 2-910
parts 2-817

filename extension
.m 2-913

fileparts 2-817
files

beginning of, rewinding to 2-900, 2-1147
closing 2-741
end of, testing for 2-744
errors in input or output 2-745
fig 2-887
finding position within 2-906
getting next line 2-761
getting next line (with line terminator) 2-762
mode when opened 2-867
opening 2-867, 2-1575
path, getting 2-817
reading

binary 2-890
formatted 2-901

reading image data from 2-1148
rewinding to beginning of 2-900, 2-1147
setting position within 2-904
startup 2-1429
version, getting 2-817
writing binary data to 2-925
writing formatted data to 2-880
writing image data to 2-1156
See also file

filesep 2-818
fill 2-819
fill3 2-822

filter
digital 2-825
finite impulse response (FIR) 2-825
infinite impulse response (IIR) 2-825

filter 2-825
filter2 2-828
find 2-829
findall 2-833
findfigs 2-834
finding

indices of arrays 2-829
zero of a function 2-926
See also detecting

findobj 2-835
finish 2-839
finite numbers

detecting 2-1232
FIR filter 2-825
fitsinfo 2-840
fitsread 2-848
fix 2-850
FixedColors, Figure property 2-782
flints 2-1498
flipdim 2-851
fliplr 2-852
flipud 2-853
floor 2-855
flops 2-856
flow control

for 2-869
keyboard 2-1282
otherwise 2-1593

fminbnd 2-858
fminsearch 2-862
F-norm 2-1529
fopen 2-866
for 2-869

Index

Index-7

format
precision when writing 2-890
reading files 2-901

format 2-871
formats

big endian 2-867, 2-894
little endian 2-867, 2-894

formatted data
reading from file 2-901
writing to file 2-880

Fourier transform
algorithm, optimal performance of 2-750,

2-1109, 2-1111, 2-1525
discrete, n-dimensional 2-754
discrete, one-dimensional 2-748
discrete, two-dimensional 2-753
fast 2-748
as method of interpolation 2-1199
inverse, n-dimensional 2-1113
inverse, one-dimensional 2-1109
inverse, two-dimensional 2-1111
shifting the zero-frequency component of

2-756
fplot 2-875
fprintf 2-880
frame2im 2-886
frames for printing 2-887
fread 2-890
freqspace 2-899
freqspace 2-899
frequency response

desired response matrix
frequency spacing 2-899

frequency vector 2-1373
frewind 2-900
fscanf 2-901
fseek 2-904

ftell 2-906
FTP

connecting to server 2-907
ftp 2-907
full 2-909
fullfile 2-910
function 2-913, 2-918
function handle 2-915
function handles

overview of 2-915
function syntax 2-1051
functions

default 2-919
finding using keywords 2-1374
help for 2-1050, 2-1059
in memory 2-1177
overloaded methods 2-919

functions

return values 2-919
funm 2-921
fwrite 2-925
fzero 2-926

G
gallery 2-929
gamma 2-950
gamma function

(defined) 2-950
incomplete 2-950
logarithm of 2-950

gammainc 2-950
gammaln 2-950
Gaussian elimination

(as algorithm for solving linear equations)
2-1213, 2-1470

LU factorization 2-1387

Index

Index-8

gca 2-952
gcbo 2-954
gcd 2-955
gcf 2-957
gco 2-958
genpath 2-959
genvarname 2-962, 2-979
get 2-962
get

timer object 2-969
getenv 2-972
getfield 2-973
getframe 2-971
GIF files

reading 2-1149
ginput function 2-978
global 2-979
global variable

defining 2-979
gmres 2-981
Goup

defining default properties 2-1082
gplot 2-986
gradient 2-988
gradient, numerical 2-988
Graphics Interchange Format (GIF) files

reading 2-1149
graphics objects

Figure 2-767
getting properties 2-966
Image 2-1120
Light 2-1305
Line 2-1317

graymon 2-991
greatest common divisor 2-955
grid

aligning data to a 2-993

grid 2-992
grid arrays

for volumetric plots 2-1442
multi-dimensional 2-1519

griddata 2-993
griddata3 2-996
griddatan 2-998
gsvd 2-1000
gtext 2-1005
guidata function 2-1006

H
H1 line 2-1051, 2-1052
h5array class

using 2-1013
h5compound class

using 2-1014
h5enum class

using 2-1016
h5string class

using 2-1017
h5vlen class

using 2-1019
hadamard 2-1009
Hadamard matrix 2-1009
HandleVisibility

Figure property 2-783
hggroup property 2-1072
hgtransform property 2-1087
Image property 2-1133
Light property 2-1311
Line property 2-1327
lineseries property 2-1335

hankel 2-1010
Hankel matrix 2-1010
HDF

Index

Index-9

appending to when saving (WriteMode) 2-1158
compression 2-1158
setting JPEG quality when writing 2-1158

