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1. Abstract

The purpose of this study is to explore the possibilities offered by current Artificial Neural Net
(ANN) structures and topol ogies and determine their strengths and weaknesses. The biological
inspiration behind ANN structure is reviewed, and compared and contrasted with existing
models. Traditional experiments are performed with these existing structures to verify theory
and investigate more possibilities. This study is conducted to the end of examining the
possibility of using ANNSs to create “artificia life,” which is defined here as a structure or
algorithm which displays characteristics typically only attributed to biological organisms,
usually nonrepeating, nonrandom processes. Although some ANN topology is shown to be
highly similar to that of biological systems, existing ANN algorithms are determined be
insufficient to generate the desired type of behavior. A new ANN structure, termed a
“Temperon”, is designed, which encompasses more properties in common with biological
neurons than did its predecessors. A virtual environment based on turtle graphicsis used as a
testbed for a neural net built with the new type of neuron. Experiments performed with the
Temperon seem to confirm its ability to learn in an unassisted fashion.
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Section 2 — Background

2. Background

2.1 Biological Nature of Neural Cells

Since agood deal of thisthesis centers around an mathematical construct known as an
artificial neural net (ANN), it will be useful to expand upon the nature of these constructs, as
well as the physiological inspiration for their design. As such, we look into the structure of
actua nerve cells as found in many living creatures, including man. It isimportant to point out
that athough many of the following explanations are generally accepted as fact in the field of
neuroscience, the ultimate function of each of the component parts of the nervous system is not
precisely defined, and many are not even known for certain. However, some such conclusions
are repeated here for the purpose of providing insight into the development of artificial neura
structures. More discussion regarding ANNSs can be found in alater chapter.

2.1.1 Physical Structure of biological neuron

For simplicity and familiarity, the following discussion will center around human neural
structures. However, the facts and conclusions presented herein do generalize to most of the
anima world. In fact, we will later look at one specific example of these neural structuresin a
snail known as Aplysia. Also, please note that the following text isin no way a complete
description of neural cell structure and behavior. It merely attempts to familiarize the reader to
the specific structures and processes which inspire the work in later chapters.

2.1.1.1 Body, Axon, Dendrites, Synapse

Nerve cells are thought to be the main processing element in our central nervous system.
Humans generally have about 100 billion nerve cdllsin the entire nervous system.

The nerve cell, or neuron, has four general regions, each defined by its physical position in the
cell aswell asits function. The cell body, or soma, provides the basic foundation on which the
other parts of the cell can grow. It aso provides the basic life-supporting functions
characterigtic of any biological cell -- nourishment, replenishment, reproduction, etc.

The cdll body has two types of interconnection structures which emerge from it: dendrites and
the axon. Each neuron generally has only one axon, but typically has many dendrites. The
axon carries the nerve signal away from the cell body to other neurons. Dendrites carry signals
in towards the cell body from the axons of other neurons. As such, the basic nerve cell can be
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thought of as a“black box” which has a number of inputs (dendrites) and only one output (the
axon). This analogy, though not technically complete, forms the basis neura network theory as

explained later.
Dendr:_é

Axon /

y _——— Cell Body

\ Axan Hillock

Synapses

Figure 2-1. A typical nerve cell [Guyton, 4].

The point at which the axon of one cell interconnects with a dendrite of another cell is known
as a synapse. At the point of interconnection, the axon forms a node called a presynaptic
terminal. Thisterminal lies on the surface of a dendrite of another nerve cell. When the axon is
stimulated, the presynaptic terminal releases a substance known as neurotransmitter, which
flows from the terminal to the adjacent dendrite. This chemical causes the dendrite to become
stimulated which thereby stimulates the second neuron. For clarity, we will refer to the neuron
which initiates a signal and rel eases neurotransmitter the transmitting neuron, and we will call
the neuron which reacts to the neurotransmitter the receiving neuron. Although strictly
speaking, this terminology is not technically accurate, from a signal processing and
information theoretic point of view it will provide amore clear analogy when looking at its
ANN moativation.

2.1.1.2 Neurotransmitter

A substance called a neurotransmitter flows across the gap from one neuron to another,
thereby acting as a chemical “bridge” for the neural signal. This gap is consequently known as
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achemical synapse. It isimportant to note that in a chemical synapse, the signal always flows
one way; that is, from the presynaptic terminal of one neuron to a dendrite of the postsynaptic
neuron. This phenomenon helps us isolate the exact nature of the signal transmitted.

There does exist a structure known as an electrical synapse. However, there are very few of
these relative to chemical synapses in the central nervous system, and their significance is not
known.

When aneural signal reaches the presynaptic terminal, it causes a depolarization in the
terminal voltage-gated calcium channels. The termina contains alarge number of these
channds, which subsequently release alarge number of calcium ionsinto the termina. The
transmitter vesicles, which synthesize the neurotransmitter, then bind with the neuron’s cell
membrane and finally spill their contents to the exterior of the cell — a process known as
exocytosis.

Neqrotransmitter
Mitochondria vesicles

Receptor Proteins

Presynaptic
Terminal

'} d , f
ls
Synaptic Cleft

Pastsynaptic
Terminal

Figure 2—2. A magnification of the structures present in the synapse [Guyton, 126].

In the intercellular gap, the neurotransmitter travels across to the membrane of the
postsynaptic, or receiving, neuron. The gap istypically on the order of two to three hundred
Angstroms wide. Once across the gap, the chemical interacts with a number of receptor
proteins located on the surface of the receptor neuron. These receptor proteins protrude
through the cell membrane and provide a binding terminal for the neurotransmitter. The
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component of the receptor proteins located inside the cell is known as the ionophore. The
ionophore relays the signal received from the neurotransmitter to its own nerve cell.

One type of ionophoreis a chemicaly activated ion-channel. This conducting channel passes
the signal aong from the transmitting neuron to the receiving one. However, it comesin three
varieties: (1) sodium channels, which allow sodium ionsto pass, (2) potassium channels, which
allow potassium ions to pass, and (3) chloride channels, which allow mainly chloride ions to
pass. Asit turns out, sodium ions excite the receiving neuron, but both potassium and chloride
inhibit the receiving neuron. The type and number of ion-channels in a dendrite varies with
each dendrite in a neuron, and with every neuron in the body. However, as we look at how
nerve impulses are conducted, we will see that the processes of inhibition and excitation are of
pivotal importance when trying to model the behavior of the neuron.

2.1.1.3 Sodium/Potassium Pump

Nerve impulses, though conducted across intercellular gaps by way of chemical
neurotransmitter, are primarily electrical in nature. The nature of these signals and their
generation is the focus of the next portion of our discussion.

The fluids contained inside the nerve cdls, as well as the fluids in which the céells are
suspended, are both highly electrolytic solutions, containing afair concentration of both
positive and negative free ions, in approximately equal proportion. However, in the neuron rest
dtate, a very small excess of negative ions accumulates along the neuron’ s inner membrane,
and an equa number of positive ions accumulate along its outer membrane. This dight
concentration difference creates a voltage difference from the inside to the outside of the cell,
specifically across its membrane, known as the membrane potential.

It is taken as convention to measure the voltage relative to the extracellular fluid, whichis
designated zero volts. When the neuron is at rest, typically the membrane potentia is on the
order of -65 mV, although it can range from -40 to -85 or -90 mV in different nerve cells. The
rest state of a neuron is defined as the state when it is neither inhibited nor excited by the
neurons connected to it.
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Figure 2-3. Diffusion of ions due to concentration gradients and varying permeability of membrane
results in a membrane potential [Guyton, 64].

A nerve signal propagates from the cell body, along its axon, and ends in the presynaptic
terminals at the end of the axon. The signa takes the form of a change in the polarity of the
rest membrane potential. This polarity change is aresult of a change in the permeability of the
membrane to potassium and sodium.

Normally, the cell membrane is selectively permeable only to positive potassium ions, which
flows out from the cell to the extracdlular fluid, where it exists at alower concentration.
Similarly, positive sodium ions flow into the cell when the membrane is permeable to sodium.

However, when the neural signa isinitiated, it causes a depolarization in the cell membrane
which propagates the length of the axon by means of both the selectively permeable membrane
and the sodium-potassium pump. This process derives its name from the action of voltage-
gated ion channels along the length of the axon which pump sodium and potassium against
their diffusion gradients out of and into the cell, respectively.
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++++++ ++

Figure 2—4. Sodium-potassium pump moves ions against their gradients to create a depolarization of
the normal rest membrane potential [Guyton, 64].

Theion channels make use of internal energy in the cell to perform this “pumping” action. The
process converts one molecule of ATP into ADP and uses the energy gained to push three
sodium ions out of the cell, and pull two potassium ionsinto it. The change of concentrations
of these two ions results in a drastic change in potential across the membrane, usually causing
aresulting voltage increase from its rest state of -65 mV to -25 or -30 mV, but sometimes can
even cause the potentia to become dightly positive.

Figure 2-5. Conversion of ATP to ADP in action of ion pump to exchange three sodium anions for
two potassium ones [Guyton, 68].

2.1.1.4 lonized pulse

The depolarized region occurs over asmall portion of the cell membrane, usually along the
axon. However, this drastic change in polarization, known as the action potential, across the
cell membrane affects adjacent portions of the membrane. The voltage-gated ion channelsin
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local portions of the cell membrane become active, performing their ionizing pumping along
their length of membrane. This propagation continues aong the entire length of the axon.

Each ion channel can continue its pumping action for a very short period of time, after which
the cell diffusion processes take over to return the cell to itsrest state. The membrane then
becomes highly permeable to sodium ions, which rush in and hyperpolarize the membrane,
making the potential across it more negative. This sudden influx causes the membrane to
actually overshoot its rest potential, and fall to -90 or -95 mV.

As suddenly as this happens, it stops. The membrane becomes permeable to potassium ions
again, which rush out to even the concentration differences create by the “pump.” Gradually,
the section of axon returnsto its rest potential.

+++++++++++++++++++

Fr++++++++++++r++++++F+r+r+r+FrrF+++

++++++++++++t————t++++++++++++++++

Figure 2—6. Depiction of depolarized zone propagating along a nerve fiber. Note the propagation here
isin both direction because the stimulus is initiated in the middle of the fiber. Normally, the
propagation is in one direction (from the soma and down the axon) only [Guyton, 74].

This process spreads along the length of the axon. The action potential propagates down the
axon like an electrical pulse radiating out from its source. Since the depolarization can only
last a very short period of time in any one region, due to the need for energy from ATP to
power the pump, each depolarized region quickly returnsto its rest potential. Hence, the net
effect isa“pulse” of depolarized region propagating down the length of the axon. Actually, the
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pul se propagates outwards from the source of causation, but the source is usualy immediately
adjacent to the cell body, which does not depolarize, so the pulse only ends up flowing the
other direction.

2.1.1.5 All-or-Nothing Causation

The action potential isinitiated in the dendrites and the soma. We recall from our discussion of
the processes in the post-synaptic terminal in the dendrites, the presence of neurotransmitter in
the interneuron gap causes the receptor ionophores to activate, each of which can be either
excitatory, or inhibitory.

The excitatory ionophores allow the cell body membrane to become more positive, by causing
its membrane to become more permeable to sodium. The inhibitory ones alow the membrane
to pass more potassium, making the membrane potential more negative.

Resting

Na™ influx

\ Spread of

/_._—__’ .
Action Potential

Excited

K* Efflux : 5

Inhibited

Figure 2—7. Excitatory and inhibitory stimuli at the synapse [Guyton, 131].

At any given time, a number of these different reactions may be occurring s multaneoudly at
different locations around the soma and dendrites. However, the net effect on the soma
membrane is an overall change in potential relative to its environment.
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Furthermore, the extent to which a certain dendrite affects the overall potentid is directly
proportional to its proximity to the cell body. The further away from the cell body along the
dendrite the stimulus occurs, the less effect it has on the cell. As such, the cell body can be
thought of as acting as a summing amplifier, which multiplies each incoming signal by an
attenuation factor, and then sums the resulting values. This analogy is discussed in depth in the
next section.

Figure 2-8. Summing action of soma presented with both excitatory (E) and inhibitory (1) stimuli
[Guyton, 134].

It isthis net change which creates the action potential. When the cell body potential risesa
certain amount (usualy about 20 mV) it triggers the set of sodium-potassium pumpsin the
axon closest to the cell body. This amount is known as the threshold for an action potential.
The depolarized pulse then propagates along the axon as previously described, and the cdll is
said to havefired.

It isimportant to emphasize that this occurrence either happens or it doesn’t. Once the first set
of pumps start working, the signal will propagate along the axon. There is no magnitude or
other information contained in the action potential pulse. It Simply exists or not. This binary
type of operation, coupled with the summing amplifier-type of behavior forms the basis for the
neura net theory in the next chapter.
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Figure 2-9. Graph showing the all-or-nothing response of the action potential [Guyton, 79].

2.1.2 Mathematical Representation of Nerve Cell processes

It isimportant to reinforce the correlation of the physical processes and structures found in
biological neurons with mathematical constructs. It is these correlations which directly result in
the ANN models discussed in later chapters. However, it is equally important to point out that
the neural net models DO NOT try to capture the microscopic workings of each neuron exactly
asoccursin biological systems. Rather, they try to model the critical processes in an attempt to
capture the macroscopic behavior of the system.

2.1.2.1 Mathematical correlation to the physical interconnections

Going back to our discussion of the physical topology of a nerve cell, werecal that it is
convenient to look at the neuron as a* black box” with a number of inputs, some transfer
function, and one output. If we further consider the fact that the action potential propagates
along the axon in an “al or none” fashion, we can easily say that the output is binary.

So, we can model the neuron as some function of itsinputs. Let’s designate each input x;,
wherei ranges from 1 to n, the total number of inputs.

Again, recalling from the discussion of the postsynaptic receptors in the dendrites and on the
cell body, we note that each input is attenuated proportional to its distance from the cell body.
Sincethis valueisrelated to a physical property of the neuron, it can be considered a constant
with respect to the time parameter of the system. Each input has a weight constant associated
with it, designated wi.

10
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}{1-W1

Figure 2-10. Each input X is attenuated (or amplified) by aweight constant W, which relates to the
physical attenuation imposed at the synapse.

Also note that the ionophores or attenuation in the postsynaptic receptors can stimulate either a
sodium or a potassium ion channel. These can either excite the cell or inhibit the cell. This
correlates to the sense of the weight. A positive weight is a excitatory constant, and a negative
weight is an inhibitory one.

Putting all this together, we can see that each input results in aweighted signal of xwi.

2.1.2.2 Linear combination of inputs

Once each of these signals reaches the cell body, they combine additively. Since some signals
are positive and some are negative, the net result can be either. Physically, the changeis
electrochemical, resulting in alinear combination of ions. Therefore, the net result isalinear
combination of each of the weighted input vectors, i.e. S xw

Note the linearity of the system in this stage. Thisis important later when we analyze the
system using this model.

11
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Figure 2-11. Summing amplifier effect at soma can be modeled as a weighted sum of inputs.

2.1.2.3 Thresholding resulting in binary or near-binary outputs

Now that the total inputs are combined in a linear fashion, we need to model the “all or none’
response of the neuron. Recall that each neuron has dightly different rest membrane potentials.
Additionally, every neuron will “fire”, or elicit an action potential, at adightly different
depolarization value. This can be thought of as a threshold above which action occurs.

Our model uses some sort of nonlinearity to capture this thresholding value. Usualy, the hard-
limit function (sometimes referred to as the Heaviside function) is used. Thisfunctionis +1
when itsinput is greater than zero and O when itsinput is less than or equal to zero.

However, since we need to encompass a definite threshold value, rather than ssimply above or
below zero, we can define a bias b which we add to the function inside the hard-limit to create
its discontinuity anywhere along the real axis.

So putting it all together, we get aformulafor the output of this model neuron:
O=fu(Sxw +b)

where f, isanon-linear transfer function, e.g. the hard-limit function.

12
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+J__..

Figure 2-12. Complete block diagram of Neural model, with bias and nonlinear thresholding
function.

Note that even though the action of a human cdll is strictly “al or non€e”, the resulting
mathematics are sometimes problematic when using a function which is discontinuous at a
point and thereby only piecewise differentiable. Therefore it is common to subgtitute an
analytic function such as the TANSIG or LOGSIG sigmoid functions, which allow
differentiation through their nonlinearities. The use of these functions will be explored in
greater depth in the next chapter.

13
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2.2 Artificial Neural Nets and their Applications
2.2.1 General Theory

2.2.1.1 Purpose

Artificial neural nets, or ANNSs, were designed as a smplified model of the biological neurons
previoudly discussed. In an attempt to capture “intelligence,” it was theorized that since the
human brain was constructed of a number of similarly constructed neural cells, asimulation
congtructed using these neural models should have smilar capabilities. Using the mathematical
model previoudly described, a*“neural network” can be designed by putting a number of these
mathematical “neurons’ together in various configurations.

It isimportant to point out that generally speaking, a neural net is not a set of physica
interconnections between finite physical elements. Most of the work donein the ANN field is
performed using computer ssimulations of the algorithms described herein.

2.2.1.2 Structure

The neurons are generally arranged in parallel to form “layers.” Although many combinations
are possible, configuration usually follows a similar pattern. Each neuron in alayer has the
same number of inputs, which is equa to the total number of inputsto that layer. Therefore,
every layer of p neurons have atota of ninputsand atotal of p outputs (each neuron has
exactly one output). Thisimplies that each neuron has n inputs as well. In addition, all the
neurons in alayer have the same nonlinear transfer function.

Again, recalling the discussion regarding the structure of each neuron, each one has a number
of weights, each corresponding to an input, along with athreshold or bias value. The list of
weights can be thought of as a vector of weights arranged from 1 to n, the number of inputs for
that neuron.

Since each neuron in alayer has the same number of inputs, but a different set of weights, the
weight vectors from p neurons can be appended to form aweight matrix W of size (n, p).
Similarly, the single bias constant from each neuron are appended into a vector of length p.

Note that every neuron in the net isidentical in structure. This fact suggests that the neural net
isinherently massively parallel.
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2.2.1.3 Weight Updating

Since each of the neurons are identical in structure, the nontrivial information in the neurd
layer must be stored in the weight matrix and the bias vector. Looking at the model used, we
see that these values are the only factors which can change from neuron to neuron; otherwise,
each element in anet isidentical.

Usually the weights and biases are initialized randomly, so as not to impose a prejudice on the
network. Therefore, we must have some facility for changing the weights and biasesin a
systematic fashion. Thisisreferred to asalearning rule, because the process of updating the
weights and biases is thought of as training the network.

Just as there are many ways to arrange a neural net, there are many learning rules available.
Following, we explore afew of the popular ones.

2.2.2 Perceptrons - Classification

Each neuron arranged in alayer in this fashion are referred to as a perceptron. Inputsto the
layer are applied in paraléel to al neural inputs ssmultaneoudly. For each neuronkin[1, p],
each input x; is multiplied by the weight wi, for i in [1, n], and then summed. Each sum is then
added to its bias by and passed through the nonlinear function. At the conclusion of this
process, the layer outputs appear in paralldl.

Looking at this process mathematically, we can see that if the inputs are presented as arow
vector, the layer outputs can be found by the matrix product X W + B, which resultsin a (p x
1) column vector. If we apply the nonlinear transfer function to each of the elements, we get
the outputs to the neural layer.

Perceptrons are trained in a supervised learning fashion. This means that one tries to train the
net to perform a specific, known functions. We have a target test set where the outputs are
known, which is used to train the net.