HDF 4 application programming interfaces
2-1011

HDF files
reading images from 2-1149
writing images 2-1157

HDF5 data type classes 2-1013
hdf5.h5array 2-1013
hdf5.h5compound 2-1013
hdf5.h5enum 2-1013
hdf5.h5string 2-1013
hdf5.h5vlen 2-1013
hdf5info 2-1023
hdf5read 2-1025
hdf5write 2-1027
hdfinfo 2-1031
hdfread 2-1038
hdftool 2-1049
help

contents file 2-1050
creating for M-files 2-1052
keyword search in functions 2-1374
online 2-1050

help 2-1050
Help browser 2-1054
Help Window 2-1059
helpbrowser 2-1054
helpdesk 2-1056
helpdlg 2-1057
helpwin 2-1059
Hermite transformations, elementary 2-955
hess 2-1060
Hessenberg form of a matrix 2-1060
hex2dec 2-1062
hex2num 2-1063

hidden 2-1092
Hierarchical Data Format (HDF) files

reading images from 2-1149
writing images 2-1157

hilb 2-1093
Hilbert matrix 2-1093

inverse 2-1216
hist 2-1094
histc 2-1097
HitTest

Figure property 2-784
hggroup property 2-1073
hgtransform property 2-1088
Image property 2-1134
Light property 2-1311
Line property 2-1327
lineseries property 2-1335

hold 2-1098
home 2-1100
horzcat 2-1101
hostid 2-1103
Householder reflections (as algorithm for solving

linear equations) 2-1471
hsv2rgb 2-1104
HTML

in Command Window 2-1425
HTML browser

in MATLAB 2-1054
hyperlinks

in Command Window 2-1425

I
i 2-1105
ICO files

reading 2-1149
icon images

Index

Index-10

reading 2-1150
if 2-1106
ifft 2-1109
ifft2 2-1111
ifftn 2-1113
ifftshift 2-1115
IIR filter 2-825
im2java 2-1117
imag 2-1119
Image

creating 2-1120
properties 2-1127

image 2-1120
image types

querying 2-1142
Images

converting MATLAB image to Java Image
2-1117

images
file formats 2-1148, 2-1156
reading data from files 2-1148
returning information about 2-1140
writing to files 2-1156

imagesc 2-1137
imaginary

part of complex number 2-1119
unit (sqrt(1)) 2-1105, 2-1281
See also complex

imfinfo

returning file information 2-1140
imformats 2-1144
importdata 2-1147
imread 2-1148
imwrite 2-1156, 2-1156
incomplete gamma function

(defined) 2-950
ind2sub 2-1168

Index into matrix is negative or zero (error
message) 2-1368

indexing
logical 2-1368

indicator of file position 2-900
indices, array

finding 2-829
Inf 2-1171
inferiorto 2-1172
infinite elements

detecting 2-1237
infinity 2-1171

norm 2-1529
info 2-1173
information

returning file information 2-1140
inline 2-1174
inmem 2-1177
inpolygon 2-1179
input

checking number of M-file arguments 2-1512
name of array passed as 2-1183
number of M-file arguments 2-1514
prompting users for 2-1181, 2-1435

input 2-1181
inputdlg 2-1182
inputname 2-1183
inspect 2-1184
installation, root directory of 2-1430
int2str 2-1186
int8, int16, int32, int64 2-1187
interp1 2-1180, 2-1189
interp2 2-1194
interp3 2-1197
interpft 2-1199
interpn 2-1200
interpolation

Index

Index-11

one-dimensional 2-1189
two-dimensional 2-1194
three-dimensional 2-1197
multidimensional 2-1200
cubic method 2-993, 2-1189, 2-1194, 2-1197,

2-1200
cubic spline method 2-1189
FFT method 2-1199
linear method 2-1189, 2-1194
nearest neighbor method 2-993, 2-1189, 2-1194,

2-1197, 2-1200
trilinear method 2-993, 2-1197, 2-1200

interpstreamspeed 2-1202
Interruptible

Figure property 2-784
hggroup property 2-1073
hgtransform property 2-1089
Image property 2-1134
Light property 2-1312
Line property 2-1328
lineseries property 2-1336

intersect 2-1206
intmax 2-1207
intmin 2-1208
intwarning 2-1209
inv 2-1213
inverse