Also note that perceptrons are generally arranged in a strictly feedforward fashion. There are
usually no closed loops, or cycles, either.

2.2.2.1 Single Layer

The general procedure for working with a perceptron layer isto first initialize the network as
described with random weights and biases. Usually the random numbers are kept small, and
symmetrical about zero. Then an input vector is applied to the net, which generates an outpui.
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Since the net has just been initialized, the output is generally “incorrect,” that is to say, not
equal to the training target vector.

Thelearning rule is then applied to the layer. A simple learning rule which iswidely used is
called the Widrow-Hoff rule:

D=d(t)- ¥t)

w,(t +1) = w (t) + hDx, (t)

d(t) = : +1, if input from classA
1 0, if input from class B

where O £ h £ 1, apositive gain function. Class A is defined to be when the output is 0 and
should be 1; Class B is defined to be when the output is 1 and should be 0. [Beale, 50]

This rule specifies a smple method of updating each weight. It tries to minimize the error
between the target output and the experimentally obtained output for each neuron by
calculating that error and calling it a*“delta.” Each weight is then adjusted by adding to it its
delta multiplied by some attenuation constant, usually by about 10%. This processis then
iterated until the net error falls below some threshold.

By adding its specific error to each of the weights, we are ensured that the network is being
moved towards the position of minimum error. And by using an attenuation constant, rather
than the full value of the error, we move it lowly towards this position of minimum error.

Inputs [n]
Qutputs [p]

Neural Layer
[p] neurons

Figure 2—-13. Single neural layer. Each circle represents an entire Neural model, each with ninputs,
and one output.
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If we look at the vector of p outputs as defining an p-dimensional energy space, we can think
of this process of minimizing error as propagating the state of the network to a configuration of
lowest energy. The current state of the network is represented as a point on the energy
landscape, and the next position of the net should be at a“lower” energy point. This can be
visualized in three dimensions as a ball placed on uneven terrain, driven by gravity to find a
configuration of lowest energy.

When correctly trained, the perceptron exhibits some highly promising behavior. A single
perceptron isableto learn to classify objects according to their position in n-dimensional
hyper space defined by the n inputs. For example:

A single perceptron is trained with a set of vectors which represent, pointsin athree-
dimensional space. These training vectors could take the form of a (y x 3) matrix of y ordered
triplesin a Cartesian space. The goal here is to ascertain whether a given point isor isnot a
member of some arbitrarily-defined region in space. The corresponding target vector would be
single dements, consisting of either “1” or “0,” representing if or if not the point is within the
region. As each training point and its target output is presented to the neuron, it learns more
about the arbitrarily shaped region in 3-space. Soon, it is able to correctly classify pointsit has
never seen before!

This behavior suggests a genera task for what the perceptron does, and what it is good for: it
classifies. A layer of p perceptrons each with n inputs can theoretically learn to classify p
regionsin n-space.

When perceptrons were first introduced, they seemed revolutionary. Here was a mathematical
model of a structure which could be taught to classify points in hyperspace, not according to
rules, but by being shown which points belonged in which sets. This freed humans from the

necessity of determining rules by which the points should be classified — atricky businessin
few dimensions, and an impossibility in higher ones. It was thought that they could be trained
to solve any problem which could be set up as a classification problem in hyperspace.

Unfortunately, there are some difficulties with this model. The first can be seen readily from
the ball analogy. Just like a ball, when released on an uneven surface can cometo restin a
local depression and not find a deep, but distant, hole, the net can be trained according to the
Widrow-Hoff agorithm and still not find the position of lowest energy. It can “get stuck” ina
local minimum. There are, however, more advanced training mechanisms which have been
developed to minimize this problem.
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Secondly, and more importantly, a careful analysis of the mathematics shows a critical flaw in
the perceptron layer: since each element is smply alinear combination of its e ements, each
perceptron can only classify linearly separable regions. This reveation was regarded as the
fatal blow to supporters of the perceptron as a panacea.

In fact, the problem became known as the XOR problem, since the exclusive-or logic gateis
not alinearly separable agorithm, and probably the simplest one to implement: Look at a 2-D
plane, each axis only having two coordinates, zero and one. The axes represent inputs to the
XOR, and points placed on the grid represent outputs to the XOR. Place an “X” on the grid
locations where the output of the XOR isaone ([1,0] and [0,1]), and place an “O” on the grid
where the output isa zero ([0,0] and [1,1]).

Now try to draw exactly one straight line which divides al the Xs from the Os. Impossible.

O

57 %

Figure 2-14. Graphical depiction of the XOR problem. The two sets (Xs and Os) are linearly
inseparable and therefore cannot be partitioned by a single perceptron layer.

2.2.2.2 MLP - Feedforward

With the discovery that the perceptron was unable to deal with linearly inseparable problems,
work on neura nets all but ceased. Finally, in 1986, its was shown that by cascading neural
layers, the resulting neural network can be trained to solve arbitrary regions in n-space, not
just linearly separable one. An informal proof of this assertion is as follows:
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Each neural layer (and indeed, each perceptron) is able to divide a space linearly. Picturing this
process in two dimensions would be drawing a straight line across the Cartesian grid, and in
three dimensions, like dicing a cube in two pieces along any arbitrary plane. Higher
dimensions can be partitioned smilarly, but are impossible to visualize.

If, however, we cascade a number of such processes, each succeeding layer can perform
another linear partitioning, but it may be along a different (hyper)plane. Drawing one set of
lines on the grid gives you binary partitioning: A-or-not-A. But if we take this already-
partitioned space and further partition it, we can obtain further refinement of the specification
region. Then if we take that region and partition it once again, we get an even more refined
region. And so forth.

Input Layer  Hidden Layer Output Layer
(layer 1) (layer 2) (layer 3)

Figure 2-15. Three-layer MLP Neural Network.

In fact, we can show, just asinformally, that only three layers are necessary to define any
region in n-space. Thefirst layer allows the drawing of “lines’. The second layer allows the
combining of these linesinto “convex hulls.” The third layer alows the convex hullsto be
combined into arbitrary regions. So we construct our neural network of three layers of
cascaded perceptrons. We call this the Multi-layer Perceptron or MLP. That's al thereisto it.

Well, maybe not. The question arises. how do we train this three-layer neural network? We
obvioudly cannot use the Widrow-Hoff learning rule. However, the spirit of that learning rule
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does in fact hold over to these nets. Specifically, we want to minimize our total error by
reinforcing the weights which produce the correct outputs and suppressing those weights which
produce the incorrect ones.

Note here that the use of the terms “correct” and “incorrect” imply a similar type of
“supervised” learning as discussed before. Therefore, we must have atest set, consisting of
input vectors and associated target outputs.

Examining the Widrow-Hoff rule further, we run into a problem: it relies on the fact that a
given neuron needs to be aware of the state of all inputs to the net, as well as al the outputs of
the net, in order to determine if aweight should be reinforced or suppressed. However, in the
three-layer arrangement described, no layer has both pieces of information; the first layer has
the input information, but no output information — the opposite is true for the output layer.
And the middle layer has no information whatsoever.

This dilemma findsits roots in the fact that the hard-limit transfer function provides no
information to the output of a neuron regarding itsinputs. As such, it is useless for our
purposes. To get around this problem, we make use of other nonlinear functions, as mentioned
previoudy, which have transfer functions similar to the hard-limit function, but not its
problem-causing discontinuity.

By using these other functions, we are able to obtain information about the state of the inputs
in layer layers. Therefore, we are able to correct the weights in the final layer, because we now
have information about both the outputs and the inputs.

Once we update the final layer, we can backpropagate the error at third layer to the previous
layer. Then we are able to update the weights at the previous layer, and compute its error. That
error is then propagated back to the layer before it. This process can continue for as many

layers as necessary.

The learning rule described here is known as the generalized delta rule, because the error isa
“delta’ which is propagated back to previous layers.

The agorithm is as follows. Starting from the output and working backwards, calculate the
following:

w;(t+1) =w;(t) +hd;0,
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where w; (t) represents the weights from nodei to nodej at timet, h is again term, and dpj is
an error term for pattern p on nodej.

For output units

dpj = Koy (1- Opj)(tpj B Opj)

For hidden units

dy = ko, (1- oy)a dyw;,
k

where the sum is over the k nodes in the layer above node j. [Beale, 74]

2.2.3 Hopfield Net - Pattern Recognition

A Hopfield net is constructed with the same type of neuron model as the perceptron nets;
however, the Hopfield net is constructed using a completely different topology. MLP nets are
always strictly feedforward. Hopfield nets generally involve feedback, and are usually fully-
connected, i.e. every neuron connects to every other neuron.

Imagine, then, a Hopfield network consisting of six neurons. Each neuron should have six
inputs, one for each output of the other five neurons, plus one for its own output. This type of
topology generates a more active network, which works quite differently from the other nets we
have seen.

ML P networks function by presenting them with an input and then generating an outpui.
Hopfield networks have no explicit input or output nodes; rather, any node can function as any
other one. In addition, once started, Hopfield networks continue to oscillate for an indefinite
period of time, due to the many cycles — closed loops — inherent in their construction

topology.
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Figure 2-16. Five neurons in afully-connected Hopfield network. All neuron outputs feed to all other
neurons.

To use the net, all outputs are “set” to a given input state simultaneoudly. The inputs then
propagate around the net, generating new outputs. These outputs are fed back into the net and
generate new outputs, etc. What will occur is that the net will either settle down to a steady-
state, or it will oscillate between a fixed number of states.

If we consider the action of the net to be moving in pattern space, it follows an energy-descent
mechanism along the energy gradient. It ends up in aloca minimum, which is either unique, or
shared by afinite number of states.

This network is trained with a set of inputs which it learns to recognize. Then, when presented
with someinput, it will oscillate to a steady state of one or a number of its trained states. This
process is less like the classification behavior exhibited by the MLP net, and more like a
pattern matching-type behavior. In fact, when the net is trained with certain fixed patterns, and
it is then presented with the same patterns plus noiseg, it can iterate to the noise-free patterns. In
this capability, it is extremely useful and can be trained to pick out patterns even corrupted
with alarge amount of noise.

Obvioudly, the generalized deltarule is not applicable for this type of network; there are no
explicit “layers’ here. Therefore a different learning rule must be used for the Hopfield net.

2.2.4 Generalizations

It is of utmost importance to note here that there is one powerful similarity among these types
of neural nets — that is the necessity of some external learning rule applied macroscopicaly to
the entire system to make its behavior more correct. Even so-called “ unsupervised” networks
make use of some controlling rule which governs the network’s behavior. We will seein the
next section that there is no paralld to thisin biological systems. Therefore, it may be
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necessary to evolve a new type of neural model which does not depend on this type of system-
wide learning rule.
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2.3 Our friend Aplysia

Even though ANNSs are demonstrably powerful, we can readily see some of their limitations.
Primarily, they are limited by their topology and learning rule. However, since agoa of this
thesisisto explore implementations of artificia life, we are specificaly interested in neura
behavior which comes close to that of living organisms. Therefore, it is useful to explore one
exemplary organism which has been used for such a purpose aready.

The large marine snail Aplysia californica has been studied extensively regarding its neura
topology, aswell asits learning abilities. Since it has ardatively small number of neurons
(about 20,000 as compared to the human twenty billion) it is much less complex, and therefore
simpler to study than higher life forms. Other similar invertebrates have also been used for
such purposes, with similar results; so, the following discussion will concentrate on the
research done with Aplysia.

2.3.1 General Observations

One major point observed by the researchers was that in different specimens of Aplysia similar
neura structures could be found. In fact, with regards to the topology of the nervous system,
the specimens were virtually identical. For example, certain sensory neurons were always
found to connect to certain motor neurons. Other such similarities were found extensively
through alarge number of sample specimens. This led researchersto believe that the topology,
or interconnections, of neurons were governed largely by genetic construction, and not a
function of the experiences or “knowledge” of the specific sample.

Mantle Shelf

Figure 2-17. Bottom view of Aplysia Californica.
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Also, they found a number of preexisting behavioral responses, or reflexes, which proved
useful in later experimentation. One reflex which was extensively used was the “gill-
withdrawa” reflex. When the snail was gently poked on its siphon or mantle, it would move its
gill to awithdrawn position. Thisis similar to the human response which quickly movesone's
hand away from a hot object.

2.3.2 Summary of Relevant Experiments

2.3.2.1 Habituation

It was observed that repeated stimulations of this gill-withdrawal reflex resulted in differing
responses by the snail. At first, multiple stimulations resulted in an equal number of responses.
However, as the frequency of stimulations and training sessions increased, Aplysia’s response
gradually decreased, and eventually vanished. This type of decrease in the strength of a
behavioral response to repeated stimulation is known as habituation.

Severa observations should be made regarding habituation in Aplysia. Firstly, the snail was
shown to exhibit both short-term and long-term habituation responses. When it was stimulated
ten to fifteen times in one session, it recovered from its habituation partialy in about an hour
and almost completely in aday. In this context, recovery from the habituation processis
equivalent to “forgetting.” However; when stimulated ten times in each of four training
sessions, with breaks in between, it remained habituated for weeks afterwards.

It isimportant to observe changes incurred by habituation on the cellular level. From the brief
discussion of the nervous system, we recall that when an action potential reaches the pre-
synaptic node at the end of a neuron’s axon, the node releases a number of packets of
neurotransmitter. After release, the neurotransmitter is regenerated in the node by many
neurotransmitter vesicles. This process takes a finite, though small, amount of time. A series of
frequent excitations depletes the node’ s ahility to generate and rel ease neurotransmitter. Each
subsequent stimulus results in a smaller and smaller number of neurotransmitter vesiclesto
spill their contents.

Recall now that we mentioned that the action potentia is thought of as binary. When the
postsynaptic terminals of corresponding motor neurons were examined, it was determined that
the corresponding postsynaptic potential of these frequent stimulations did not change. Even
with smaller amounts of neurotransmitter in the interneuron gap, the potentials generated by
the postsynaptic terminal were identical as those generated with larger amounts of
neurotransmitter. Therefore the resulting action potentia of the receiver neuron remains
unchanged for these depressed concentrations of neurotransmitter.
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However, it was discovered that this type of long-term repeated stimulation actually leadsto a
decrease in the number of interconnections between the affected neurons, contradicting the
earlier hypothesis that the neural structureis static. Exactly how this process actually takes
placeis still relatively unknown, but its existence is well documented. It is thought that the
decrease in the amount of neurotransmitter signals a secondary control mechanism in the cells
which trigger the physical changes.

2.3.2.2 Sensitization

Using the same techniques described above, a similar experiment was conducted; however, at
the same time as the mantle was touched, an electrical shock was applied to the body, usualy
thetail or the head. Adding this type of “noxious’ stimulus proved to dramatically ater the
type of response dicited from Aplysia. Whereas in habituation, the response gradually
diminished, here, we see the response greatly enhanced. The gill contracted much more readily
and responsively then otherwise.

As with habituation, a number of training sessions had a lasting affect on the subject.
Afterwards, the ordinarily mild stimulus of touching the mantle alone resulted in a drastic
contraction of the gill, as when the electric shock was applied.

On acélular level, we see asimilar effect to long-term sensitization: more connections from
between affected neurons, as well as reinforcement of existing connections. Again, the process
which causes these changesis not well understood.

2.3.3 Relevance and relation to neural nets

In Aplysia we observe behavior not seen at al in the ANN models we have looked at: the
ability of aneuron or neural circuit to changeits own connections or connection weights.
There has been some evidence to suggest that the mechanisms used in the snail which are
genera neural behavior in animals, and not specific to Aplysia. It may then be necessary to
evolve anew neural model with the ability to change itsdlf if we want to capture this type of
living behavior in amodel.
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3. Approaches

3.1 General Methods and Tools used

Since the neural network techniques discussed generally function asa simulation, it was
necessary to choose a platform and environment in which to design. Two such environments
were chosen. The MATLAB suite, by Mathworks, has an optional Neural Network toolbox
which includes, among other things, predefined routines for training feedforward 3-layer
perceptron networks as well as Hopfield networks. The system, while efficient for working
with preexisting network topologies, is difficult to customize.

The portable language Java, developed by Sun Microsystems, was also used as an aternative
platform for development. Since Javais a fully functional development language, like C, it
allows for fully customized routines to be written. In addition, since Java is oriented to GUI
(Graphical User Interface) programming, it allowed for a complex visual representation of the
internal state of the network to be designed. It is, admittedly, much slower in execution than
MATLAB, an environment optimized for matrix manipulations.

3.1.1 MATLAB ANN toolbox

The Neural Network toolbox has a number of routines which were utilized to explore the
response of Perceptron-based networks, whether strictly feedforward, or feedback. MATLAB
was used to investigate the various performance parameters of feedforward networks. This
toolbox is available directly from Mathworks.

Aswas previously mentioned, these feedforward networks can be modeled in a set of three

matrices representing the weights of each layer and three vectors representing the

corresponding biases. MATLAB provides a simple procedure to initialize those matrices:
>WL. = RANDS(h, w);

initializes amatrix of size (h x w) with small random numbersin the range [-1 1].

Once those three matrices were established, initialized, and trained, the network could be easily
simulated with one command:

>QUT=SI MUFF(I N, W, B1, typel, W2, B2, type2, W8, B3, t ype3);
simulates a feedforward network when presented with an input vector IN. The weights and
biases are input to the function as the W and B variables. The type variables are strings which
designate which type of nonlinear transfer function desired for each layer eg. t ypel =
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“LOGSI G'; for alogarithmic-sigmoidal function. Note that the hard-limit function cannot be
used here for the reasons discussed in the neura network theory section.

Training a feedforward network with the generalized delta rule and backpropagation is
performed by another function:

>[ W, B1, W2, B2, W\B, B3] =TRAI NBP( I N, TARGETS, W, B1, typel,

W2, B2, t ype2, W8, B3, t ype3, ERR) ;

where TARGETS isthe list of target outputs associated with the list of inputsin IN. Note that
IN and TARGETS can be matrices which represent a set of different inputs each with their
corresponding target output. Here, ERR is the sum-squared error between all the simulated
outputs and their corresponding target outputs.

It should be noted that the TRAINBP function has a tendency to get “stuck” in aloca
minimum and not meet its ERR condition. Reinitialization of the net and retraining will usualy
help the net converge. However, creating the network with too small dimensions will prevent
the net from converging no matter how many different iterations of training sessions are
attempted.

In addition, the TRAINBPX function trains the network to ssimilar conditions, but with an
accelerated algorithm using momentum and small random perturbations to help the net
converge quickly. This function avoids many of the local minimawhich create difficulties with
the TRAINBP function. Otherwise, the TRAINBP and TRAINBPX functions perform
identically.

All the above MATLAB functions are included in the Neural Network toolbox provided by
Mathworks.

Finally, anew custom function was developed by the experimenter to dump the output of a
certain type of network. This function, called “TestNet” produces an intensity matrix which
represents the output of one output neuron when varying two inputs to the net, represented by
the Cartesian coordinates of the corresponding grid square. This matrix isthen displayed asa
gray-scale grid. For example, if anet is presented with the input vector [2,1] and generates an
output of 0.4. Then the corresponding TestNet gray-scale plot would have a 40% gray square
at location (2,1). The TestNet function has a resolution parameter which alows the step size to
be varied, thereby displaying the net at greater detail. Unfortunately, the time required to
generate the full test is proportional to the square of the resolution parameter; therefore, itis
useful to keep it low unless looking for a specific network detail.
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3.1.2 Java

Javais an extremely object-oriented programming language designed to be portable over many
of the platformsin use today. Its class-based structure makes it an excellent choice for
implementing the neural structure discussed because the structure of neuron behavior can be
inherited from one model to another. This allows a general neuron structure to be specified and
then specific types of behavior to be added simply, with minimal redundancy.