Fourier transform 2-1109, 2-1111, 2-1113
Hilbert matrix 2-1216
of a matrix 2-1213

InvertHardCopy, Figure property 2-785
invhilb 2-1216
ipermute 2-1217
is* 2-1218
isa 2-1220
iscell 2-1223
iscellstr 2-1224

ischar 2-1225
isdir 2-1226
isempty 2-1227
isequal 2-1228
isequalwithequalnans 2-1230
isfield 2-1231
isfinite 2-1232
isfloat 2-1233
isglobal 2-1234
ishandle 2-1235
ishold 2-1236
isinf 2-1237
isinteger 2-1238
iskeyword 2-1239
isletter 2-1241
islogical 2-1242
ismember 2-1243
ismethod 2-1245
isnan 2-1246
isnumeric 2-1247
isobject 2-1248
isocap 2-1249
isonormals 2-1256
isosurface

calculate data from volume 2-1258
end caps 2-1249
vertex normals 2-1256

isosurface 2-1258
ispc 2-1261
isprime 2-1262
isreal 2-1264
isscalar 2-1266
issorted 2-1267
isspace 2-1269, 2-1272
issparse 2-1270
isstr 2-1271
isstruct 2-1275

Index

Index-12

isstudent 2-1276
isunix 2-1277
isvalid

timer object 2-1278
isvarname 2-1279
isvarname 2-1279
isvector 2-1280

J
j 2-1281
Java

objects 2-1261
Java Image class

creating instance of 2-1117
java_method 2-911, 2-1446
Joint Photographic Experts Group (JPEG)

reading 2-1149
writing 2-1157

JPEG
setting Bitdepth 2-1159
specifying mode 2-1159

JPEG comment
setting when writing a JPEG image 2-1159

JPEG files
parameters that can be set when writing

2-1159
reading 2-1149
writing 2-1157

JPEG quality
setting when writing a JPEG image 2-1159,

2-1163
setting when writing an HDF image 2-1158

K
K>> prompt 2-1282

keyboard 2-1282
keyboard mode 2-1282
KeyPressFcn, Figure property 2-785
keyword search in functions 2-1374
keywords

iskeyword function 2-1239
kron 2-1283
Kronecker tensor product 2-1283

L
labeling

plots (with numeric values) 2-1539
largest array elements 2-1431
lasterr 2-1284
lasterror 2-1286
lastwarn 2-1288
Layout Editor

starting 2-1008
lcm 2-1290
ldivide 2-1291
least common multiple 2-1290
legend 2-1292
legendre 2-1298
Legendre functions

(defined) 2-1298
Schmidt semi-normalized 2-1298

length 2-1301
license 2-1302
Light

creating 2-1305
defining default properties 2-1306
properties 2-1309

light 2-1305
Light object

positioning in spherical coordinates 2-1314
lightangle 2-1314

Index

Index-13

lighting 2-1315
Line

creating 2-1317
defining default properties 2-1320
properties 2-1324, 2-1332

line 2-1316
linear audio signal 2-1316, 2-1498
linear equation systems, methods for solving

Cholesky factorization 2-1469
Gaussian elimination 2-1470
Householder reflections 2-1471
matrix inversion (inaccuracy of) 2-1213

linear interpolation 2-1189, 2-1194
linearly spaced vectors, creating 2-1356
LineSpec 2-1342
LineSpec 2-1342
LineStyle

Line property 2-1328
lineseries property 2-1336

LineWidth

Line property 2-1328
lineseries property 2-1336

linkaxes 2-1347
linkprop 2-1349
links

in Command Window 2-1425
linsolve 2-1353
linspace 2-1356
listdlg 2-1357
little endian formats 2-867, 2-894
load 2-1359
loadobj 2-1362
local variables 2-913, 2-979
locking M-files 2-1478
log 2-1364
log10 [log010] 2-1367
log1p 2-1365

log2 2-1366
logarithm

base ten 2-1367
base two 2-1366
complex 2-1364, 2-1367
matrix (natural) 2-1371
natural 2-1364
of gamma function (natural) 2-951
plotting 2-1369

logarithmically spaced vectors, creating 2-1373
logical 2-1368
logical array

converting numeric array to 2-1368
detecting 2-1242

logical indexing 2-1368
logical tests

See also detecting
loglog 2-1369
logm 2-1371
logspace 2-1373
lookfor 2-1374
lossless compression

reading JPEG files 2-1149
lossy compression

writing JPEG files with 2-1159
lower 2-1375
ls 2-1376
lscov 2-1377
lsqnonneg 2-1380
lsqr 2-1383
lu 2-1387
LU factorization 2-1387
luinc 2-1393