3.1.2.1 Neuron Package

A neur on package was written in Java. The base class, the Neur on class, is an abstract
class which specifies general neuron behavior. It specifiesan out put () method whichis
called and returns areal number which is the output of the neuron. It also specifies an

addl nput () method which is used to connect the output of other neurons to the input of this
neuron. Also, the neuron class contains a number of private instance variables. Thereisa
Vector which holds the weights and areal variable which holds the bias, in addition to the
Vector of references to the neurons connected to it. With this arrangement, when a neuron’s
output is requested, it can then query the outputs of each neuron connected to it.

Obj ect

iNeuron LPerceptron L | PercepFB [ Temperon

I nput

Figure 3—1. Class hierarchy for the Neuron package. All classes inherit from the Neuron abstract
class.

To actudly instantiate the Neur on, it was subclassed into specific types of neurons. A

Per cept r on class was written which implemented the specific behavior necessary to sum
all the inputs, pass them through a nonlinearity. This class can be instantiated to create an
actua neural net. Building the network is as simple as instantiating the correct number of
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Perceptron objects, then connecting them to each other. An | nput class was aso written, to
provide adumb input layer for feedforward networks.

This structure technically allows the programmer to connect a perceptron to itself, by caling
theaddl nput () method with“ t hi s” asthe parameter. Unfortunately, a subsequent call to
the out put () method will cause the program to hang, because of the infinite loop incurred by
an object’ s method calling itsalf.

To get around this limitation, a Per cepFB class was written to extend the Per cept r on
class. This class functions smilarly to the Per cept r on class, but it allows feedback-type
connections.

In addition, aTenper on class was written to subclass the Per cepFB class. More
discussion about the Tenper on class can be found later.

3.1.2.2 TurtleMouse Environment

Since we are interested in using a neural net asthe “brain” of some artificialy intelligent
device, we needed a device to put the brain in. At first, it was thought that an actual physical
robot was an appropriate testbed to use as the end construct. However, after a series of
explorations, it was abandoned as being unnecessarily complicated, in addition to the fact that
it is much more difficult to control the environment in which a robot operates.

Eg_;’a Mouszey H=l

Figure 3-2. TurtleMouse virtual environment window. Turtle (triangle in the middle) moves around
window, leaving atrail behind. Window edges loop around.
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Therefore, it was decided that a virtual environment could be designed, in which avirtual
object could interact. This environment, written in Java, is essentialy a port of the turtle-based
environment LOGO. The environment was encapsulated in an object which can be instantiated
in another environment.

It involves aturtle or mouse-like object shaped like a triangle with the capability to move about
its environment, which is essentially a resizable window. The TurtleM ouse moves about
according to simple commands. It can move forward or backward a certain number of pixels,
or rotate about its center a certain number of degrees. In the environment, the TurtleMouse
wraps around the borders of the window. The commands are public instance methods which
can be called from another object. This alowed the TurtleM ouse environment to be used as a
“black box” which can be controlled from another Java object.

In addition, the environment has the ability to add an “object”, which is essentially a colored
dot placed somewhere in the environment. The turtle interacts with the dot through another set
of boolean methods which react to the position of the dot relative to the mouse. For example,
one function returns true if the object isin the 180° half-plane in front of the mouse. Another
returns true if the mouse is within a certain distance from the object. This ability givesthe
mouse “senses’ which can be used as inputs to the neural network.
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3.2 Perceptron exploration

In an effort to better understand the workings in the neural net structure, a number of
explorations of smple perceptron networks were performed. These investigations were
performed to get a sense of the capabilities of perceptron-based networks, and to see if
perceptrons can possibly be used in the context of artificial life.

3.2.1 Explorations

A set of MATLAB scripts were written to demonstrate the three-layer network’ s abilities. As
an example task to train the net, a 2-dimensional classification technique was chosen. The task
can be described as follows: given an arbitrary coordinate pair in 2 dimensions, choose whether
that point is or is not in some arbitrary set A. As more points are presented, set A becomes
more and more specified. Some time later, if an unknown point X is presented to the net, the
net should be able to classify point X asbeingin or not in set A as appropriate.

This technique was applied to the XOR problem previoudy described. A network of size
[3,1,1] was able to classify the two selection sets relatively easily.
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After 474 training epochs.

Figure 3-3. The XOR problem (above) and its solution (below) illustrated graphically.
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Figure 3—4. Training statistics for the XOR solution (with random initialization).

We can similarly examine more arbitrary arrangements of points in the inclusion and exclusion
sets. For example: say that set A describes pointsin a square-shaped region between (2,2) and

(6,6) in the Cartesian plane. The net is trained with points (2,2), (2,6), (6,6), and (6,2) as being
inset A, and points (0,0), (8,8), (0,8) and (8,0) as not being in set A. When presented with the
point (4,4), the net sho

uld respond that the point is IN set A. If not, it requires more examples or training points to
further specify the region.

This type of task requires a certain fixed network structure: two inputs are necessary— one for
each coordinate. Also, exactly one output is necessary. This allows the net to have a binary
response; that is, in or not in the specified set. The latter constraint specifies that layer three
have only one neuron in it. However, layer one and layer two may vary in size. These sizes
were varied as part of the exploration.

Also, asis evidenced by thetrivia example, the classification learned by the network is relative
to the number of pointsin the test set. Various sets of test points were trained while keeping
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other network parameters constant. This alowed us to determine the sensitivity of the shape of
selection region to the number and location of points.

For example, an arbitrary selection region was chosen. Then, points both inside and outside the
region were used as training data. The resulting network was then probed to determine the
classification region learned by the specific training session. This procedure was used to
experimentally verify the mathematical proof that a three-layer network can determine an
arbitrarily shaped region in space.

3.2.1.1 Test Set 1 - Network Size Limits

Thefirgt test set was chosen to test the sensitivity of the network’ s ability to converge while
varying the number of neurons in the critical layers of the network. This test set involved ten
test points, fivein the selection region and five not in it. The five pointsin the selection region
were arranged in aroughly kidney-shaped pattern. The size of the net was then varied to see at
what point it would fail to converge. Recall that the variablesin the size of the network were
the size of layer one and layer two. Layer two was reduced first, then layer one was reduced,
until the net failed to converge. After the net failed to converge, the other layer was increased
in sizeto seeif it could make the net converge.

After anumber of test simulations, it was found that the minimum specification for the five
pointsin the inclusion set was four neuronsin layer one, and one neuron in layer two. Once
this set was trained, it was viewed using the NETDUMP function. This revealed that the
resulting selection region was specified by four linear regions. These regions seem to correlate
to the four neurons in layer one. The one neuron in layer two and one in layer three do not
provide any additional specification.

In addition, it was found that when the size of layer one was reduced to below four neurons,
absolutely no increase in the size of subsequent layers had any effect on the convergence of the
network. Even increasing layer two to 500 neurons did not alow the net to converge.

3.2.1.2 Test Set 2 - Disjoint Set A

The second set was atest to see if an arbitrary arrangement of points would converge. The
arrangement of points was chosen such that only a digoint selection region could encompass
all pointsin the set and none of the points not in the set. In fact, a ring-shaped region — with
an open center — was desired. Again, the number of pointsin the network was kept constant,
while the size of layer one and layer two were varied.
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After increasing both the number of neurons in layer one, then in layer two, it was found that
none of the test selection combinations would converge at al. Even when the network was
increased in size to 50 neurons in both layer one and layer two, the net still failed to converge.

It did, however, generate true digoint selection regions. This demonstrated that the three-layer
network could in fact combine the linear divisions in an arbitrary manner.

3.2.1.3 Test Set 3 - Enclosed Region

Since al of the previous tests resulted in “unbounded” selection regions, it was decided to
temporarily abandon the ring-shaped set in favor of a more smple disk-shaped set.

Here, the number of neurons was chosen to be a more reasonable size as more points in the
selection region are added. The net was tested with 5 neuronsin layer one and 15 in layer two.

After anumber of iterations, the net did converge; however, the TestNet function revealed that
the resulting region was triangularly shaped, and not disk-shaped. Also, the region still seemed
unbounded at some points. More points were added to the not-A region in an attempt to “fence
itin.”

After amost triple the number of points were added to the not-A set, the net refused to
converge. The network was then expanded to 25 neurons in the second layer and retrained.
This resulting net converged and generated the desired disk-shaped selection region. That’s not

to say that the region was perfectly circular; rather, it was a simple closed convex hull with
finite bounds.
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Figure 3-5. (Roughly) circular selection region solution.
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Figure 3-6. Training statistics for the circular selection region solution.

3.2.1.4 Test Set 4 - Disjoint Set B

Thefinal test shows the ultimate ability of the network to in fact classify completely arbitrary
regions, here in 2-space, but in general in N-space, even digoint regions or regions with
“holes’. Now that we have shown that the net can in fact learn to classify afinite disk-shaped
region, we return to the disk-shaped selection region. This time, we make use of the
observations from the previous test sets. A region is defined by a square of pointsin set A
(four points), with alarger concentric square in set not-A. This set does converge.

Next, a point is added to the not-A set, at the center of the set-A square. Thisimmediately
causes difficulty for the perceptron training agorithm. The network does converge, but the
selection region is highly unusually shaped. In the quest to achieve the desired selection region,
more points were added to the not-A set. Aswas observed above, this caused the net to refuse
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to converge. So more neurons were gradually added to both layers as more points were added
to the region.

20 inlayer 1, 10 in layer 2

Before training
20 inlayer 1, 10 in layer 2

After 8999 training epochs.

Figure 3-7. Set with a“hole” successfully classified by the 3-layer MLP.
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3.2.2 Conclusions

Since there are no hard and fast rules to use when designing a net, it is helpful to have some
“rules of thumb”, especially for those inexperienced at working with perceptron networks. It is
important to understand their abilities and limits; certain applications tend to lend themselves
to the use of this type of network. In general, any application which can be modeled as
partitioning some hyperspace into a number of selection regions can usually be applied to
feedforward networks.

3.2.2.1 Partitioning of n-space

If we look at the number of inputs to the entire network as the number of dimensionsin a
space, we can think about the network as partitioning the space into k regions, where k isthe
number of neuronsin the output layer. Then, we can look at the training of the net as dicing
the hyperspace into k selection regions. Note that the k regions need not be digoint.

A consequence of this model is that the number of neurons in each layer is directly related to
the complexity of the selection region in the hyperspace. Since each additional neuronin a
layer adds a smultaneous linear partition, the number of neurons required in each layer is
directly proportiona to the number of hyperplanes required to partition the space. Therefore,
the number of neuronsin each layer can be thought of as the resolution of the layer. Fewer
neurons in alayer givesthe layer arougher shape; more neurons give it afiner one.

Furthermore, thereis afinite limit on the ability of the net to learn differentiation between
pointsin digoint selection regions, given that the points are a certain distance apart. Asthe
Euclidean distance x decreases, the training algorithm is limited by the dope of the nonlinearity
used in each neuron. In other words, if training points in different regions are too close
together, the net cannot possibly converge because the nonlinearity is not sharp enough. This
difficulty can be thought of as trying to make a cut between two points on a piece of wood with
ablade that is wider than the distance between the two points. Fortunately, the nonlinearity is
arbitrarily adjustable to fit the criterion required; however, this quality must be taken into
account if the network refuses to converge.

3.2.2.2 Sensitivity of n" layer to n-1™ layer underspecification

Another conclusion was that due to the feedforward nature of the interconnections involved in
the network, problems created by not having enough neuronsin a given layer cannot be
rectified by adding more neuronsin alater layer. Each layer adds increasing detail to the
selection regions. Lower layers are analogous to coarse detail, and upper layers to fine detail.
This analogue leads to one important conclusion. Aswe saw in test set 1, if lower layers are
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underspecified, increasing specification in higher layers will have no effect on the net.
Therefore, we have to ensure that the lower layers have sufficient neuronsto learn to create
regions which will contain the correct points.

A reasonable method to use when training a net is therefore to make al the layers the same
size, and increase until the net does converge. Then, the number of neuronsin each layer can
be decreased starting with the lower layers, until there are just enough neurons for the net to
converge. This process can then be repeated for each layer.

When working with dynamic training data, however, this process is overly time consuming. It
issmpler, and usually as effective to perform this process once or twice to get a genera idea
of the size needed to make the net converge, then increasing each layer by afew neurons, to
allow for differences from data set to set.

3.2.2.3 Tendency to find ‘simplest’ solution results in sometimes non-useful
heuristics

Looking at the results from test set 4, we can see that in forcing the network to convergeto a
specific shape, generally it is difficult to produce a desired shape. Since the network algorithm
learns by specifying linear regions, it has a distinct bias towards creating selection regions
which are smple linear regions. To create more complex regions, the algorithm has to combine
two or more layers.

As aresult, the target set must be thorough enough to ensure that the correct heuristic is
learned. Otherwise, the network will learn only to classify the specific test set given, and not
the desired heuristic. This problem can be avoided by providing atraining set whichisa
representative cross section of the points the network will have to classify in action.

Neural networks are good at interpolation, but bad at extrapolation; this fact suggests that we
should provide extremain the target set, plus points to suggest the general heuristic to the net.
It should then be able to develop its own heuristic for other input patterns.
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3.3 Speaker Differentiation

3.3.1 General Idea

Since the perceptron exploration led to the conclusion that the primary strength of the
perceptron network is classification, it was decided to implement a nontrivial task to test the
limits of the heuristic-forming ability of the net. The task chosen was speaker differentiation.
Thistask is quite different from speech recognition. Speech recognition deals with the
trandation of speech into text or recognizable commands; speaker differentiation deals with the
identification of one particular voice out of many samples. Or, given one sample, identify the
speaker associated with it.

This task has definite practical uses. It can serve as the basis for an authentication system
which is ailmost foolproof. It can be trained to respond to the user’ s voice and no other. As
such, it can serve as, say, an electronic locking mechanism, authentication for critical
transactions, or as akey for encryption of sensitive data.

Since the feedforward ANN was shown to excdl at classification, it was hoped that it would
prove ready to the task of classifying the speech patterns it was presented with.

3.3.2 Approaches

We have shown that to train this type of network correctly requires a suitable training set. For
this application, its was theorized that to model the human voice correctly and sufficiently, as
full a sample of each voice as possible would be desirable. However, since the neural structure
places restrictions on the type of input presented, it became obvious that some standard input
format was needed.

To accomplish this goal, a brief foray into phonetics was necessary. North American English
speech was chosen as the target language, but the system should work for any language with
similar sounds. English, as a spoken language, has about 46 phonemes. Any word in English
can be broken into some combination of these 46 sounds. To give input samples some
consistency, and to provide some measure of control over the process, it was decided that an
exemplar sentence could be constructed which contained afair percentage of these 46 sounds.
Then, the training data could consist of a number of samples of different people speaking the
same sentence aoud.

The exemplar sentence decided upon was:. “ Clairvoyant pedestrians ambulate knowingly.” It
was chosen because it contained 23 phonemes, about half the number in the entire language.
Also, since the sentence did make sense, in amanner of speaking, it could be spokenin a
normal speaking voice, with less stress or unusual inflection than could a random arrangement
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Once the preprocessing step was completed, the input samples were converted into “signature”
target vectors, each representing one speaker sample. The target vectors were all resampled to
the same number of points, usualy either 24 or 96 (differing values were tested), with the most
common being 24 points. When these 24-point vectors were displayed, they displayed striking
individual characteristics,; signatures from the same person were remarkably similar, and those
from different speakers were visibly dissmilar, even to the naked eye. The trick was then to
train the ANN to recognize the differences.

The main test involved creating a three-layer network with one neuron at the output, much like
the networks discussed in the perceptron exploration. The training set was then designed with
the aforementioned signature vectors, using all the samples from one specific speaker as those
in“set A” or the desired selection region, and al the others in the not-A set. The net was then
trained to mastery on those samples. Then, a number of sample test vectors not in the training
set were presented to the trained network, and the network attempted to determine if the
speaker of each test vector was the same as the speaker which the network was trained to
identify.

A second test was conducted which involved the same procedure, but with a dightly different
method of constructing the signature vectors. Here, a periodogram approach to the input
samples was used by chopping the input into a number of vectors, then applying the FFT-PSD-
Downsampling procedure on them, then appending each of the resultant vectors to get back a
single signature vector. Varying numbers of divisions were tested, as well as varying the
downsampling rate. The best results seemed to be accomplished using 8 periods of the original
wave, then downsampling each to 16 points. This process resulted in a 96-point input vector.

3.3.3 Conclusions

Recalling from the discussion of the perceptron exploration, we determined that the primary
ability of feedforward ANNs was to partition n-space with p partitions, where n was
determined by the size of the input vector and p was determined by the number of neuronsin
the output layer. Here we are attempting to divide (at least) 24-dimensional space with one
partition into exactly 2 regions — those determined by the signatures of one particular speaker
and those determined by the signatures of any other speaker. Since it is obvioudy impossible to
visualize 24-dimensiond space, we must rely on the techniques devel oped for the two- and
three-dimensional cases for model verification.

Using the methods described, varying degrees of success was achieved; however, none of the
trials resulted in afoolproof network. The main training procedure was repeated a number of
times, and would converge only occasionally. Due to the incredible amount of processing time
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required for each trial run (up to 20 hours on an SGI R4400 Indy) it was not possible to test
every combination of periodogram size and input vector downsampling.

It is possible to make generdlizations regarding the performance of the networks which did
successfully converge. In general, they would correctly identify about half of the “chosen”
speaker as being correct, but would never misidentify an “incorrect” speaker as the chosen.
This behavior is reasonably acceptable from a verification and authentication system. An
incorrect match should never be alowed, but a correct match may be denied and prompted for
asecond or third trial. Thisimplementation istypical of current authentication systemsin place
today e.g. ATM PIN code verifications and UNIX and other computer system login prompts.

A practical implementation of this system can be designed as follows. Take samples from all
persons who require access. Then create one custom neural net for each such person, using that
person as the “chosen” one for his/her specific net, and al the other samples as the rest of the
training set. Once these networks are designed, the resulting authentication set will be a
collection of neural nets, each consisting of three real-valued matrices, and three real-valued
vectors. Each set of network data is exactly the same size, in terms of storage space.

Application at the point of authentication would involve athree-step procedure. First, the user
is prompted for his’her user name. Once this name is presented, the system retrieves the correct
neural net parameters from persistent storage, and the net is generated. The user then speaks
the exemplar sentence into a microphone, where it is then sampled and preprocessed, in
hardware or software. The resulting signature is then presented to the neural net, which decides
if the signature matches the training data.

Updating the system for new users can take the form of either one of two options. The smpler
option isfor anew user create higher own network using the all other input samples as “not-
A" targets. This however does not ensure that another person in the user set will not be able to
be authenticated by the new user, acting maliciously. A more secure, but admittedly much
more time-consuming method would be to regenerate all the users’ network parameters while
adding the new user samplesto the training set.
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3.4 Temperon

While the previous work performed was both informative as well as practicdl, it provided little
insight into the field of artificia life. It was, however, determined that perceptrons and
perceptron-based networks were an insufficient model on which to base a system which was to
learn in an unsupervised manner, with no specific guiding learning rules. Therefore, it was
decided that a new neuron model would have to be developed — one which learned in an
entirely different way.

Think of the type of learning which occursin a newborn animal, or even a newly-conceived
anima. Mammals begin as a collection of cells as the fertilized zygote begins to undergo
mitosis. Specialized systems of cells begin to form the basis for the nervous system. The brain
begins to form from a collection of interconnected nerve cells. Once those cells are in place and
functioning, they begin to process input. Granted, thereis a limited amount of input in the
mother’ s womb, but there are some sensations: light, heat, sound, and even touch. These basic
senses provide input to the infant brain. The infant must then learn to distinguish those senses
from one another and learn to process and understand the baffling array of inputsiit receives.

The infant does have basic instincts which are genetically programmed into it, but no specific
rules which it follows. Gradualy, it learns about its environment from interacting with it, and
receiving input from it. Anyone who has ever spent time with a small child has seen evidence
of this. Children learn about new things by attempting to sense them with all their senses, in an
effort to learn its properties. Is the object hard or soft? Rough or smooth? Does it smell? How
doesit taste? Isit brightly colored? Does it make a noise? Each and every object the infant
interacts with provides it input which shapes its thought processes and memories.

Here we attempt to design an artificial lifeform using ANN structures as its processing center,
or “brain”, which moves about a virtual space, and interacts with an object in that space. Itis
hoped that it will display the type of behavior normally attributed to infant biological lifeforms;
that is, exploration, followed by discovery, followed by a more focused type of exploration,
etc. It is of utmost importance that the reader understand that this behavior is NOT
programmed into the simulation anywhere. It would, of course, be possible to design a system
which exploresits environment and learns from it. Please note that the system described herein
isexplicitly NOT designed to perform any such function. Rather, it is given the capacity to
learn, and the capacity to sense, and the capacity to act, and then just let loose. What happens
next is entirely determined by itsinitial conditions and the inputs it receives from its
environment.
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3.4.1 Evolution of Model inspired by Aplysia

Most ANNSs rely on their learning rules as macroscopic constructs to guide their devel opment,
whether they are self-organizing or target-set-based. This structure is like the “hand of God”,
providing an omniscient holistic perspective on the state of the network and the direction in
which it will proceed. If we recall from our discussion of biological neuron structures, thereis
no corresponding macroscopic system for updating the synapse potentials to be found
anywhere in biological organism. This updating takes place directly on acellular level. In fact,
each nerve cdl is responsible for updating its own synapse connections. To create a neural
model more appropriate for the type of learning which a biological organism experiences, each
neuron, or at least each neural circuit, must be responsible for its own learning.

If we look at the structures found in Aplysia as described above, we can see similarities to
those found in the neuron model. However, there is one variable that Aplysia responds to which
is not taken into account in the model: time. We saw from the habituation and sensitization
experiments performed on the snail that there was a direct correlation between the frequency of
stimulation and the learning mechanism observed.

Therefore, a new model was developed which encompassed the same performance parameters
as the perceptron, but with a temporal-based weight updating mechanism. This model was
therefore named a Temperon.

It is the hope of the author, that the microstructure of the Temperon does in fact cause the
macroscopic behavior of a Temperon-based system to exhibit such behavior. The difference
between the system described herein and a hypothetical system explicitly designed to explore
and learn from its environment is that the Temperon system learns to learn. As the smulated
lifeform moves around its environment, in receives input from a number of senses. The design
of the Temperon is suited to processing these inputs and reacting to them, as well as learning
from them. However, the actions taken by the network in response to a series of inputs are not
prespecified; it “decides’ what action it wants to take by trying different actions and observing
the results — a system we know as “trial and error”.

3.4.2 Description of Model

This Temperon model isin many major ways similar to the perceptron model. It has a number
of inputs, weights associated with each input, a bias, and a nonlinear transfer function.
However, this model keeps track of the system time associated with each stimulation it
receives. (A stimulation is defined as anon-zero input.) Therefore, it can compute the inter-
stimulation time for each input. When any input receives a certain number of inputs within a
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specific time period, the input is marked for weight update. The exact approach to weight
updating is subject to debate.

This mechanism, although not exactly identical to that used in Aplysia, does provide the
neurons a greater proximity to that of biological neurons. Recalling from the discussions of
senditization, a“noxious’ stimulus was applied to create the enhancement of a neural
connection, where habituation merely resulted from an innocuous stimulus. There is no way to
easly smulate the difference between a noxious or innocuous stimulus. Therefore, adightly
different mechanism was applied.

When an input was marked for weight update as described above, the overall output was
considered and the connection was either reinforced or suppressed, depending on whether the
output was “on” or “off”.

The actual algorithm involved in the interstimulation time is related to a value called the
“likelihood of change”. Each input has a likelihood variable associated with it. When the
neuron is created, al the likelihood variables areinitialized. As the system time progresses, the
variables decay exponentialy. When a specific input is stimulated, its current likelihood
variable is added to itsinitial value, and this resulting value immediately beginsto decay. If a
particular input is stimulated often enough, its likelihood variable will exceed athreshold
value. When this occurs, it is marked for update as described above.

This Temperon model is purposely vague. It encompasses the ability to update its own weights
based on the frequency of stimulation at each input. The exact implementation of the algorithm
is left unspecified for future experimentation.

3.4.3 Description of Testbed

As mentioned above, the ANN implementation consisted of a set of hierarchical classes, which
culminated in the Tenper on class. The TurtleMouse environment was used as a “real-time”
interactive experience in which the Temperon-based net could be tested. The procedure used to
develop the system is described as follows:

The testbed was written entirely in Java as an Applet. As such, it runsinside a“viewer”
application. This application creates one main window. The main program instantiates a
variable number of Temperons, then fully connects them. The actual number of neurons used
hereisan HTML parameter, so it is variable at each execution. Thisformat is similar to the
Hopfield networks described above. A new window was displayed on the screen, which depicts
the internal state of the network. Each Temperon’'s weights were displayed as a vertical series
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of editable text fields. The current output of each Temperon was displayed above the weight
vector.

The network window also contained control buttons to perform various functions on the
network, such as: randomize the weights, manually edit any weight, change the current output
of any neuron, and start/stop the system clock. Due to the feedback nature of this type of
network, it was desirable to have a discrete clock, rather than make use of the CPU internal
clock. This alowed for much finer control over testing the feedback connections. Also, a series
of commands were added to allow for the loading and saving the weight data, as well asthe
time series output of the network. This allowed both repeatability of the network initialization,
aswell as provided afacility to analyze the data generated over time.

E‘%Applet Yiewer: tempaApplet.class

Aipplet
Beset Inputs
(o Jo Jo Jo Jo Jo Jo Jo Jo Jao In |u |u |u |u
0 ] ] 1] 0 ] ] 1] 0 ]
Randora Weights [0 1010 Mo Jo Jo Jo Jo Jo Jo oo 000
| 0 o o o o |o [T I o |o
| o o o Jo o |o [T o |o
| 0 0 o o o fao 0 o o fao
| 0 0 o o o fao 0 o o fao
| o o Jo o o |0 0o [0 o |0
Load Weights.. || 0 o o o o |ao 0o [0 o |ao Update Weights
(o Jo fo Jo Jo Jo o Jo Jo o
| 0 o Jo o o Jo Jo Jo o Jo
| 0 0 Jo Jo o Jo Jo Jo 0 Jo
| 0 o o o o o Jo Jo o |o
| o o o Jo o o Jo Jo o |o
SeeWeights Moo~ [0 o Jo o Jo Jo Jo Jo
| 0 0 o o o Jo Jo o o fao
| o o Jo o o Jo Jo Jo o |0

0000000000 Clock | Update Tiree | GOI | [0005C ¥ Display Weights? [ Update Gaapk?

applet started

Figure 3-10. Main controlling window in the Temperon testbed applet. Window size (i.e. number of
neurons in matrix) is controlled by HTML parameter.

In addition to the series of Temperon outputs, the program also created a series of Input
neurons, which were added to the inputs of each of the other neuronsin the net. Recall that the
I nput class of neurons has no weights or biases, but are used as a“dumb” input layer. These
neurons are used to report the “senses’ of the TurtleM ouse back to the network. A biological
interpretation would associate these neurons with sensory or afferent neurons. They are inputs
only, and perform no other processing.
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Correspondingly, the network required some form of motor neuron connectivity. This was
accomplished by taking the first two Temperons created and making specia note of their
outputs. The following control mechanism was created: since the TurtleMouse has essentially
four actions — that is, move forward, turn left, turn right, and stop — a binary code generated
by the outputs of two neurons can specify four combinations. When the outputs of those two
neurons were [1,1], the TurtleMouse was given the “move forward” command. The outputs of
[1,0] and [0,1] generated the “turn left” and “turn right” commands, and the [0,0] output
combination stops the mouse from moving.

Eg’,i' Mousey Hi=]

Figure 3-11. TurtleMouse virtual environment. Note triangular “turtle” in center and circular
“target” in lower-right quadrant. Turtle has senses which respond to the target.

Once initial parameters such as possible input vectors, obstacle position, and weight
initialization were set, the network was generally “ started” and left to run indefinitely. The
clock repeat rate could be set, and the clock could be started and stopped at any point. Asthe
network oscillates through its various states, the TurtleM ouse moves about its environment,
controlled by the outputs of the first two neurons; correspondingly, as the mouse moves about,
the states of the “sensory” neurons change, feeding back information about the environment
into the net.
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3.4.4 Various test sets — Overview

A number of different variations on this basic theme were explored as follows: a number of
dightly different learning rules were implemented; various constraints were placed on the
network parameters; randomness was added to the weight adjusting algorithm; the number and
types of senses were varied; the position of the obstacle was varied; the number of Temperons
in the net was adjusted. Each time one of these variables were adjusted, the simulation was
reinitialized and run again. However, due to the large number of variables involved, permuting
all possible combinations proved to be impractical.

Recalling from the discussion of the Temperon learning rule, the specification was left quite
vague. The reason for this was that different implementations produced widely varying results,
and there were no combinations which performed outstandingly “correctly”. Under the
specifications of this set of tests, any actions performed by the TurtleM ouse which are not
stochastic are “interesting” and a desirable characteristic. Each time the network was
initialized with different random values and ssimulated, considerably different results were
obtained, even if the rest of the model remained completely unaltered.
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Figure 3-12. Weight set one. Used as starting point for most test sets, as a control. Shading in cells
depicts positive or negative changes from previous value. Note zero main diagonal.
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3.4.4.1 Test Set 1: Learning rule adjustments

The main factor affecting the behavior of the Temperon isits learning algorithm. Much
experimentation was performed with different combinations of learning algorithm parameters.

It was mentioned that a critical aspect of the learning rule is the Temperon’s ability to update
its own weights. This ability relied on the “likelihood of change” variable discussed above. The
algorithm specifies that once an input passes the likelihood threshold, it was marked for
updating. Then, at the end of atime cycle, it was updated.

3.4.4.1.1 Reinforce/Suppress pos/neg

The sense of the updating had to do with the current output state of the neuron. Therule
specifies that an active output (i.e. a‘1’) should cause the weight to be reinforced and an
inactive output (i.e. ‘0") should cause the weight to be suppressed. The thought was that if an
input was on and the consequent output was on then the input was contributing to the output
and should therefore be encouraged to do so. Contrastingly, if the output was off, then the
input was actively contributing against the state of the neuron and thereby should be
suppressed. (Recall that there are no provisions for inactive inputs because the learning rule
only comesinto play when an input is active; no updating is done for inactive inputs.)

This reasoning, however contrived it may sound, actually proved to work quite well.
Unfortunately, when we arbitrarily reverse the logic and reinforce where we would have
suppressed and vice versa, the system still behavesin an “interesting” fashion. Perhaps a more
critical issue isthe next one discussed, namely the definition of “suppress’ and “reinforce”.

3.4.4.1.2 Push up/down vs. towards/away

Recalling that each weight variable is areal number, the definitions of the terms suppress and
reinforce become imprecise. The options are easiest thought of on the real number line. A
weight falls somewhere on the real line, either positive or negative; what does it mean to
reinforce its value? What does it mean to suppress it? We have two options: (1) add/subtract a
positive vaue, thereby pushing the point up or down the line, regardless of itsinitial position;
or (2) add/subtract a value of the same sign as the weight, thereby pushing the point towards or
away from zero.

Again, the “correctness’ of either procedure is only verified by experimentation. Either can be
supported by discussion, depending on if the supporter takes the position that either zero or
negative infinity isthe “least reinforced” value.
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3.4.4.1.3 Max/Min limits on weights

Since the Temperon algorithm calls for the constant shifting of weights, it may occur to the
reader that some weights could grow immense in magnitude. Therefore, it was proposed that
an arbitrary limit be imposed on weights — a bounds outside of which the weights were not
allowed to grow. At some point, the variables involved would overflow, causing the network to
fail.

This position may seem at first glance more like implementational laziness (rather than
reflecting some quality inherent to the model), but it can actually be justified biologically.
Remembering that the weights actually represent attenuation values of the action potential
imposed on the postsynaptic terminal, then the further away on the dendrite from the cell body
the synapse occurs, the more attenuation exists, and consequently the smaller the weight.

Keeping this process in mind, one can see that there is a minimum constant which the
attenuation must adhere to: if the synapseis located on the cell body, there is some small
amount of attenuation, and no more. It isimpossible to be “ closer”. In fact, the attenuation can
be thought of as ranging from unity to zero, where unity represents the optimum connection
and zero signifies one which is attenuated to nothingness.

However, when we impose this restriction on the network, we see that often, weights will rise
to this bound and remained pinned there, creating asingular or oscillatory condition. Neither
solution seems to be a better one.

Thereis, however, athird possibility, which was conceived very late in the testing stages.
Simply put, when any weight exceeds some threshold, it is mathematically reasonable to
smply divide al the weights by some positive rescaling constant. This has absolutely no effect
on the output of the Temperon, but allows the inputs to “grow” indefinitely.

3.4.4.1.4 Random increment

The discussion of adjusting the weights begs the question: what value do we add/subtract to the
weights. If we use some small positive constant, we observe an interesting phenomenon: some
weights in arow remain matched as they get the exact same value added to them over and

over.

We can also reasonably add/subtract a small random value to the weight. Thereislittle
biological justification for either position. However, it should be noted that any steady
introduction of random values into a system makes it nonrepeatable.
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3.4.4.1.5 Zero main diagonal

If we look at the fully-connected network of n neurons as an x n square matrix, the [ij]th
value represents the connection weight from neuron i to neuron j. Therefore, the main diagonal
represents the feedback from a neuron to itself. Typically in aHopfield net, the diagona is
zeroed out, in effect, disconnecting its input from its own outpuit.

Experiments were performed with this constraint in place.

3.4.4.1.6 Symmetric Matrix

Again, drawing from Hopfield net technology, typically a fully-connected network is
symmetric about the main diagonal. In other words, the connection weight from neuron i to
neuron j is the same as the weight from neuron j to neuron i. No experiments were performed
with this congtraint; it is smply mentioned for completeness.

3.4.4.1.7 Forced Oscillations

Another characteristic of a biological neural cell isthe fact that it has a repolarization period
after it fires. In other words, it cannot re-fire immediately after it has just fired. This property
means that it isimpossible for a neuron to remain “on”. Asaresult, information is carried in
the frequency of action potentials.

A Hopfield-style network, on the other hand, can contain neurons whose output is always “1".
It was thought that this dissimilarity would bias the network. Therefore, some experiments
included a Temperon with an arbitrary condition which forced the output to zero if it had just
been one, regardless of the output computed by its transfer function. This property forces a
given neuron to oscillate, instead of being “stuck” at “1”.

3.4.4.2 Test Set 2: Number of neurons

Another variable which was adjusted widely was the number of Temperons in the network. A
larger number of neurons in a fully-connected network will result in alarger number of states
through which the network can cycle. Theoretically, the increasing complexity in the network

should alow it to learn more “intelligent” behavior.

3.4.4.3 Test Set 3: Number/Types of senses

Since the sense neurons are arbitrarily defined algorithms, it is smple to add any senseto the
TurtleMouse. The original set consisted of three senses: the “180° in front” sense, and the
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“180° to the left Side” sense, and the “proximity to the dot” sense. It was thought that these
three senses should give the net sufficient information to “locate” the dot if necessary.

After anumber of experiments with the three senses, it was decided to add afew more. A
corresponding “180° to the right side” sense was added. Also, a“30° in the front” sense was
added. This sense gives the TurtleMouse the ability to “home in” on the dot.

3.4.4.4 Test Set 4: Obstacle position

The obstacle position was varied while testing. Thiswas a critical test, because it would show
if the TurtleMouse was actually responding to the presence of the dot, or if its actions were
completely random. Keeping all other parameters constant and moving the position of the dot
should result in an entirely different time responsg, if the turtle is truly reacting to the dot in its
environment.

3.4.4.5 Test Set 5: SDIC

In fact, it was hypothesized that since the position of the object was the only input to which the
network can respond, even avery small change in its position will result in a different time
response. To test this possibility, the network was initialized, and then saved before having
been run. It was then run once, and the output recorded. Then a new network was started and
theinitial parameters used in the first run were loaded. The position of the dot was changed
very dightly — on the order of 0.001% — and the network was re-run. The time series outputs
were then compared.

3.4.5 Conclusions

3.4.5.1 Overall Behavior

Again, since the output we are looking for is avery subjective type of behavior, it is difficult to
guantitatively verify the Temperon model. However, even the simplest test run in the
environment can show that the system is performing with some degree of learned behavior.

A typical test run can be characterized in terms of its general motion. Usually, the
TurtleMouse will move about randomly, either rotating or shooting straight up, until it
“senses’ the obstacle. Then its behavior becomes entirely unpredictable. However, it hasa
tendency to have a short-term transient, when it first senses the dot. It will either make a
beeline directly towards the dot, or begin to circle the dot, or be repelled by the dot. Thisis
generally followed by along-term transient, where it learns a more “advanced” type of
behavior. It will then follow that behavior for alonger period of time, usually from five to ten
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times as long as the short-term transient. These general transient behaviora characteristics
remain relatively consistent regardless of the variables described above.
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Figure 3-13. Basic execution of TurtleMouse over time [I-r, t-b], using above initialization weights.
All options are set to initialization states. “Learning” is characterized by periods of oscillatory states
(long, straight lines) separated by “interesting behavior” where the turtle responds to the position and

presence of the target..

However, once the long-term transient period is over, the different variables have a substantial
effect on the performance of the net. Sometimes, the net falls into a steady-state condition

where it oscillates between the “dl-zeros’ and the “all-ones’ states.
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3.4.5.2 Learning rule changes

Looking at the learning rule variables, it was found that the primary catalyst came from
changing the push up/down rule to push-to-zero/away-from-zero. Once this rule was changed,
the network started to exhibit the emergent behavior discussed above. However, this behavior
was very short-lived.

The weights in the network tended to grow out of hand reasonably quickly. The main diagonal
usually grew the fastest. This tended to cause the network to become stuck in the oscillatory
condition. These characteristics led to more changes in the learning rule. The main diagonal
was then zeroed, and the max/min conditions were added.

These had little effect on the short-term behavior of the TurtleMouse. The max/min condition
imposed tended to result in the network growing in size to hit the max (all the weights equal to
the max or the min), where it stayed for an indefinite period of time. This has the effect of
holding the TurtleMouse in a static repeating pattern. After some time, though, at least afew
of the neurons moved away from the max value. When this happened, the mouse broke out of
its pattern and went through the short-term/long-term transient behavior described above.