M
magic 2-1399

Index

Index-14

magic squares 2-1399
Marker

Line property 2-1329
lineseries property 2-1337

MarkerEdgeColor

Line property 2-1329
lineseries property 2-1337

MarkerFaceColor

Line property 2-1330
lineseries property 2-1338

MarkerSize

Line property 2-1330
lineseries property 2-1338

mat2cell 2-1403
mat2str 2-1405
material 2-1403, 2-1407
MAT-files 2-1359
MATLAB

directory location 2-1430
installation directory 2-1430
startup 2-1429

matlab (UNIX command) 2-1409
matlab (Windows command) 2-1421
matlab function for UNIX 2-1409
matlab function for Windows 2-1421
matlab.mat 2-1359
matlab: function 2-1425
matlabcolon function 2-1425
matlabrc 2-1429
matlabroot 2-1430
Matrix

hgtransform property 2-1089
matrix

converting to formatted data file 2-880
detecting sparse 2-1270
evaluating functions of 2-921
flipping left-right 2-852

flipping up-down 2-853
Hadamard 2-1009
Hankel 2-1010
Hessenberg form of 2-1060
Hilbert 2-1093
inverse 2-1213
inverse Hilbert 2-1216
magic squares 2-1399
permutation 2-1387
poorly conditioned 2-1093
specialized 2-929
test 2-929
unimodular 2-955
writing as binary data 2-925
writing formatted data to 2-901

matrix functions
evaluating 2-921

max 2-1431
mean 2-1432
median 2-1433
median value of array elements 2-1433
memory 2-1434
menu (of user input choices) 2-1435
menu function 2-1435
MenuBar, Figure property 2-786
mesh 2-1437
meshc 2-1437
meshgrid 2-1442
meshz 2-1437
methods

overloaded 2-919
M-file

debugging 2-1282
function 2-913
naming conventions 2-913
programming 2-913
script 2-913

Index

Index-15

M-files
checking for problems 2-1473
lint tool 2-1473
locking (preventing clearing) 2-1478
opening 2-1575
problems, checking for 2-1473
unlocking (allowing clearing) 2-1507

min 2-1452
MinColormap, Figure property 2-787
minres 2-1453
mislocked 2-1457
mkdir 2-1458
mkdir (ftp) 2-1460
mkpp 2-1461
mldivide 2-1464
M-Lint

function 2-1473
function for entire directory 2-1475
HTML report 2-1475

mlint 2-1473
mlintrpt 2-1475
mlock 2-1478
mmfilefinfo 2-1479
mmfileinfo 2-1479
mod 2-1482
models

opening 2-1575
modulo arithmetic 2-1482
more 2-1483, 2-1498
movefile 2-1484
movegui function 2-1487
movie 2-1444
movie2avi 2-1491
mrdivide 2-1464
msgbox 2-1494
mtimes 2-1495
mu-law encoded audio signals 2-1316, 2-1498

multibandread 2-1499
multibandwrite 2-1503
multidimensional arrays

interpolation of 2-1200
longest dimension of 2-1301
number of dimensions of 2-1521
rearranging dimensions of 2-1217
See also array

multiple
least common 2-1290

multistep ODE solver 2-1556
munlock 2-1507

N
Name, Figure property 2-787
namelengthmax 2-1509
naming conventions

M-file 2-913
NaN 2-1510
NaN

detecting 2-1246
NaN (Not-a-Number) 2-1510
nargchk 2-1512
nargin 2-1514
nargout 2-1514
ndgrid 2-1519
ndims 2-1521
nearest neighbor interpolation 2-993, 2-1189,

2-1194
newplot 2-1522
NextPlot

Figure property 2-787
nextpow2 2-1525
nnz 2-1526
no derivative method 2-865
noncontiguous fields, inserting data into 2-925

Index

Index-16

nonzero entries (in sparse matrix)
number of 2-1526
vector of 2-1528

nonzeros 2-1528
norm

1-norm 2-1529
2-norm (estimate of) 2-1531
F-norm 2-1529
infinity 2-1529
matrix 2-1529
vector 2-1529

norm 2-1529
normal vectors, computing for volumes 2-1256
normest 2-1531
notebook 2-1532
now 2-1533
null 2-1535
null space 2-1535
num2cell 2-1537
num2hex 2-1538
num2str 2-1539
number

of array dimensions 2-1521
numbers

detecting finite 2-1232
detecting infinity 2-1237
detecting NaN 2-1246
detecting prime 2-1262
imaginary 2-1119
NaN 2-1510
plus infinity 2-1171

NumberTitle, Figure property 2-788
numel 2-1541
numeric format 2-871
numeric precision

format reading binary data 2-890

numerical differentiation formula ODE solvers
2-1557

O
object

determining class of 2-1220
object classes, list of predefined 2-1220
objects

Java 2-1261
ODE file template 2-1560
ODE solvers

obtaining solutions at specific times 2-1548
ode113 2-1548
ode15i function 2-1543
ode15s 2-1548
ode23 2-1548
ode23s 2-1548
ode23t 2-1548
ode23tb 2-1548
ode45 2-1548
odefile 2-1559
odeget 2-1565
odeset 2-1566
odextend 2-1572
off-screen figures, displaying 2-834
ones 2-1574
one-step ODE solver 2-1556
online documentation, displaying 2-1054
online help 2-1050
open 2-1575
openfig 2-1578
OpenGL 2-792

autoselection criteria 2-794
opening files 2-867
openvar 2-1581
operators

Index

Index-17

relational 2-1368
symbols 2-1050

optimget 2-1582
optimization parameters structure 2-1582,

2-1583
optimset 2-1583
orderfields 2-1586
ordqz 2-1588
ordschur 2-1589
orient 2-1590
orth 2-1592
otherwise 2-1593
output

checking number of M-file arguments 2-1516
controlling display format 2-871
in Command Window 2-1483
number of M-file arguments 2-1514

overflow 2-1171

P
paging

of screen 2-1051
paging in the Command Window 2-1483
PaperOrientation, Figure property 2-788
PaperPosition, Figure property 2-788
PaperPositionMode, Figure property 2-788
PaperSize, Figure property 2-788
PaperType, Figure property 2-789
PaperUnits, Figure property 2-790
Parent

Figure property 2-790
hggroup property 2-1074
hgtransform property 2-1089
Image property 2-1134
Light property 2-1312
Line property 2-1330

lineseries property 2-1338
path

building from parts 2-910
PBM

parameters that can be set when writing
2-1159

PBM files
reading 2-1149
writing 2-1157

PCX files
reading 2-1149
writing 2-1157

permutation
matrix 2-1387

PGM
parameters that can be set when writing

2-1159
PGM files

reading 2-1150
writing 2-1157

plot, volumetric
generating grid arrays for 2-1442

plotting
feather plots 2-742
function plots 2-875
histogram plots 2-1094
isosurfaces 2-1258
loglog plot 2-1369
mesh plot 2-1437

PNG
writing options for 2-1159

alpha 2-1162
background color 2-1161
chromaticities 2-1161
gamma 2-1161
interlace type 2-1160
resolution 2-1161

Index

Index-18

significant bits 2-1162
transparency 2-1161

PNG files
reading 2-1150
reading alpha channel 2-1152
reading transparency chunk 2-1152
specifying background color chunk 2-1152
writing 2-1157

PNM files
reading 2-1150
writing 2-1157

Pointer, Figure property 2-790
PointerShapeCData, Figure property 2-791
PointerShapeHotSpot, Figure property 2-791
polygon

detecting points inside 2-1179
polynomial

make piecewise 2-1461
poorly conditioned

matrix 2-1093
Portable Anymap files

reading 2-1150
writing 2-1157

Portable Bitmap (PBM) files
reading 2-1149
writing 2-1157

Portable Graymap files
reading 2-1150
writing 2-1157

Portable Network Graphics files
reading 2-1150
writing 2-1157

Portable pixmap format
reading 2-1150
writing 2-1158

Position

Figure property 2-791

Light property 2-1312
position indicator in file 2-906
power

of two, next 2-1525
PPM

parameters that can be set when writing
2-1159

PPM files
reading 2-1150
writing 2-1158

precision 2-871
reading binary data writing 2-890

prime factors 2-738
dependence of Fourier transform on 2-751,

2-753, 2-754
prime numbers

detecting 2-1262
print frames 2-887
printframe 2-887
PrintFrame Editor 2-887
printing

borders 2-887
with non-normal EraseMode 2-1133, 2-1326,

2-1334
with print frames 2-889

product
Kronecker tensor 2-1283

K>> prompt 2-1282
prompting users for input 2-1181, 2-1435
putfile 2-1493

Q
quotation mark

inserting in a string 2-884

Index

Index-19

R
range space 2-1592
RAS files

parameters that can be set when writing
2-1163

reading 2-1150
writing 2-1158

RAS image format
specifying color order 2-1163
writing alpha data 2-1163

Raster image files
reading 2-1150
writing 2-1158

rdivide 2-1291
reading

binary files 2-890
formatted data from file 2-901

readme files, displaying 2-1226
rearranging arrays

swapping dimensions 2-1217
rearranging matrices

flipping left-right 2-852
flipping up-down 2-853

regularly spaced vectors, creating 2-1356
relational operators 2-1368
release notes