Ega Mouzey [_ (O] x] E;a Mouzey [_ (O] x]
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Ega Mouzey [_ (O] x] E;a Mouzey [_ (O] x]

Figure 3-14. Time series of same network as previous example (with identical initial values), with
max/min weight condition added. Here we are using a value of |3] as the absolute max for the value of
each weight. Note that the early states are similar to the previous execution; however, this set stays
very close to the target and does not exhibit the alternating transient behavior seen before.

Adding randomness to the weight updating procedure seemed to have the effect of preventing
the net from reaching the oscillatory state for alonger time, if at all. However, it does have the
obvious effect of making atest run non-repeatable.

The “forced oscillations’ condition seemed to have little effect on the overal performance of
the network. However, since the sensory neurons do not oscillate, they receive at least atwo-
to-one biasin terms of their neural weight updating properties.

3.4.5.3 Responses to test sets

The number of neurons in the network seemed to have little effect on its “intelligence’. The
mouse learned similar behavior regardless of the number of neurons added to the net. However,
they were necessary to process additional information, as seen below.

The number of senses had a great deal of influence on both the types of behavior learned, as
well asthe speed at which it learned them. When the TurtleMouse had only three senses, it
learned basic repulsion/attraction characteristics. Some test runs, it would be drawn to the
object, making loops around it, and some times, it would turn away from the object, each time
it passed in front of it.

However, when two more senses were added, the mouse was capable of more complex
movements, such as actually pinpointing the object and stopping onit, or circling it at a fixed
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radius. Incidentally, when more senses were added, in order to obtain this complex
behavior, more neuronswererequired.

The position of obstacle, although generally set at some arbitrary position in the virtua
environment, proved to be a valuable tool in determining if the network was acting randomly or
otherwise. When the dot was removed from the environment, the mouse performed as expected:
that is, randomly. It moved about in a random fashion, then oscillated to a steady Statein a
reasonable short period of time. When it was put back, but in a different position, the behavior
changed according to the position of the dot. This verified that the TurtleMouse was actually
responding to the conditions of its virtual environment.
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Figure 3-15. Contrast top two pictures with bottom two pictures. Each set represents the state of the
network at 1000 and 2000 iterations, from left to right. Both sets were initialized identically. Note the
difference in the position of the dot.
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In fact, when the position of the dot was changed a very small amount, the network responded
exactly asit originaly did, for a number of time steps. Then, over avery few time steps, it
diverged relatively quickly from its previous course, and subsequent actions were entirely
different.
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Figure 3-16. Illustration of sensitive dependence on initial conditions. Here the position of the object
was changed by 0.001%. Note the variations begin to occur in frame three, which represents 6000
iterations of the network. The last frame (7000 iterations) shows the states to be completely divergent.

It should be mentioned that the single biggest factor which determined the long-term
behavior of the TurtleM ouse was the random initialization. With no other variables being
changed, each time the network was reinitialized and re-run, it behaved entirely differently.
This raises serious doubts as to whether the random initialization is a reasonable procedure to
use when designing new networks.

3.4.5.4 General Conclusions

The Temperon model seemsto have captured at least some of the capabilities of its biological
inspiration. As the TurtleMouse moves through its virtual space, it evokes feelings of infancy,
then childhood asit learns. It is entirely different from other types of Artificial Neural Net
structures used to date in that its output is based upon stimulations over time.

It does, however, need much further study. It is beyond the scope of thisthesisto provide a
finalized version of the Temperon learning rule. It is suggested that although the learning rule
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is not firmly established, the neural structure of the Temperon has been validated. It has been
shown that the self-updating microstructure of the Temperon can, in fact, learn with no
controlling overal learning rule, aswell as no inputs or targets. Thiswas a primary goa of the
research.

It is aso suggested that, in the search for creating an artificially-sentient structure, that is, a
machine which can think, the Temperon can be of use. Although it was beyond the scope of the
available facilities, it is hypothesized that alarge number of these Temperon structures, when
provided with enough input and the ability to interact with its environment, will, in fact,
produce artificia life.
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4. Conclusions

A number of classical ANN tests were attempted and successfully completed using traditional
perceptron networks. The XOR problem was solved, and the limits as to the minimum size of
the network necessary were tested as well.

In addition, three geometries were also tested successfully: a closed arbitrary area, a digoint
area, and an areawith a“hole’. Again, limits were tested as to the size of network required for
each of these geometries. The classical perceptron network lived up to theory and was able to
classify all three types of geometries. This can be extrapolated to imply that athree-layer MLP
can be taught to classify any arbitrary region in N-space.

One type of application for the MLP network was designed and tested with limited success.
The Speaker |dentification system was able to successfully distinguish a number of speakers as
being “incorrect” i.e. not the chosen speaker. However, it did only report the “correct” speaker
3timesout of 7. This could be attributed to the fact that the limited computing resources could
not train the network to perfection in a reasonable simulation time. For this type of
authentication system, this type of performance, though sub-optimal, is acceptable.

The Temperon structure devel oped was shown to have emergent behavioral characteristics
consistent with those attributed to biological systems. A number of simple tests proved that the
virtual mouse, using the Temperon network as its processor, was in fact able to learn to adapt
and react to its environment. Moreover, it did so with absolutely no overriding control
program, or specific instructions to do so.

After extensive testing of perceptron-based neural networks, it was determined that a more
flexible type of neuron was needed in order to implement some type of artificia life. The
current ANN algorithms all imposed a “big picture” type of processing environment where the
learning rule controlled the overal direction in which the network converged.

The aforementioned Temperon agorithm takes an evolutionary approach to the system
development. Each neuron in the system is responsible for its own learning, according to very
simplerules. Then, asistypical of massively parald systems, the entire system exhibits
complex behavior. Unlike the “expert system” approach, the Temperon-based network is not
given atask to perform or a puzzle to solve; it is simply alowed to exist. This approach helps
avoid imposing any externa prejudices on the system.
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We have shown that the Temperon network does in fact learn to respond to its environment.
The simulations described utilize the Temperon net asits “brain” while it has certain
predefined “ senses’ and certain predefined “motor functions’. Note that the fact that these
functions are predefined does not impose any bias on the system; in fact, the system learns to
adapt even when its senses or motor functions are altered.

It is difficult to speculate as to the possible uses of the Temperon technology, other than as an
end unto itself. It does, however, have possible applications both in technical and biological
fields.

In atechnical capacity, a Temperon net can be utilized as the “brain” or central processing unit
of an entirely new type of computer. It represents a massively parallelizable architecture which
has the ahility to learn to perform various tasks assigned to it. It can also be used asa
functional unit in traditional processing systems to perform evaluation and judgment-oriented
tasks once it has been trained to do so.

In addition, studying the Temperon network may help give us additiona insight about the
biological learning process. Since the Temperon agorithm attempts to mimic the nature of
actua biologica systems, we may be able to learn from observing its behavior in certain
situations. A network complex enough to encapsulate human behaviors could help psychiatrists
and neurobiol ogists diagnose human patients. But all this relies on much more development of
atechnology which isinitsinfancy.

Thefield of Artificia Intelligence, being arelatively young and unexplored field of exploration,
isaripe breeding ground for speculation as to the direction future development should face.
Many researchers currently are utilizing A/l technology and techniques to provide a functional
block in an otherwise traditional system. Thistype of “black-box” integration virtually
dominates development resources because it can provide results either difficult or impossible
to achieve with traditional processing units. However, it is difficult to believe that any of these
systems, although perhaps useful, embody any actua “intelligence”.

Even the connotation of the term “intelligence” is hotly debated. What does it mean for a
system to be intelligent, or to display intelligent behavior? For years, the defacto standard of
intelligence was derived from Noam Chomsky’ s work in language development as the ability to
communicate using a natural language. However, recent advances have seen systems with
exactly that ability — to communicate in and react to a natural language — which are nothing
more than complex processing algorithms, really just large computer programs.
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Terry Winograd' s“SHRDLU” is one example. His program can both react to commands by
moving groups of virtual blocks around in a space and respond to queries regarding the relative
positions and attributes of blocks. However, it is generally stipulated that such programs are
not intelligent, but rather an intricate combination of algorithms designed to respond to a
infinitesimal subset of language statements. So a different test of intelligence, one not based on
language manipulation, is needed.

Or isit needed at dl? Only avery smal subset of development is being performed with the end
of developing a system which exhibits characteristics smilar to those of living organisms. The
reason such a small amount of work is being donein this areais most likely because there are
no obvious profits involved; since most research is driven by funds, the lack of available funds
tends to curtail exploration.

Another possible detractor may be an innate fear of what such development would imply. The
entertainment industry, in particular science-fiction, has continuously thrived on plots
involving so-called “ self-aware” machines. They are now so ubiquitous in movies and books
that generaly no surprise is éicited at the fiction of the presence of machines which interact
with humans as peers. However, equally omnipresent are plots which involve the failure of
these machines and their descent into psychosis and even homicide or genocide. Witness one of
the earliest and arguably the classic of sci-fi thrillers, “2001, A Space Oddessy” which seesa
spaceship’s main computer, HAL, go completely mad. More recently, the plot of the
“Terminator” series begins when the defense system becomes “ self-aware” and decides the
human race should be exterminated.

This type of media bombardment, while it creates fantastic box-office returns, cannot help but
create afeeling of disguiet in the genera populous when they are presented with a system with
the ability to learn for itself and make decisions based on its own learned knowledge. Even the
thought of a very primitive system, such as insect-colony behavior, tends to create uneasiness
in observers.

However, within the small community of researchers working on artificia life, opinionis
divided into two main camps with regards to the development of atrue “artificia life’. The
first group advocate so-called “expert systems’ i.e. systems whose “understanding” of and
reactionsto their world is based on a set of rules or relationship pre-entered into their database.
They then rely on these rules to acquire information and develop more rules and so on.

The second camp of researchers is dedicated to the notion that any initial rulesimposed on the
system would biasit Their approach isto smply provide alearning mechanism and alow the
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system to acquire information. Then, the test isto seeif the system organizes itself and
produces a nonrandom output. This is the approach described in this study.

The Temperon represents a small shift in the traditional neural network paradigm. However, it
is thought that this development brings us one step closer to the goal of creating atruly
intelligent lifeform.

66



Section 5 — Future Considerations

5. Future Considerations

This research has demonstrated to us a principle we see time and time again, perhaps
unknowingly: the combination of many simple systems can produce very complex and
unpredictable behavior. Take, for instance, the flocking of birds. They coordinate their
changes in direction with no apparent leader. Schools of fish aso demonstrate this behavior.
Why, then, do groups of humans have such a hard time getting along with one another?
Perhaps we are too complicated.

The research presented here seems to suggest the success of the Temperon-based system is due
to the overwhelming simplicity of the individua elements. Neurobiologists have concluded that
most cortical (brain) neurons are reasonably simplistic, yet essentially identical in function.
Development in high-level artificia intelligence has failed to produce a system which can be
shown to demonstrate emergent behavioral traits. These two facts taken together may be
indicative that the direction new development must follow isin massively paralel systems of
highly simple devices, rather than a small number of overwhelming complex devices.

It has been hypothesized by classical A/l researchersthat in order for a computing device to
approach human intelligence, the number of interconnections in the device must approach the
order of magnitude of the number of interconnections in the human brain. Moore' s law, which
states that the density of elements on integrated circuits doubles every eighteen months, already
predicts the not-too-distant future when ICs will be able to meet and surpass that classical
boundary, at least in sheer quantity of elements, anyway. However, we suggest here that no
matter how massive the system becomes, it is always at the mercy of the its controlling
process. Similarly, a group of workers under the strict control of their supervisor can only
perform at most to the level of the supervisor’simagination, and not exceed it. It isonly when
one of the workersis able to step outside the controlling envelope of the foreman’s direction
that change and growth are truly able to occur.

We therefore postul ate two additional constraints on the above statement: that the individual
elements must (1) each have the ability to perform some amount of processing on its own, no
matter how smple; and (2) that there exists no overriding control program which governs the
actions of individual elements.This being said, it remains to future researchers to realize the potentia of the Temper

system, and more importantly, the characteristics noted in the systems described herein. Due to
limited computing resources, we were able to smulate systems of less than thirty fully-
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connected neurons. Also, it should be reemphasized that the neura behavior here was
synchronous, i.e. the output of each neuron was held in a buffer until requested, rather than
propagating in a data-flow model, which is more accurate compared to biologica systems.

A more powerful computing resource should be able to take the simple structure of the
Temperon agorithm and replicate it thousands or millions of times, alowing for the massive
amount of parallelism demanded from these systems. Also, event-driven programming would
allow the firing of each neuron to automatically stimulate its succeeding neuron. It is suggested
that a hardware-description language like VHDL could be utilized to produce the desired
results, because it has both the installed base of hardware necessary to simulate such alarge
system, and because it is designed to support processes which are triggered by certain events.

It isimportant to note here that one of the critical stepsin demonstrating the functionality of
the Temperon system was in defining its *“ senses’ and “motions’ i.e. itsinput and output
processes. It is much more crucia in alarger system to provide many means of expression as
well as many sensing processes. The TurtleMouse simulation demonstrated quite clearly that it
only began to learn when it encountered the stimulation of an externa object. Then, it learned
by moving around and observing the changesiit could “see”’. Aswe have aready mentioned,
thisis not unlike the way any living system, including a human child, interacts with the world.

A simulation can only go so far to illustrate the viability of this type of system, no matter how
powerful the computing resources, smply due to the nature of the modern computer OS. In
fact, the term “ operating system” is exactly antithetical to the parameters the Temperon system
is based on, namely a centralized overwhelmingly controlling process. In order for these types
of systemsto progress, they need autonomy.

Therefore, the second and most obvious path down which this research must proceed is purely
hardware-oriented. The challenge isto design a circuit which can display small-scale behavior
similar to the functional characteristics of the Temperon, and provide for some way to
dynamically create and destroy interconnections among large numbers of those functional
units.

This system could then be connected to a number of input and output devices, which it should
have individua control over, rather than defining discrete control systems to perform specific
tasks. In other words, each individual component should be attached to the Temperon net.

However, even when the system is designed and fabricated, and the input systems and output
systems are connected, and even when it isinitialized and started up—even then—do not
expect any intelligent action from the system. We have shown here that it takes a certain
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amount of learning time before a system does anything interesting. We have aso shown that
that amount of time increases with the number of neurons in the system. Therefore, given a
system on the order of complexity of the human brain (billions of neurons each with thousands
of interconnections) expect a significant period of seeming dormancy, then along period of
apparent random behavior before anything even remotely resembling intelligent behavior
begins to emerge. Remember, even a human infant does little more than cry and wave its limbs
during its first few weeks of life. And it had the advantage of nine months in which to acquire
data about itself and its environment during which all its needs were accommodated.

This research takes the attitude that true life, exists as a combination of both features — the
predestined (or inherited) characteristics, working in conjunction with the learned (or acquired)
ones. We can see that in the Temperon network, the initial conditions imposed on the network
proved to be the mgjor factor influencing the path of development as the system progressed. It
was then hypothesized that another possible avenue of development is to progressin the
direction of network growth i.e. starting out with a small, minimally initialized network which
has the ability to add neurons dynamically to its net.

Network growth represents the next phasein ANN and Temperon development. Look to the
biological systems these smulations are based on. They al start from the fertilized zygote
which develops into a functioning organism, while learning all the while. Nowhere in nature do
we see a system simply pop into existence, fully functional physically but with zero mental

capacity.

Of course, the next logical argument is that the DNA structure found in most terrestria life
directs an organism’s growth and learning. The position taken by this researcher is that the
pattern described in DNA is merely a blueprint as to how to create a structure and that the
structure does not totally determine an organism’s behavior. This attitude is a reflection of the
ANN ideology that the topology of the network does not uniquely determine its behavior, but
does influence its ability to learn.

So we can see that there are two variables to take into account: the weights and biases found in
the network (along with their initia values), as well as the actua interconnection topology. In
this study, we focused primarily on using a fully-connected network of varying size, while
designing the neurons to adjust their interconnection weights.
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6. Appendices
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6.1 Appendix A: MATLAB code
6.1.1 Perceptron exploration

6.1.1.1 HINTONEM.M

figure

subplot (3,1, 1)
hi nt onwb( w1, b1)

subpl ot (3,1, 2)
hi nt onwb(w2, b2)
subpl ot (3,1, 3)
hi nt onwb( w3, b3)

orient tall

6.1.1.2 PLOTEM.M

axis([0 10 0 10])
axi s(axi s)
hol d on

i mshowm( [0, 10],[0 10], out mat, 256);
plot(inA(:,1),inA(:,2),'ro")
pl ot (noti nA(:, 1), notinA(:,2),"bx")

%l ot (0,0,"'y0")
%pl ot (10, 10, 'yo')

6.1.1.3 SET1.M

% matl ab script file for setting up variables
% for a classification test.

% we are attenpting to nake matl ab
% correctly classify points in 2-d
% according to a binary (A-or-not-A)
% set .

% The experinent is to test the sensitivity
% of an ANN to various nunbers of neurons in
% each of the three layers

% why 3 | ayers?

% First layer creates lines -> linearly separable sets only

% second | ayer creates convex hulls -> will not deal with disjoint or
concave sets

% Third | ayer creates arbitraty shapes -> can classify according to general
shapes
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O?Q/grgfe Vor Fﬁtgevvlt Pﬁl F}egt c‘z;lre esi gn Slrltdyx [0, 10];
% Let's create some points, the first half of WhICh

%are 'in' A and the second half aren't;

cl ear

=1

n

ONARARD

'—.'\lmpowm—'

=
>
Il

COor o m~

TOONNAS

A = [inA; notinA]";
targets

% let's | ook at these puppies...
%l g

%xi s([0 10 0 10])

%ol d on

%l ot (i nA(:, 1),
%pl ot (noti nA(:,

inA(:,2),"yo")
1), notinA(:,2),"bx")

% set up the net...

%nitialize 1st and 2nd | ayer weights

inputs = 2;%this is fixed -- 2 coordinates

sizel = 3;

size2 = 50;

size3 = 1; %this is fixed, because we only want
wl = rands(sizel,inputs);

bl = rands(sizel, 1);

W2 = rands(size2, sizel);

b2 = rands(size2,1);

w3 = rands(size3, size2);

b3 = rands(size3, 1);

figure(l1);clag;

subplot(2,1,1);

out mat =t est Net (w1, b1, w2, b2, w3, b3, . 25);
pl otem

str sprintf('% in |layer
title(str);

1, % in layer 2'

y=[ 0, 10]

= [ones(size(inA 1),1);zeros(size(notinA1),1)]";

a binary out put

,sizel, size2);
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y@gagg( Before training')
figure(2);
[wl, b1, w2, b2, w3, b3, TE] =

trai nbpx(wl, b1, 'l ogsig',w2,b2,'logsig ,w3, b3,"'logsig,A targets,[100, 50000,
le-2,.9])

[01,02,03] = sinmuff(A wl, bl,'logsig ,w2, b2, 'logsig ,w3, b3,'logsig);
A

03

out mat =t est Net (w1, b1, w2, b2, w3, b3, . 25);

figure(l);

subplot (2,1, 2);

pl otem

title(str);

Ibl = sprintf('After % training epochs.', TE);
x| abel (1bl);

orient('tall")

6.1.1.4 SET6.M

% matl ab script file for setting up variables
% for a classification test.

% OK. now you've done it. Here is a 16-point 1D dct.
% so there.