function to display 2-1173
renderer

OpenGL 2-792
painters 2-792
zbuffer 2-792

Renderer, Figure property 2-792
RendererMode, Figure property 2-794
repeatedly executing statements 2-869
Resize, Figure property 2-795
ResizeFcn, Figure property 2-795
rewinding files to beginning of 2-900, 2-1147

RMS See root-mean-square
root directory 2-1430
root directory for MATLAB 2-1430
root-mean-square

of vector 2-1529
Rosenbrock

banana function 2-864
ODE solver 2-1557

round
towards minus infinity 2-855
towards zero 2-850

roundoff error
evaluating matrix functions 2-923
in inverse Hilbert matrix 2-1216

Runge-Kutta ODE solvers 2-1556
running average 2-825

S
scattered data, aligning

multi-dimensional 2-1519
two-dimensional 2-993

Schmidt semi-normalized Legendre functions
2-1298

screen, paging 2-1051
scrolling screen 2-1051
search, string 2-838
Selected

Figure property 2-796
hggroup property 2-1074
hgtransform property 2-1089
Image property 2-1135
Light property 2-1312
Line property 2-1330
lineseries property 2-1338

SelectionHighlight

Figure property 2-796

Index

Index-20

hggroup property 2-1074
hgtransform property 2-1089
Image property 2-1135
Light property 2-1312
Line property 2-1330
lineseries property 2-1338

SelectionType, Figure property 2-797
server (FTP)

connecting to 2-907
set operations

intersection 2-1206
membership 2-1243

ShareColors, Figure property 2-797
simplex search 2-865
Simulink

printing diagram with frames 2-887
singular value

largest 2-1529
skipping bytes (during file I/O) 2-925
smallest array elements 2-1452
sparse matrix

density of 2-1526
detecting 2-1270
finding indices of nonzero elements of 2-829
number of nonzero elements in 2-1526
vector of nonzero elements 2-1528

sparse storage
criterion for using 2-909

special characters
descriptions 2-1050

sphereical coordinates
defining a Light position in 2-1314

spline interpolation (cubic)
multidimensional 2-1200
one-dimensional 2-1189
three dimensional 2-1197
two-dimensional 2-1194

Spline Toolbox 2-1193
startup files 2-1429
Stateflow

printing diagram with frames 2-887
string

converting matrix into 2-1405, 2-1539
converting to lowercase 2-1375
searching for 2-838

strings
inserting a quotation mark in 2-884

structure array
field names of 2-763
getting contents of field of 2-973

Style

Light property 2-1312
subfunction 2-913
surface normals, computing for volumes 2-1256
symbols

operators 2-1050
syntax 2-1051
syntaxes

of M-file functions, defining 2-913

T
table lookup See interpolation
Tag

Figure property 2-797
hggroup property 2-1074
hgtransform property 2-1090
Image property 2-1135
Light property 2-1312
Line property 2-1330
lineseries property 2-1338

Tagged Image File Format (TIFF)
reading 2-1150
writing 2-1158

Index

Index-21

tensor, Kronecker product 2-1283
test matrices 2-929
text mode for opened files 2-867
TIFF

compression 2-1163
encoding 2-1159
ImageDescription field 2-1164
maxvalue 2-1159
parameters that can be set when writing

2-1163
reading 2-1150
resolution 2-1164
writemode 2-1164
writing 2-1158

TIFF image format
specifying compression 2-1163

Toolbar

Figure property 2-798
Toolbox

Spline 2-1193
transform, Fourier

discrete, n-dimensional 2-754
discrete, one-dimensional 2-748
discrete, two-dimensional 2-753
inverse, n-dimensional 2-1113
inverse, one-dimensional 2-1109
inverse, two-dimensional 2-1111
shifting the zero-frequency component of

2-756
transformations

elementary Hermite 2-955
transmitting file to FTP server 2-1493
transparency chunk

in PNG files 2-1152
tricubic interpolation 2-993
trilinear interpolation 2-993, 2-1197, 2-1200
Type

Figure property 2-798
hggroup property 2-1075
hgtransform property 2-1090
Image property 2-1135
Light property 2-1313
Line property 2-1331
lineseries property 2-1339

U
UIContextMenu

Figure property 2-798
hggroup property 2-1075
hgtransform property 2-1090
Image property 2-1135
Light property 2-1313
Line property 2-1331
lineseries property 2-1339

uint8 2-1187
unconstrained minimization 2-862
undefined numerical results 2-1510
unimodular matrix 2-955
Units

Figure property 2-799
unlocking M-files 2-1507
uppercase to lowercase 2-1375
UserData

Figure property 2-799
hggroup property 2-1075
hgtransform property 2-1090
Image property 2-1135
Light property 2-1313
Line property 2-1331
lineseries property 2-1339

Index

Index-22

V
variables

global 2-979
local 2-913, 2-979
name of passed 2-1183
opening 2-1575, 2-1581

vector
frequency 2-1373
length of 2-1301

vectors, creating
logarithmically spaced 2-1373
regularly spaced 2-1356

Visible

Figure property 2-799
hggroup property 2-1075
hgtransform property 2-1090
Image property 2-1136
Light property 2-1313
Line property 2-1331
lineseries property 2-1339

volumes
calculating isosurface data 2-1258
computing isosurface normals 2-1256
end caps 2-1249

W
Web browser

displaying help in 2-1054
white space characters, ASCII 2-1269
WindowButtonDownFcn, Figure property 2-799
WindowButtonMotionFcn, Figure property 2-800
WindowButtonUpFcn, Figure property 2-800
Windows Cursor Resources (CUR)

reading 2-1149
Windows Icon resources

reading 2-1149

Windows Paintbrush files
reading 2-1149
writing 2-1157

WindowStyle, Figure property 2-800
workspace variables

reading from disk 2-1359
writing

binary data to file 2-925
formatted data to file 2-880

WVisual, Figure property 2-802
WVisualMode, Figure property 2-803

X
X Windows Dump files

reading 2-1150
writing 2-1158

XData

Image property 2-1136
Line property 2-1331
lineseries property 2-1339

XDataMode

lineseries property 2-1339
XDataSource

lineseries property 2-1339
XDisplay, Figure property 2-804
XOR, printing 2-1087, 2-1133, 2-1326, 2-1334
XVisual, Figure property 2-804
XVisualMode, Figure property 2-805
XWD files

reading 2-1150
writing 2-1158

Y
YData

Image property 2-1136

Index

Index-23

Line property 2-1331
lineseries property 2-1340

YDataSource

lineseries property 2-1340

Z
ZData

Line property 2-1331
lineseries property 2-1340

ZDataSource

lineseries property 2-1340
zero of a function, finding 2-926

	Functions — Categorical List
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	Editing and Debugging
	Performance Improvement and Tuning Tools and Techniques
	Source Control
	Publishing

	System

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Operations and Manipulation
	Elementary Matrices and Arrays
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Data Analysis and Fourier Transforms
	Basic Operations
	Finite Differences
	Correlation
	Filtering and Convolution
	Fourier Transforms

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Coordinate System Conversion
	Cartesian

	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Programming and Data Types
	Data Types
	Numeric
	Characters and Strings
	Structures
	Cell Arrays
	Data Type Conversion
	Determine Data Type

	Arrays
	Array Operations
	Basic Array Information
	Array Manipulation
	Elementary Arrays

	Operators and Operations
	Special Characters
	Arithmetic Operations
	Bit-wise Operations
	Relational Operations
	Logical Operations
	Set Operations
	Date and Time Operations

	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Function Handles
	Object-Oriented Programming
	Error Handling
	MEX Programming

	File I/O
	Filename Construction
	Opening, Loading, Saving Files
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus123 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)
	Band-Interleaved Data

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio/Video Interleaved (AVI) Functions

	Images
	Internet Exchange

	Graphics
	Basic Plots and Graphs
	Plotting Tools

	Annotating Plots
	Annotation Object Properties

	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Plot Objects
	Figure Windows
	Axes Operations
	Operating on Object Properties

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	Working with Application Data
	Interactive User Input