% the inputs are going to come froma random set of 1D DCTs.
% there are nunBets different sets of input/target conbos

nunSets = 100;
npoints = 16;
A=10*r ands( npoi nt s, nunSet s) ;

targets = dct (A);

% set up the net...
if exist('init'),
if (init==1),
% nitialize 1st and 2nd | ayer weights
clear init;
inputs = npoints;%this is fixed
si zel 25;
si ze2 25;
si ze3 npoints; %this is fixed

wl

rands(si zel, inputs);

bl

rands(sizel, 1);

S

rands(si ze2, si zel);
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b2 = rands(size2,1);
w3 = rands(size3, size2);
b3 = rands(size3, 1);

end

end

% igure(l);clg;

%subplot(2,1,1);

%out mat =t est Net (wl, b1, w2, b2, w3, b3, . 25);

%ol ot em

%tr = sprintf("% in layer 1, % in layer 2',sizel,size2);
%itle(str);

%«| abel (' Before training')

Y%pause

% i gure(2);

[wl, bl, w2, b2, W3, b3, TE] =

trai nbpx(wl, b1, 'l ogsig ,w2,b2,'logsig ,w3, b3,"'purelin', A targets,[100, 10000
,le-2]);

% o1, 02, 03] = sinmuff(A wl, bl, logsig ,w2, b2,'logsig ,w3, b3, purelin');

%out mat =t est Net (wl, b1, w2, b2, w3, b3, . 25);

% igure(l);

Y%subplot(2,1,2);

%ol ot em

%itle(str);

% bl = sprintf('After % training epochs.', TE);
%l abel (1bl);

Yorient('tall")

%if it sufficiently trained, let's test it.

clear testcol;

testcol = 10*rands(npoints,1);

[01,02,03] = sinuff(testcol,wl, bl,'logsig ,w2, b2,'logsig ,w3, b3, purelin');

t est col
[testcol 03 (testcol-03)]

6.1.1.5 TESTNET.M

% functi on out mat =t est Net (i ncrenent);

%

%this file generates a full test of the 10x10 space and
% pl ots the outputs as a greyscal e i mage

% it should help visualize exactly what region the

% net has sol ved for

% generate the test vector.

% essentially, we need all 2-d coordinates within the space
%wth a certain increnent.

function outmat =t est Net (wl, b1, w2, b2, w3, b3, i ncrenent);

if (~exist('increment')),
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i ncrenment = 1;
end

A=10,0];
for outloop = 0:increment: 10,
for inloop = 0:increnent: 10,
A = [ A outl oop,inloop];
end
end
A=A ;

% renmove the pesky 1st el ement;

[01,02,03] = sinmuff(A wl, bl,'logsig ,w2, b2, 'logsig ,w3, b3, 'logsig);

len = length(o3)-1;

%get rid of the 1st el enent
03 = 03(2:1en+l);

side = sqrt(len);

out mat = reshape(o03, si de, si de);
%the flip corrects for the display order
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6.1.2 Speaker Differentiation

6.1.2.1 HAMDIST.M

% [diff] = hanDist(vl,v2);

%

% Returns a vector which represents the bitw se Hamm ng di stance
% of each of the elenents in vl to the corresponding elenent in v2
% I1f vl and v2 are not integral, it rounds them towards zero.

%

% i.e. hanDist(4,5) =1,

% because 4 = '100' and 5 = '101' (in binary)

% which differ in 1 position (the 270 pl ace)

%

% Not e: hammi ng di stance is commutative, i.e. hanDist(A B) = hanDi st (B, A)

function [diff] = hanDist(vl,v2);
% fix the vectors so we have integral columm vectors.

vl fix(vl(:));
v2 fix(v2(:));

if (length(vl) > length(v2))
mnlen = length(v2);

el se
mnlen = length(vl);

end

vl
v2

v1(1: mnlen);
v2(1: mnlen);

hi ghpow = next pow2( max(max(vl, v2)));

% now that that's done, we can loop thru each of the vectors
diff = zeros(size(vl)); %initialize the output vector (just in case)

for count = 1:mnlen,
count;
tl = vl(count);
t2 = v2(count);
for bits = highpow -1:0,

m = 27bits;
logical = ((t1>=m&(t2<m)) | ((t1i<m &((t2>=m);
if (logical)
diff(count) = diff(count) + 1;
end
if(tl>=nm t1 =t1 - m end
if(t2>=nm) t2 =t2 - m end

end
end

6.1.2.2 READDATAM

% this function allows MATLAB to read in a data file
% witten by the java tenpAppl et program
% for the Tenperon experi nent
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%it assunmes the datafile root path is c:\java\neuron\
0

% function [points,count] = readData(fil ePath);
function [points,count] = readData(fil ePath);
basepath = 'c:\java\neuron\';

fp = [basepath,fil ePath];

fid = fopen(fp,'r','b");
% The B is for big-endian (which is how java wites)

if (fid == -1)

error (' Probl emopening file');
end;
[points,count] = fread(fid,'long');

fclose(fid);
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6.1.3 Temperon

6.1.3.1 LCTEST.M

%this is a test of the Likelihood of Change (L.C.) function2

% function [lc,time] = lctest(stinuli)

% stinuli is a vector of tines (in ns) at which the stinmuli occur...
% it should be nmonotonically increasing

function [lc,tinme] = lctest(stinuli)

stimuli = stimuli(:); % nmake sure its a colum vector

% check stimuli for nonotonicity (increasing)
if mn(diff(stimuli)) <=0

error('Stimuli nust be nmonotonically increasing');
end

if ~(stimuli(1) ==

stimuli = 1[0; stimuli]; % prepend zero if the first elenent is not zero
end
iv=.1 %lnitial value of L.C
| evel = iv;

spac = 5; % how far apart to space the time vectors (resolution)

for count = 2:length(stinuli), %the tinme vector in mllisecs

diffr = stimuli(count) - stinuli(count-1); %this is the difference
par anet er

points = stimuli(count-1):spac:stimuli(count); %this is for plotting
pur poses. . .

points = points - stinmuli(count-1) ; %correct for shift

Op ***x*x*xxkkxxkxx%x* The hoopdi e-bi g equation
scale = 1/100; %useful for playing with the slope of the curve

% newl evel = (level - log(points/50) + iv); %this does sort of the right
t hi ng

new evel = ( (level * exp(- scale * points)) + iv); %but this is nore
correct

%***************** Yup, thIS |S It

lc = [lc, new evel (1:1ength(new evel )-1)]; % append all but |ast points
to the vector we are working on

I evel = new evel (I ength(new evel)); % use the LAST point in the test
vector for next iteration
end

% get that pesky last point after the iteration is conplete
lc = [lc, level];

time = O:spac:stimuli(length(stinmuli));
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6.2 Appendix B: JAVA code
6.2.1 NEURON Package

6.2.1.1 Neuron.java

package neuron;
i mport java.util.Vector;

*

Neuron. java - Abstract class establishing general neuron behavior

Witten David J. Cavuto

on 10/ 19/1996

Under the auspices of Dr. Sinmon Ben-Avi

at The Cooper Union for the Advancenent of Science and Art

Created in partial fulfillment of the requirenents for the
Mast er of Electrical Engineering degree
at the Al bert Nerkin School of Engineering

Copyright (c) 1996 David J. Cavuto and The Cooper Union
Al'l rights reserved.

P e e

~

/** @ersion 1.0 10/19/1996 */
/** @ut hor David J. Cavuto */

public abstract class Neuron

{

protected int ninputs=0; /'l number of inputs the neuron has
private Vector inputs; /! pointers to the other neurons

protected StringtransFun; // transfer Function as a String
private Vector weights; // vector containing the weights
private double bias; /1 the bias or threshold |evel

public void Neuron()
{

ni nputs = 0;
i nputs = new Vector();
transFun = new String("unnaned");
wei ghts = new Vector();
bias = O;
System out . println("Neuron: constructor");

1

abstract doubl e output();

public void addl nput (Neuron newNeuron, double weight)

{
ni nputs++; // increment the nunber of inputs the neuron has
i nput s. addEl emrent (newNeur on) ;
wei ght s. addEl ement (new Doubl e(wei ght));

}
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public void renovel nput At (i nt position)

i f (ninputs>0)
try
o
ni nput s- - ;
i nput s. renoveEl enent At (position);
i nput s. renoveEl enment At (position);

}
catch (Arrayl ndexQut Of BoundsExcepti on e)

System out . printl n("neuron. Neuron. renovel nputAt: invalid
position");

el se
System out . printl n("neuron. Neuron. renpvel nput At: no inputs to
renmove");
}
publ i ¢ doubl e get Wei ght At (i nt position)
{
try

return ( ((Doubl e)wei ghts. el enent At (position)).doubl evVal ue() );

}
catch (Arrayl ndexQut Of BoundsException e)

{
System out . printl n("neuron. Neuron. get Wi ghtAt: invalid
position");
return O;
}
}
public void set\WightAt(int position, double val)
{
try

wei ght s. set El ement At (new Doubl e(val ), position);
}
catch (Arrayl ndexQut Of BoundsException e)

System out . printl n("neuron. Neuron. set Wi ghtAt: invalid
position");

}

publ i c Neuron get NeuronAt (int position)

{
try

return ( ((Neuron)inputs. el ement At (position)));
}
catch (Arrayl ndexQut Of BoundsExcepti on e)
{
System out . printl n("neuron. Neuron. get NeuronAt: invalid

position");
return null;
}
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ubl i ¢ doubl e getBias()

return (bias);

public void setWights(Vector ws)

{
wei ghts = (Vector)wts. clone();

public void setBias(double bs)
{

}

bi as = bs;

6.2.1.2 Perceptron.java

package neuron;
i nport neur on. Neur on;

* Perceptron.java - |Inplenents perceptron
Witten David J. Cavuto
on 10/ 19/1996

Under the auspices of Dr. Sinmon Ben-Avi
at The Cooper Union for the Advancenent of Science and Art

Mast er of Electrical Engineering degree
at the Al bert Nerkin School of Engineering

Copyright (c) 1996 David J. Cavuto and The Cooper Union
Al'l rights reserved.

/
/
/
/
/
/
/
/| Created in partial fulfillment of the requirenents for the
/
/
/
/
/
/
*/

/** @ersion 1.0 10/19/1996 */

/** @ut hor David J. Cavuto */

public class Perceptron extends Neuron

public Perceptron()

Neuron() ;
System out. println("Perceptron: Constructor");

}

public Perceptron(String str)
Neuron() ;

System out. println("Perceptron: Constructor");
transFun = new String(str);

publ i ¢ doubl e out put ()
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i f (ninputs>0)

doubl e acc=0; // accunul at or
for (int count=0; count<ni nputs; count ++)
acc+= get Wei ght At (count) * get Neur onAt (count). out put();
return feval (transFun, acc);
}
el se
return 0d;

}
protected double feval (String str, double num

/] Systemout. println("Perceptron:feval :str >>"+str+"<<");
if (str.equals(new String("HardLint)))// hard linmt xfer function

{

num -= getBias(); // adjust for the bias...

i f (num=0)
return 1d;
el se
return 0d;

}
else if (str.equals(new String("HardLimNeg")))// hard limt xfer
function

{
num -= getBias(); // adjust for the bias...
i f (nunp0)
return 1d;
el se
return 0d;
} el se if(str == "unnaned")

System out. println("Perceptron:feval : Unspecified transfer
function");
return 0d;
}

el se
System out. println("Perceptron: feval : Unknown transfer

function");
return 0d;
}

6.2.1.3 PercepFB.java

package neur on;
i mport neur on. Neur on;
i mport neuron. Perceptron;

/* PercepFB.java - |Inplenents perceptron with feedback and control signals
/
/  Witten David J. Cavuto
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Bﬂdéplgﬁélgagpi ces of Dr. Sinobn Ben-Avi
at The Cooper Union for the Advancenent of Science and Art

Created in partial fulfillment of the requirenents for the
Mast er of Electrical Engineering degree
at the Al bert Nerkin School of Engineering

Copyright (c) 1996 David J. Cavuto and The Cooper Union
Al'l rights reserved.

R e

/

/** @ersion 1.0 10/20/ 1996 */
/** @ut hor David J. Cavuto */

public class PercepFB extends Perceptron

{
prot ect ed doubl e | ast Qut put =0;

private doubl e thisQut put =0;
publ i c PercepFB()

super () ;
System out . println("PercepFB: Constructor");

}

public PercepFB(String str)
super () ;

System out . println("PercepFB: Constructor");
transFun = new String(str);

publ i ¢ doubl e out put ()
{

}
public void conpute()
{

return | ast Qut put;

t hi sQut put = super. out put();
}

public void updat eQut put ()

| ast Qut put = t hi sCut put;
}

public void set Qutput(doubl e out)

| ast Qut put = out;
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6.2.1.4 Input.java

package neuron;
i nport neur on. Neur on;

* |Input.java - Inplenments dunb input |ayer
Witten David J. Cavuto
on 10/ 19/1996

Under the auspices of Dr. Sinmon Ben-Avi
at The Cooper Union for the Advancenent of Science and Art

Mast er of Electrical Engineering degree
at the Al bert Nerkin School of Engineering

Copyright (c) 1996 David J. Cavuto and The Cooper Union
Al'l rights reserved.

/
/
/
/
/
/
/
/| Created in partial fulfillment of the requirenents for the
/
/
/
/
/
/
*/

/** @ersion 1.0 10/19/1996 */

/** @ut hor David J. Cavuto */

public class Input extends neuron. Neuron
{
public Input()

Neuron() ;
System out. println("Input: Constructor");

private double out = O;

publ i ¢ doubl e out put ()

{
return out;
}
public void set Qut put (doubl e 0)
{
out = o;
}

6.2.1.5 Temperon.java

package neuron;

i nport neuron. Neuron;

i nport neuron. Perceptron;
i nport neuron. Per cepFB;
import java.util.¥*;

/* Tenperon.java - |Inplenents custom perceptron with inherent |earning and
t enporal awar eness

/

/  Witten David J. Cavuto

/[ on 11/12/1996
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g{]d%het Ece)ogg?pbﬁfegnof theI %Oaﬁggmsn{ of Science and Art

4

/

/| Created in partial fulfillment of the requirenents for the
/  Master of Electrical Engineering degree

/ at the Albert Nerkin School of Engineering
/

/

/

/

Copyright (c) 1996 David J. Cavuto and The Cooper Union
Al'l rights reserved.

/

/** @ersion 1.7 12/16/ 1996 */
/** @ut hor David J. Cavuto */

/* Revision History

1.712/16/1996
added constructor option to NOT have wei ght max/mn
added rescal eWei ghts net hod

1.612/13/1996
added revision history
changed back from random updates of weights to a fixed step size

*/

public class Tenperon extends PercepFB
{
protected Vector | astUpdateTine;
protected Vector | astUpdateVal ue;
final static double | NPUT_THRESHOLD=0. 5d;
final static double LEVEL_THRESHOLD=0. 5d;
final static doubl e CHANGE_VALUE=0. 2d;
final static double I NI TI AL_VALUE=O0. 1d;
final static | ong REPOLARI ZATI ON_TI ME = 60;
final static double WEI GHT_MAX = 3.0d;
final static double WVEIGHT_M N = -3.0d;
final static doubl e RESCALE_MAX = 20d;
final static double SCALE = 1d/100d;
private static long |ocaltinme=0;
private |long | astFire=0;
private boolean fire_flag = fal se;
private bool ean naxWeights = true;
protected bool ean oscillate_flag = true;

public Tenperon()
{

super () ;
System out . println("Tenperon: Constructor");
init("HardLinm);

}

public Tenperon(String str)

super () ;
System out . println("Tenperon: Constructor");
init(str);
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ublic Tenperon(String str, bool ean m

super () ;

System out . println("Tenperon: Constructor");
maxWei ghts = m

init(str);

private void init(String str)

{
transFun = new String(str);
| ast Updat eTi me = new Vector();
| ast Updat eVal ue = new Vector();
}
public void conpute()
{
super . conpute();
updat eWei ght s() ;
}

public void setGscillateFl ag(bool ean f)

oscillate_flag = f;

}

public void updat eQut put ()

{
super . updat eQut put () ;

if(fire_flag & oscillate_flag) // it fired last tine

{
super.setQutput(0d); // make it go off this time

fire_flag = fal se;
}
else if (super.output() > INPUT_THRESHOLD) // if this output fires
this time, set a flag
fire_flag = true;

ong tenpTine = getTinme();
f((tenpTinme-lastFire) < REPOLARI ZATI ON_TI ME)

super . set Qut put (0d) ;

~ e~ e~~~
~ e~ e~~~

I
i
{
b .
lastFire = getTime();

}
public void set\WightAt(int position, double val)

i f (get NeuronAt (position)==this) val =0d; //check for self-connect
super . set Wi ght At (posi tion,val);

}

public void addl nput (Neuron newNeuron, double weight) // overrides
Neur on. addl nput ()

if (newNeuron == this) weight = 0; // don't connect '"emto itself
super . addl nput (newNeur on, wei ght);
| ast Updat eTi me. addEl ement (new Long(getTine()));
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} | ast Updat eVal ue. addEl enent (new Doubl e(I NI TI AL_VALUE) ) ;

public void renpvel nput At (int position) // overrides
Neur on. r enovel nput At ()

{
super . renovel nput At (posi tion);
| ast Updat eTi me. r enoveEl ement At (posi tion);
| ast Updat eVal ue. r enoveEl enent At (posi tion);
}
protected voi d updat eWei ght s()
{
bool ean rescal eFl ag = fal se;
i f (ninputs>0)
doubl e acc=0; // accunul at or
for (int count=0; count<ni nputs; count ++)
{
i f (get NeuronAt(count).output() >= | NPUT_THRESHOLD)
{ // input is 'on' and we should update its likelihood of
change

| ong now=get Time(); // get the new tine

| ong
t hen=((Long) | ast Updat eTi ne. el enent At (count)).longValue(); // get the |ast
time fromthe vector

| ast Updat eTi me. set El enent At (new Long(now), count); // set
last tinme <= NOW

doubl e diff = (double)(nowthen); // the difference in
time

/1 now we have to conpute the new LC and see if it exceeds
the threshold

doubl e
| evel =(( Doubl e) | ast Updat eVal ue. el enent At (count)) . doubl eVal ue();

/1 doubl e newiLevel = level - (diff/50d)*Math.exp(-diff /
50000d) + INITIAL_VALUE; // conpute the new | evel
doubl e newiLevel = level * Math.exp(-diff * SCALE) +

I' NI TI AL_VALUE;
| ast Updat eVal ue. set El enent At (new Doubl e( newLevel ), count);
/'l update the Vector

/1 System out . printl n("updat eWei ghts: input "+count+",
ol dl evel ="+l evel +", newlLevel =" +newlLevel );
/1 Systemout.println(" ol dtinme="+then+", newli me="+now);
if (newLevel >= LEVEL_THRESHOLD) // we have to update the
wei ght
{

doubl e wt = get Wi ght At (count);

double sign = w / Math.abs(wt) ; // returns either a
+1 or -1 depending on the sign of w
/1 sign = 1; // ignore the man behind the green curtain...