	User Interface Objects
	Finding Objects from Callbacks

	Functions — Alphabetical List
	2 factor
	factorial
	false
	fclose
	feather
	feof
	ferror
	feval
	fft
	fft2
	fftn
	fftshift
	fftw
	fgetl
	fgets
	fieldnames
	figflag
	figure
	Figure Properties
	figurepalette
	fileattrib
	filebrowser
	file formats
	fileparts
	filesep
	fill
	fill3
	filter
	filter2
	find
	findall
	findfigs
	findobj
	findstr
	finish
	fitsinfo
	fitsread
	fix
	flipdim
	fliplr
	flipud
	floor
	flops
	flow
	fminbnd
	fminsearch
	fopen
	for
	format
	fplot
	fprintf
	frame2im
	frameedit
	fread
	freqspace
	frewind
	fscanf
	fseek
	ftell
	ftp
	full
	fullfile
	func2str
	function
	function_handle (@)
	functions
	funm
	fwrite
	fzero
	2 gallery
	gamma, gammainc, gammaln
	gca
	gcbf
	gcbo
	gcd
	gcf
	gco
	genpath
	genvarname
	get
	get (timer)
	getappdata
	getenv
	getfield
	getframe
	getplottool
	ginput
	global
	gmres
	gplot
	gradient
	graymon
	grid
	griddata
	griddata3
	griddatan
	gsvd
	gtext
	guidata
	guide
	2 hadamard
	hankel
	hdf
	hdf5
	hdf5info
	hdf5read
	hdf5write
	hdfinfo
	hdfread
	hdftool
	help
	helpbrowser
	helpdesk
	helpdlg
	helpwin
	hess
	hex2dec
	hex2num
	hgexport
	hggroup
	Hggroup Properties
	hgload
	hgsave
	hgtransform
	Hgtransform Properties
	hidden
	hilb
	hist
	histc
	hold
	home
	horzcat
	hostid
	hsv2rgb
	2 i
	if
	ifft
	ifft2
	ifftn
	ifftshift
	im2frame
	im2java
	imag
	image
	Image Properties
	imagesc
	imfinfo
	imformats
	importdata
	imread
	imwrite
	ind2rgb
	ind2sub
	Inf
	inferiorto
	info
	inline
	inmem
	inpolygon
	input
	inputdlg
	inputname
	inspect
	int2str
	int8, int16, int32, int64
	interp1
	interp2
	interp3
	interpft
	interpn
	interpstreamspeed
	intersect
	intmax
	intmin
	intwarning
	inv
	invhilb
	ipermute
	is*
	isa
	isappdata
	iscell
	iscellstr
	ischar
	isdir
	isempty
	isequal
	isequalwithequalnans
	isfield
	isfinite
	isfloat
	isglobal
	ishandle
	ishold
	isinf
	isinteger
	iskeyword
	isletter
	islogical
	ismember
	ismethod
	isnan
	isnumeric
	isobject
	isocaps
	isocolors
	isonormals
	isosurface
	ispc
	isprime
	isprop
	isreal
	isscalar
	issorted
	isspace
	issparse
	isstr
	isstrprop
	isstruct
	isstudent
	isunix
	isvalid (timer)
	isvarname
	isvector
	2 j
	2 keyboard
	kron
	2 lasterr
	lasterror
	lastwarn
	lcm
	ldivide, rdivide
	legend
	legendre
	length
	license
	light
	Light Properties
	lightangle
	lighting
	lin2mu
	line
	Line Properties
	Lineseries Properties
	LineSpec
	linkaxes
	linkprop
	linsolve
	linspace
	listdlg
	load
	loadobj
	log
	log1p
	log2
	log10
	logical
	loglog
	logm
	logspace
	lookfor
	lower
	ls
	lscov
	lsqnonneg
	lsqr
	lu
	luinc
	2 magic
	makehgtform
	mat2cell
	mat2str
	material
	matlab (UNIX)
	matlab (Windows)
	matlabcolon (matlab:)
	matlabrc
	matlabroot
	max
	mean
	median
	memory
	menu
	mesh, meshc, meshz
	meshgrid
	methods
	methodsview
	mex
	mexext
	mfilename
	mget (ftp)
	min
	minres
	mislocked
	mkdir
	mkdir (ftp)
	mkpp
	mldivide \, mrdivide /
	mlint
	mlintrpt
	mlock
	mmfileinfo
	mod
	more
	movefile
	movegui
	movie
	movie2avi
	mput (ftp)
	msgbox
	mtimes
	mu2lin
	multibandread
	multibandwrite
	munlock
	2 namelengthmax
	NaN
	nargchk
	nargin, nargout
	nargoutchk
	nchoosek
	ndgrid
	ndims
	newplot
	nextpow2
	nnz
	noanimate
	nonzeros
	norm
	normest
	notebook
	now
	nthroot
	null
	num2cell
	num2hex
	num2str
	numel
	2 ode15i
	ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb
	odefile
	odeget
	odeset
	odextend
	ones
	open
	openfig
	opengl
	openvar
	optimget
	optimset
	orderfields
	ordqz
	ordschur
	orient
	orth
	otherwise

	Index