/1 System out . printl n("updat eWei ghts: Updating Weights for input
"+count+" with sign: "+sign);

doubl e newwt =0;

if (lastQutput >= INPUT_THRESHOLD) // if this neuron's
output is 'on'
/1 newwt = +( CHANGE_ VALUE* Mat h. randon{() *sign); //
rei nforce
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- % * H - H
ol Sgem/A/\} +( CHANGE_VALUE*0. 5*sign); // reinforce

ot herw se
/1 newwt = -( CHANGE_VALUE*Mat h. randon{() *sign); //
suppr ess
newt = -(CHANGE VALUE*O0.5*sign); // suppress
if (getNeuronAt(count) ==this) newmt = 0; // if it is
itself...

newwt = wt+newwt ;

/!l check the limts
i f (maxWei ght s)
{

i f (newwt >VEI GHT_MAX) newwt = WEI GHT_MAX;
else if (newu <VEEI GHT_M N) newwt = WEI GHT_M N;
}

/1 actually do the updating.
set Wi ght At (count , newwt ) ;

/1 and let's reset the |evel
| ast Updat eVal ue. set El enent At ( new
Doubl e(I NI TI AL_VALUE), count); // update the Vector
i f(Math. abs(newwt) > RESCALE _MAX) rescal eFlag = true;

YoILOif
YoIDOif
}/ 1 for loop

i f(rescal eFl ag) rescal eWei ght s( RESCALE_MAX) ;

Yo
} /1 updat eWei ghts

public static |ong getTine()

{

return |l ocaltine;
/1 return SystemcurrentTimeM I lis();

}

protected void rescal eWei ght s(doubl e rf)

{
System out. println("Tenperon: rescaling weights");
for (int count=0; count<ni nputs; count ++)

set Wi ght At (count, (get Wi ght At (count)/rf));

}

}

public static void updateTi ne()

| ocal ti me+=10;
if (localtinme>1000000)I ocalti ne=0;
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6.2.2 Test programs

6.2.2.1 MultiMouseApplet.java

i mport java. appl et. *;
i mport java.awt.*;
import java.util.¥*;

[** mul ti MouseAppl et.java -
*
* Witten David J. Cavut o<BR>
* on 11/14/1996<BR>
* Under the auspices of Dr. Sinon Ben-Avi <BR>
* at The Cooper Union for the Advancenent of Science and Art<BR>
*  <BR>
* Created in partial fulfillnment of the requirements for the<BR>
* Master of Electrical Engineering degree<BR>
* at the Al bert Nerkin School of Engineeri ng<BR>
*  <BR>
*  Copyright (c) 1996 David J. Cavuto and The Cooper Uni on<BR>
* Al rights reserved. <BR>
*
*  @ersion 1.3 12/13/1996
* @uthor David J. Cavuto, The Cooper Union
*/
/* Revision History
1.312/13/1996

started keeping history

fixed cross-screen display probl ens

added noveQbst acl e net hod
*/

public class nultiMuseAppl et extends NoFlicker Appl et

i nt hei ght =0;
int w dth=0;

doubl e turtle_x=0;

doubl e turtle_y=0;

doubl e turtle_angl e=0;

bool ean turtl e_pendown=f al se;

Col or turtle_color = Color. bl ack;

Vector turtleVector = new Vector();

I mage turtle_i mage=nul | ;
Graphics turtle_graphics=null;
Di mension turtle_size=null;

doubl e ol d_x=0;
doubl e ol d_y=0;

doubl e obj _x=0;
doubl e obj _y=0;
bool ean obj _flag = fal se;
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Label tenmpLabel = new Label ("false");
Label cl oseLabel = new Label ("fal se");
Label anglLabel = new Label ("00000000");
Label dirLabel = new Label ("00000000");

Choi ce noveChoi ce;

/**

* This is a test -
*

init()

*/
public void init()
{
hei ght =t hi s. si ze() . hei ght;
wi dt h=t hi s. si ze() . hei ght;
noveChoi ce = new Choi ce();
moveChoi ce. addl tem("fd(1)");
moveChoi ce. addl tem("bd(1)");
nmoveChoi ce. addl tenm("fd(10)");
nmoveChoi ce. addl t en( " bd(10)");
moveChoi ce. addltem("rl (5)");
moveChoi ce. addltem("rr(5)");
nmoveChoi ce. addl ten("rl (30)");
nmoveChoi ce. addl ten("rr(30)");
moveChoi ce. addl ten("pu()");
moveChoi ce. addl ten( " pd()");
/1 add( moveChoi ce) ;
/1 addObst acl e(.5,.5);
/1 add(t enpLabel ) ;
/1 add(cl oselLabel );
/1 add(anglLabel ) ;
/1 add(dirLabel);
}
public void addTurtle(int |D)
turtl eVector. addEl enment (new turtle(1D));
repaint();
public bool ean renoveTurtle(int 1D)
{
bool ean retval ue = fal se;
int pos = getTurtlelD(ID);
if (pos!= -1)
turtl eVector.renoveEl enent At (pos);
retval ue = true;
repaint();
return retval ue;
}
/**
* We're going to work with the area scal ed
(1,1)
* hence,
* to actual
with

in the range (-1,-1) to

we need to be able to convert the scale we are working in
pixels relative to the size of the wi ndow we are worki ng
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*

* @aram pos takes a position in the scale -1 to +1 and rescales it to
fit the current w ndow

* @eturn the positions rescaled as integers relative to the size of
the current w ndow

*/

public int rescal e(double pos, int scale_factor)

return( (int)Mth.round(((pos+1)/2)*(scale_factor)) );

public int rX(double pos)
{

return(rescal e(pos,w dth));

public int rY(doubl e pos)

return(rescal e(pos, hei ght));

}

public doubl e scal e(int pos, int scale_factor)
return( ((doubl e)pos/(doubl e)scale_factor) * 2d - 1 );

publ i c doubl e sX(int pos)
{

return(scal e(pos,w dth));

public doubl e sY(int pos)

return(scal e(pos, height));

}
public void rangeCheck()
{
if(turtle_x < -1d)
turtle_x = 1d;
else if(turtle_x > 1d)
turtle_x = -1d;
if(turtle_y < -1d)
turtle_y = 1d;
else if(turtle_y > 1d)
turtle_y = -1d;
}

public void ot herRangeCheck(int 1D)

{
/1 Systemerr.println("otherRangeCheck: "+ID);
double loc_turtle_x = getTurtleX(ID);
double loc_turtle_y = getTurtleY(ID);
double loc_turtle_angle = getTurtl eAngl e(ID);

if(loc_turtle_x < -1d)
set Turtl eX(ID, 1d);
else if(loc_turtle_x > 1d)
set Turtl eX(ID, -1d);
if(loc_turtle_y < -1d)
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el sesetT Irct)(l: et LSrHel "> 1d)
set TurtleY(ID, - 1d)

}
protected void updateTurtl eG aphi cs()
{
Dinmension d = this.size();
if((turtle_image==null) || (d.width!=turtle_size.width) ||
(d.height!=turtle_size.height)) // have to nake a new one
{
turtle_i mage = createl mage(d. wi dth, d.height);
turtle_size = d;
turtle_graphics = turtle_i mage. get G aphics();
turtl e_graphics. se tCoI or (this.getBackground());
turtle_graphics.fillRect(0,0,d.w dth, d.height);
//let's warmup by drawi ng an axis
turtl e_graphics. set Col or (Col or. darkG ay) ;
_ turtle_graphics.drawLine(rX(-1),rY(0),rX(1),rY(0)); // horizontal
axis
_ turtle_graphics.drawLine(rX(0),rY(-1),rX(0),rY(1)); // vertical
axis
}
}

private void noveHandler() //called on any forward or backward novenent

i f (noveCheck() && turtle_pendown) doLine(turtle_graphics);

rangeCheck() ;
}
private void net MoveHandl er ()
{
for(int count=0;count<turtleVector.size();count++)
int ID= (((turtle)turtleVector.elenentAt(count)).getlD());
ot her RangeCheck( I D) ;
i f (noveCheck(ID) && get PenDown(ID)) doLine(ID,turtle_graphics);
}
}

public void paint(G aphics g)
{

hei ght =t hi s. si ze() . hei ght;
wi dt h=t hi s. si ze() . wi dt h;

updat eTur t | eG aphi cs();

g.drawi mage(turtle_image, 0,0, null); // update the background z-

buf fer

i f(obj_flag)

{

dr awtbst acl e( g, obj _x, obj _y);

/1 t enpLabel . set Text (Stri ng. val ueC (faci ngbbstacle()));
/1 cl oselLabel . set Text (String. val ueC (cl oseToCbstacle()));
/1 anglLabel . set Text (String. valueO (turtle_angle));
/1 di r Label . set Text (Stri ng. val ueX (angl eToObst acl e()))
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A arerabel - setFext{ =il Rg: Val Hed {horht MRgACRRLRSCPLL )

}

old x = turtle_x; //update the old positions (local)

oldy = turtle_y;

drawTurtle(g, turtle_x,turtle_y,turtle_angle,turtle_color); // draw
(1 ocal)
turtle

drawAl | Turtles(g); // do all the damm ot her ones
}
protected void drawAl | Turtl es(G aphics g)
for(int count=0;count<turtleVector.size();count++)
drawTurtle(g, ((turtle)turtleVector.el enent At (count)).turtle_x,
turtle)turtl eVector.el enent At (count)).turtle_y,

turtle)turtl eVector.el enent At (count)).turtle_angle,
turtIe)turtIeVector el enent At (count)).turtle_col or

~— A~~~
- AN~ A~

}

prot ect ed bool ean moveCheck()

if(turtle_x == old_x & turtle_y == old_y)
return fal se;
el se return true;

}

prot ect ed bool ean moveCheck(int 1D)
{ double loc_turtle_x = getTurtleX(ID);
double loc_turtle_y = getTurtleY(ID);
double loc_turtle_angle = getTurtl eAngl e(ID);

if(loc_turtle_ x == old_x & loc_turtle_y == old_y)
return fal se;
el se return true;

}

protected void doLine(int ID, G aphics _g)
{

double loc_turtle_x = getTurtleX(ID);

double loc_turtle_y = getTurtleY(ID);

double loc_old_x = getO dX(1D);

double loc_old_y = getAdY(I1D);

i f (checkDi stance(loc_turtle_x, l oc _old x) &&
checkDi stance(loc_turtle_y,Toc_ol d_y) )

_g. set Col or (Col or. bl ue);

_g.drawLi ne(rX(loc_old x), rY(loc_old y), rX(loc_ turtle_x),
rY(loc_turtle_y));
}

}
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private bool ean checkDi st ance(doubl e x1, double x2) // if the distances
cross a screen boundry, return false

i f( Math.abs(x2-x1) > 1.95 )return fal se;
el se return true;

}
protected void doLi ne(G aphics _g)

i f(checkDi stance(turtle_x,old_x) && checkDi stance(turtle_y,old_y) )

_g. setCol or (Col or. bl ue);
_g.drawtine(rX(old_x), rY(old_y), rX(turtle_x), rY(turtle_y));

}

/* R I O Vector Stuff kkhkkkkkhkkhkkkhkkk*x */

public int getTurtlelD(int ID)

{
int pos=-1;
for(int count=0;count<turtleVector.size();count++)
if( ((turtle)turtleVector.elenentAt(count)).getlD() == 1D)
pos = count;
}
return pos;
}
protected Col or getTurtleCol or(int ID)
{

int pos = getTurtlelD(ID);
return ((turtle)turtleVector.elementAt(pos)).turtle_color;

protect ed doubl e get TurtleX(int 1D)

{
int pos = getTurtlelD(ID);
return ((turtle)turtleVector.elementAt(pos)).turtle_x;

protected doubl e getTurtleY(int 1D)

{
int pos = getTurtlelD(ID);
return ((turtle)turtleVector.elenmentAt(pos)).turtle_y;

protected double getd dY(int ID)

{
int pos = getTurtlelD(ID);
return ((turtle)turtleVector. el enent At (pos)).old_y;

protected doubl e getd dX(int 1D)

{
int pos = getTurtlelD(ID);
return ((turtle)turtleVector. el enent At (pos)).old_x;




Section 6 — Appendices

[,)rot ected doubl e get Turtl eAngl e(int 1D)

int pos = getTurtlelD(ID);
return ((turtle)turtleVector.elementAt(pos)).turtle_angle;

prot ect ed bool ean get PenDown(i nt | D)

{
int pos = getTurtlelD(ID);
return ((turtle)turtleVector.el enent At (pos)).turtle_pendown;

}
protected void setTurtleX(int ID, double val)
{
int pos = getTurtlelD(ID);
((turtle)turtleVector. el enentAt(pos)).old x =
((turtle)turtleVector. el enentAt(pos)).turtle_x;

((turtle)turtleVector.elenentAt(pos)).turtle_x = val;
protected void setTurtleY(int ID, double val)
{
int pos = getTurtlelD(ID);
((turtle)turtleVector.elenentAt(pos)).old y =
((turtle)turtleVector.elenentAt(pos)).turtle_y;
((turtle)turtleVector.elenentAt(pos)).turtle_y = val;

protected void setTurtl eAngl e(int I D, double val)

{
int pos = getTurtlelD(ID);
((turtle)turtleVector.elenentAt(pos)).turtle_angle = val;

protected void setTurtl ePenUp(int ID)

{
int pos = getTurtlelD(ID);
((turtle)turtleVector. el ement At (pos)).turtle_pendown = fal se;

protected void setTurtl ePenDown(int 1D)

{
int pos = getTurtlelD(ID);
((turtle)turtleVector. el enent At (pos)).turtle_pendown = true;

protected void setTurtleColor(int ID Color c)
{

int pos = getTurtlelD(ID);
((turtle)turtleVector.elenentAt(pos)).turtle_color = c;

public void pu(int 1D

set Turt| ePenUp(I D);

}
public void pd(int 1D
{
set Turt| ePenDown( | D) ;
}
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/* R b R R b A O kR R S */

public void pu()

turtl e_pendown = fal se;

}
public void pd()
{

turtl e_pendown = true;

/**

* Moves the Turtle forward

* note that "forward" is relative to whichever direction it is pointing
*

* @aram how_far distance in pixels

*/

public void fd(int howfar) // nmoves it in whichever direction it is

poi nting
{
doubl e[] t_x = {turtle_x};
double[] t_y = {sY(rY(turtle_y) - how far)};
rot at eDoubl ePoi nts(t_x,t_y,turtle_x,turtle_y,turtle_angle);
/1 Systemout.println("It was at: x="+turtle_x+", y="+turtle_y);
turtle_x = t_x[0];
turtle_y = t_y[0];
/1 Systemout.printIn("It's now at: x="+turtle_x+", y="+turtle_y);

it

noveHandl er () ;
repaint();
}

/**

* Moves the Turtle forward -- PARAMVETERI ZED

* note that "forward" is relative to whichever direction it is pointing
*

* @aram how_far distance in pixels

*/

public void fd(int ID, int howfar) // noves it in whichever direction
i's pointing

double loc_turtle_x = getTurtleX(ID);
double loc_turtle_y = getTurtleY(ID);
double loc_turtle_angle = getTurtl eAngl e(ID);

doubl e[] t_x {loc_turtle_x};
doubl e[] t_y {sY(rY(loc_turtle_y) - how far)};

r ot at eDoubl ePoi nts(t_x,t_y,loc_turtle_x,loc_turtle_y,loc_turtle_angle);

setTurtl eX(ID t_x[0]);
setTurtleY(ID t_y[0]);
net MoveHandl er () ;
repaint();

/**

* Moves the Turtle backward
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* note that "backward" is relative to whichever direction it is

poi nting
* @aram how_far distance in pixels
*/
public void bd(int howfar) // noves it backward

fd(-how far);

/**

* Moves the Turtle backward -- PARAMETERI ZED

* note that "backward" is relative to whichever direction it is

poi nting

* @aram how_far distance in pixels
*/

public void bd(int ID,int howfar) // noves it backward

fd(I1D, -how far);

/**

* Rotates the turtle left (clockw se)
*

* @aram how_far cl ockw se angle in degrees
*/

public void rl (double how far) //how far is in degrees

turtle_angle -= (how_far * Math. Pl/180d);
turtle_angle = fixAngle(turtle_angle);
repaint();

/**

* Rotates the turtle left (clockw se) -- PARAMETERI ZED

*

* @aram how_far cl ockw se angle in degrees
*/
public void rl(int ID, double howfar) //how far

{
double loc_turtle_angle = getTurtl eAngl e(ID);

loc_turtle_angle -= (how_far * Math.Pl/180d);
loc_turtle_angle = fixAngle(loc_turtle_angle);

set Turtl eAngl e(I D, 1 oc_turtle_angle);

repaint();
}
/**

* Rotates the turtle right (counterclockw se)
*

* @aram how far ccw angle in degrees
*/
public void rr(double how far)

rl(-how far);

is in degrees

97



Section 6 — Appendices

/**

* Rotates the turtle right (counterclockw se) -- PARAVETERI ZED

*

* @aram how far ccw angle in degrees
*/
public void rr(int ID,double how far)

ri (1D, -how far);

public doubl e fixAngl e(double ang) // recursively puts an angle in the
range 0 - 2*pi
{

if (ang>2*Math.Pl) return fixAngle(ang-2*Math.Pl); // if its greater
t han 360, subtract 360 fromit
else if (ang<0) return fixAngle(2*Math.Pl+ang); // it its less
t han 360, add 360 to it

el se return ang; // otherwise just return it

}
public bool ean action(Event e, Object 0)
{
bool ean ret _val ue=fal se;
if(e.target instanceof Choice)
doi t (moveChoi ce. get Sel ect edl ndex());
ret _val ue=true;
}
return ret_val ue;
}

public void doit(int which)
switch (which)

{
case 0: fd(1l); break;
case 1: bd(1); break;
case 2: fd(10); break;
case 3: bd(10); break;
case 4: rl(5); break;
case 5: rr(5); break;
case 6: rl(30); break;
case 7: rr(30); break;
case 8: pu(); break;
case 9: pd(); break;

}

repaint();

publ i ¢ bool ean handl eEvent (Event e)

{
/* i f(e.id==Event. MOUSE_MOVE)
{
doubl e tx sX(e.x) - turtle_x;
double ty sY(e.y) - turtle_y;
turtle_angle = Math.atan2(ty,tx) + Math. Pl/2d;
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repaint();
i f(e.id==Event. MOUSE_DOWN)
{

fd(10);
/1 turtle_x = sX(e.x);
/1 turtle_y = sY(e.y);
repaint();

}
i f(e.id==Event. MOUSE_DRAG

/1 turtle_x = sX(e.Xx);
/1 turtle_y = sY(e.y);
repaint();
*/ }
i f(e.id==Event. ACTI ON_EVENT)
return action(e,e.arg);
return(false); // so something else will handle it.
}
public void drawTurtl e(G aphics g, double _x, double _y, double rot)
drawTurtle(g,_x, _y, rot, Col or. bl ack) ;
}
public void drawTurtl e(G aphics g, double _x, double _y, double rot,
Col or col)
{
/1 for now, rot is an angle in radians
int size=6; // Make the little nousie
int x_o=rX(_x); // x_origin
int yo=rY(_y); // y_orign
int x[] = {x_o, x_o+si ze, Xx_o0-si ze, x_0};
int y[] = {y_o-size,y_o+size,y_o+size,y_o-size};
int size2 = sizel/2; // Make his cute little snout
int y 02 =y o-size2;
int x1[] = {x_o, x_o+si ze2, x_o-si ze2, x_o};
int yl[] = {y_o02-size2,y_o02+size2,y_o02+size2,y_o02-size2};
/1 now, the x,y and x1,yl arrays hold the points for the
/1 turtle body and its head in an upright position
/1 we have to rotate the damm points
rot at ePoi nts(x,y,x_o,y_o,rot);
rot at ePoi nts(x1,yl,x_0,y_o,rot);
g. set Col or (col);
g.fillPolygon(x,y,4);
g. set Col or (Col or. white);
g.fill Polygon(x1,y1l,4);
}
public void addOostacl e(doubl e _x, double _y)
{
obj _x = _x;
obj _y = _y;

obj flag = true;
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}

public void drawCbst acl e(G aphics g, double _x, double _y)

{

g. set Col or (Col or. yel |l ow);

g. fillOval (rX(_x),rY(_y), 10, 10);
}

public void drawTurtl e(G aphics g, double _x, double _y)

drawTurtle(g, x, _y,0);
}

publ i ¢ doubl e angl eToObst acl e()

{
return fixAngl e(Math. atan2(turtle_y-obj_y,turtle_x-obj_x)-
Mat h. PI/ 2d) ;

}

publ i ¢ bool ean faci ngObst acl e()
doubl e ao = fixAngl e(Mat h. abs(angl eToGbstacle() - turtle_angle));

if ( (a0>0 & ao < Math.PI/2d) || (ao>3d*(Math.Pl/2d)) )
return true;

el se return fal se;

}
publ i c bool ean ri ght HandObst acl e()

doubl e ao = fixAngl e(Mat h. abs(angl eToGbstacle() - turtle_angle-
Mat h. PI/2d));

if ( (a0>0 & & ao < Math.PI/2d) || (ao>3d*(Math.Pl/2d)) )
return true;
el se return fal se;

}
publ i ¢ bool ean pointi ngAt Obst acl e()

doubl e ao = fixAngl e(Mat h. abs(angl eToGbstacle() - turtle_angle));

if ( (a0>0 &% ao < Math.PI/8d) || (ao> (2d*Math.Pl - Math.PI/8d)) )
return true;

el se return fal se;

}

publ i c bool ean cl oseToObst acl e()

doubl e dx = obj _x-turtle_x;

doubl e dy = obj _y-turtle_y;

doubl e dist = Math.sqrt ((dx*dx)+(dy*dy)); // Euclidean distance -
sqrt of sum of squares

if (dist<.2) return true;

el se return fal se;

}

public boolean proximty(int |ID, double rad)

if(getTurtlel D(1D)!=-1)
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double loc_turtle_x = getTurtleX(ID);

double loc_turtle_y = getTurtleY(ID);

doubl e dx loc_turtle_x-turtle_x;

doubl e dy loc_turtle_y-turtle_y;

doubl e dist = Math.sqrt ((dx*dx)+(dy*dy)); // Euclidean distance -
sqrt of sum of squares

Systemerr.println("mA: proximty: dist = "+dist);

if (dist<rad) return true

el se return fal se;

else return false; // if the other turtle doesn't exist return false
}
/**

* Positions the obstacle where you want it.
*

*/
public void noveCbstacl e(doubl e _x, double _y)
{
obj _x = _x;
obj Ly = _y;
}

/* public bool ean pointingAt Obst acl e()

{
doubl e EPSILON = 0. 001;
doubl e ao = angl eToObstacle() - turtle_angle + Math.PlI/2d
}
*/
/**

* Rotates a set of points (doubles) about an origin a specified nunber
of radians
* @aramx An array of x-values of points
@aramy An array of y-values of points
@aram x_o the x-origin
@aramy_o the y-origin
@aramrot Rotation angle in radians
/
public void rotateDoubl ePoi nt s(doubl e[] x, double[] y, double x_o,
doubl e y_o, double rot)

* 0% ok X *

if(rot !'= 0d)
{

doubl e xt =0;

doubl e yt =0;

double ¢ = Math.cos(rot);

double s = Math.sin(rot);

i f(x.length!=y.Ilength)

Systemout.println("rotatePoints: x and y nust have the name

nunber of el enents");

int npoints = x.length;

for (int count=0;count<npoi nts;count ++)

xt = x[count]; // tenp values for the x and y;
yt = y[count];
xt -= x_o; // nmove the point so it is being rotated around

the origin
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/1 ‘S/sfén%’oﬂi .println("Ad point x= "+x[count]+", y="+y[count]);
x[count] = (c*xt - s*yt) + x_o; // conpute rotation and
correct for origin
y[count] = (s*xt + c*yt) + y_o;
/1 System out. println("New point x= "+x[count]+", y="+y[count]);
}
}
}
/**

* Rotates a set of points (integers) about an origin a specified nunber
of radians

* @aramx An array of x-values of points

* @aramy An array of y-values of points

* @aramx_o the x-origin

* @aramy_o the y-origin

* @aramrot Rotation angle in radians

*/

public void rotatePoints(int[] x, int[] vy, int x_o, int y_o, double
rot)

if(rot !'= 0d)
{

i nt xt=0;

int yt=0;

double ¢ = Math.cos(rot);

double s = Math.sin(rot);

i f(x.length!=y.Ilength)

Systemout.println("rotatePoints: x and y nust have the name

nunber of el enents");

int npoints = x.length;

for (int count=0;count<npoi nts;count ++)

{
xt = x[count]; // tenp values for the x and y;
yt = y[count];

xt -= x_o; // nmove the point so it is being rotated around
the origin

yt -=y_o;
/1 Systemout.println("dd point x= "+x[count]+", y="+y[count]);

x[ count] = (int)Math.round(c*xt - s*yt) + x_o; // conpute
rotation and correct for origin
y[count] = (int)Math.round(s*xt + c*yt) + y_o;

/1 System out. println("New point x= "+x[count]+", y="+y[count]);
}
}
}
}
class turtle
{

public double turtle_x = 0d;

public double turtle_y = 0d;

public double turtle_angle = 0d;
public boolean turtle_pendown = fal se;
protected int unique_IlD;

public double old_x = 0d;
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BHB' { ¢ 88P8|ret Slrgfg_éopg.f = Col or. red;

turtle(int ID) // constructor

{
uni que_I D = | D

public int getlD()
{

return(uni que_I D);

6.2.2.2 TempApplet.java

i mport neuron. *;

i mport java. appl et. *;
i mport java.awt.*;
i mport java.io.*;
i mport graph.*;
* tenpApplet.java - Test applet for the neuron. Neuron. Tenperon cl ass

This is an attenpte to inplenment a Hopfield network.
NOT part of the neuron.* package

Here, we want to see if the neurons will actually update thenselves...

/
/
/
/
/
/  Witten David J. Cavuto

/[ on 11/13/1996

/' Under the auspices of Dr. Sinon Ben-Avi

/ at The Cooper Union for the Advancenent of Science and Art
/

/

/

/

/

/

/

/

Created in partial fulfillment of the requirenents for the
Mast er of El ectrical Engineering degree
at the Al bert Nerkin School of Engineering

Copyright (c) 1996 David J. Cavuto and The Cooper Union
Al'l rights reserved.

/

/** @version 1.6 12/13/1996 */
/** @ut hor David J. Cavuto */

/* Revision history

1.812/16/1996
Changed setupNeural El ement to reflect new constructor in Tenperon

1.712/14/ 1996
Di scovered the problem .. the convert outputs method uses the
di spl ayed out puts,
not the actual ones, so if the display isn't updated fast enough,
t hey are wrong.
Added net Qutput[] array to handle this.

1.612/13/ 1996
started keeping history
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now uses nul ti MobuseAppl et (designed for Tag program, with better

di spl obstacl e can be controlled |ocall y
added weight 10
*/

public class tenpAppl et extends java. appl et. Appl et inplenments Runnabl e
{

String VEIGHT_FI LE_NAME = "wei ghts";

int fileCounter = 0;

i nt nunDat aPoi nt s=0;

i nt numOut put Poi nt s=0;

i nt nunmNeur ons;

int numnputs = 5;

i nt del ay=50;

Panel neuronPanel, ioPanel;

Tenperon[] fbNeuron;

I nput[] i nput Neuron;

Panel [] fbPanel;

Panel buttonPanel ;

TextField[][] weightMatri x;

TextField[] inputArray;

Text Fi el d del ayFi el d;

Label tineField;

But t on cl ockButton, resetButton, updat eButton,

ti meBut t on, randonBut t on, goBut t on, saveBut t on, | oadBut t on;

Label [] outLabel;

bool ean wei ght Updat eFl ag = f al se;

Thread goThread=nul | ;

I mage osi = null;

Graphics osg = null;

doubl e[] net Qut put;

i nt MAX_GRAPH PO NTS = 500;

Graph2D out put Gr aph;

Dat aSet out put Dat a;

Axi s out put Axi s;

Frane out Frame, nouseFrane;
int iw dth=0;

i nt i hei ght=0;

doubl e obj _x=0.5;

doubl e obj _y=0.5;

Checkbox wei ght Updat eBox, graphUpdat eBox;
static int MOVE_MASK = 3; // 0b000000011 nasks out the two LSBs

mul ti MouseAppl et nmouseApp = new nul ti MouseAppl et ();

Dat aQut put St r eam out put Dat aFi | e;

Buf f er edQut put St r eam out put Buf f er;

Fi | eQut put St r eam out put Fi | e;

final int BUFFER_SI ZE = 1024*10;

int FLUSH EVERY; // flush the buffer thru to a file once in a while

public void init()
{

String s = getParameter("numNeurons");
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/] Syst em o(ust -pr |,,nr%d|r](" )s = >>"+s+"<<");

s = "3"; // in case there is no nunNeurons paraneter
numNeurons = (I nteger.valuedX(s)).intValue();

net Qut put = new doubl e[ nunNeur ons] ;

s = getParaneter("flush_every");
/] Systemout.println("s = >>"+s+"<<");
if (s == "null")
s = "500"; // in case there is no numNeurons paraneter
FLUSH EVERY = (I nteger.valueCO (s)).intValue();

s = get Paraneter("obj_x");
/] Systemout.println("s = >>"+s+"<<");
if (s == "null")
s = String.valueOi(obj_x); // in case
obj _x = (Doubl e. val uet (s)). doubl eVal ue();

s = getParaneter("obj_y");
/] Systemout.println("s = >>"+s+"<<");
if (s == "null")
s = String.valueOr(obj_y); // in case
obj _y = (Doubl e. val uet (s)). doubl eVal ue();

/* mal Wth Flle OUtpUt Stuff *********************/

File theFile = checkFil eName("netdata");

Systemout.println("Creating datafile: >>"+theFile.getPath()+"<<");

try{outputFile = new Fil eQut put Strean(theFile);}catch(l CException
e){Systemout.println(e);};

out put Buf fer = new Buf f er edCut put St r eanm( out put Fi | e, BUFFER_SI ZE) ;

out put Dat aFi |l e = new Dat aQut put St rean( out putBuffer); // the is the
one we actually wite to

/* mal Wth Layout Stuff ***************************/

set Layout (new Bor der Layout ());

neur onPanel = new Panel ();

add(" Center", neuronPanel ) ;

neur onPanel . set Layout (new Gri dLayout ( 1, numNeur ons+numnl nputs));

but t onPanel = new Panel ();
add(" Sout h", but t onPanel ) ;
i oPanel = new Panel ();

add("West", i oPanel);
i oPanel . set Layout (new Gri dLayout (3,1));

ti meField = new Label ("0000000000");

but t onPanel . add(ti meFi el d);

cl ockButton = new Button("C ock");

but t onPanel . add( cl ockBut t on);

ti meButton = new Button("Update Tine");

but t onPanel . add(ti meButton);

goButton = new Button("GO");

but t onPanel . add( goBut t on);

del ayFi el d = new TextFi el d("000"+Stri ng. val uet (del ay));
but t onPanel . add( del ayFi el d) ;

wei ght Updat eBox = new Checkbox("Di spl ay Wi ghts?", null,true);
but t onPanel . add(wei ght Updat eBox) ;

gr aphUpdat eBox = new Checkbox("Update G aph?",null,true);
but t onPanel . add( gr aphUpdat eBox) ;
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panel

set up matrix of weights

i nput s

| abel s

inthe gridto sit in.

LESEHRUHERR Fel8raltt (" Reset Inputs®);
updat eButton = new Button("Update Wi ghts");
add("East", updat eButton);

randonButt on = new Button("Random Wei ghts");
i oPanel . add(randonButton);

| oadButton = new Button("Load Weights...");

i oPanel . add( | oadBut t on);

saveButton = new Button("Save Wi ghts");

i oPanel . add(saveButton);

/* Initialize array of Neurons *****xxxkskkdkdkxkkskkkrx |

f bNeuron = new Tenperon[ numNeurons]; // init array

i nput Neur on = new | nput [ num nput s] ;

f bPanel = new Panel [ numNeur ons+num nputs]; // give each Neuron a

wei ght Matri x = new Text Fi el d[ numNeur ons] [ numNeur ons+num nputs]; //

i nput Array = new Text Fi el d[ nunNeur ons+num nputs]; // set up array of
out Label = new Label [ numNeur ons+num nputs]; // set up array of
for(int count=0; count <(nunmNeur ons) ; count ++)

set upNeur al El enent (count) ;
} // layout and initialize each one
for(int count=0; count <(num nputs); count ++)

{
set upl nput El enent ( nunNeur ons+count) ;
} // layout and initialize each one

/* kkkkkkhkkkkk k% POSItIOﬂ a)stacle R R R R I O */
nouseApp. addObst acl e( obj _x, obj _y);
nmouseApp. pd(); // set the pen down so we draw a line...

repaint();

ful | yConnect Neurons();
updat eAl | Neur ons();

out Frane = new Frame("ANN Data Qutput");
out Frane. set Layout (new Bor der Layout ());

[ * *x**x%x Getyp graph */

out put G aph = new Graph2D();

out put G aph. zerocol or = new Col or (0, 255, 0);
out put G aph. border Top = 0;

out put Gr aph. bor der Bott om = 0O;

out put Gr aph. set Dat aBackgr ound( Col or. bl ack);
out Frane. add(" Cent er", out put G aph) ;

out Frane. resi ze( 600, 300);

/* setup dataset */

out put Data = new Dat aSet () ;

out put Dat a. | i necol or = new Col or (255, 0, 0);

out put Dat a. mar ker = 1;

out put Dat a. mar ker col or = new Col or (100, 100, 255);

out put Axi s = out put Graph. creat eAxi s( Axi s. LEFT) ;
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out put Axi s. at t achDat aSet ( out put Dat a) ;

out put G aph. at t achDat aSet (out put Dat a) ;

out put Dat a. yaxi s. maxi mum = (i nt) Mat h. pow( 2, numNeur ons) ;
out put Dat a. yaxi s. mi ni nrum = O;

out Frane. show() ;

out Frane. pack() ;

/* Make the nousey applet in a frame */
nouseFrame = new Frane(" Musey");
nouseApp.init();

nouseApp. start();

nouseFr ame. add(" Cent er ", nouseApp) ;
nouseFr ane. r esi ze( 400, 400) ;

nouseFr ame. show() ;

i ni tQutputs();

}
public void destroy()

/* deal with the file closure and stuff ****xxxkkkkxx)
System out.println("Wote "+out putDataFile.size()+" bytes to data
streant);
Systemout.println("for a total of "+nunQutputPoints+" data
poi nts");
flushAll ();
try

out put Dat aFi | e. cl ose();
out put Buffer.close();
out putFil e.cl ose();

}
catch (1 OException e)

Systemout.println(e);
}

nouseFr ane. di spose();
out Fr ane. di spose();

}
public void flushAll ()
{
Systemout.println("Flushing: up to -- "+nunQutput Poi nts+" data
poi nts");
try

out put Dat aFil e. fl ush();
out put Buffer.flush();
outputFile.flush();
}
catch (1 OException e)
Systemout.println(e);
}
}
protected File checkFil eName(String s, int _count)

File theFile = null;
int count=_count;
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;&BPI 8pRi [ekgrRstgys = true

String fname = new String(s+count+".dat");

try
{

System out. println("Looking for file: >>"+fname+"<<");
theFile = new Fil e(fnane);
fileExists = theFile.exists();
}
catch (Nul | Poi nt er Exception e)
Systemout.println(e);

count ++; // update the nunber for the |oop

}
if (fileCounter == 0)fil eCounter = count-1;
return theFil e;

}
protected File checkFil eName(String s)
{
return checkFil eNane(s, 1);
}

private void setupNeural El enent (i nt index)

f bNeur on[i ndex] = new Tenperon("HardLi nNeg",true); // make a new
Neur on
f bNeuron[index].setGscillateFlag(true); // make it (not) oscillate

fbPanel [i ndex] = new Panel (); // make a new Panel to stick it in
neur onPanel . add(f bPanel [i ndex],index); // add the Panel to the main
| ayout at the correct grid position

/* Here we add all the fun stuff to the panel */
/* namely, the initial input, the output, and all the weights */
f bPanel [i ndex] . set Layout (new Gri dLayout (nunNeur ons+num nput s+2, 1)) ;

/1 First do the input

i nput Array[index] = new TextField(String.val ued (0d));

f bPanel [i ndex] . add(i nput Array[index],0); // add the input to the top
of the panel

/1 do the Qutput next

out Label [i ndex] = new Label ("0", Label . CENTER) ;

f bPanel [i ndex] . add( out Label [i ndex], 1); // add the output Label to
t he next position

/1 now do all the weights;
for(int count=0; count <nuniNeur ons+numnl nputs; count++) // for each of
t he wei ghts

wei ght Mat ri x[i ndex][count] = new TextFiel d(String.valued (0d));
/1 make a new one

f bPanel [ i ndex] . add(wei ght Matri x[i ndex][count], count+2); // and
add it to the panel

}
wei ght Mat ri x[ i ndex] [i ndex] . set Backgr ound( Col or. bl ue) ;

/1
/1 wei ght Mat ri x[ i ndex] [i ndex] . set For egr ound( Col or. whi te);

}
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private void setuplnput El enent (i nt index)

{

i nput Neur on[ i ndex- nunNeurons] = new Input(); // make a new Neuron

fbPanel [i ndex] = new Panel (); // make a new Panel to stick it in

neur onPanel . add(f bPanel [i ndex],index); // add the Panel to the main
| ayout at the correct grid position

/* Here we add all the fun stuff to the panel */
/* namely, the initial input, and the output*/
f bPanel [i ndex] . set Layout (new Gri dLayout (nunNeurons+2,1));

/1 First do the input

i nput Array[index] = new TextField(String.val ue (0d));

f bPanel [i ndex] . add(i nput Array[index],0); // add the input to the top
of the panel

/1 do the Qutput next

out Label [i ndex] = new Label ("0", Label . CENTER)

f bPanel [i ndex] . add(out Label [i ndex], 1); // add the output Label to
t he next position

}

public void fullyConnect Neurons()
for (int outNeuron=0; out Neur on<numiNeur ons; out Neur on++)

for (int inNeuron=0;inNeuron<nunmNeurons; i nNeur on++)

f bNeur on[ out Neur on] . addl nput (f bNeur on[ i nNeur on], 0d) ;
for (int inNeuron=0;inNeuron<num nputs;inNeuron++)

f bNeur on[ out Neur on] . addl nput (i nput Neur on[ i nNeur on], 0d) ;

public void paint(G aphics g)

{
/1l Systemout.println("Paint!");
redr anQut put s();
}

private void redrawQut puts()

/1 for(int count=0; count <(numNeur ons) ; count ++)
/1
out Label [ count]. set Text (String. val ue (f bNeur on[ count] . output()));
for(int count=0; count <(numNeur ons) ; count ++)
out Label [ count] . set Text (String. val ued (net Qut put [ count]));
for(int count=0;count <numl nputs; count ++)

out Label [ count +nunNeur ons] . set Text (St ri ng. val ueO (i nput Neuron[ count] . ou
tIOut}()));

public void updateAl | Neurons()
{
for(int count=0; count <(nunmNeur ons) ; count ++)
f bNeur on[ count].conpute();// make themall reconpute
for(int count=0; count <(nunmNeur ons) ; count ++)
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f bNeur on[ count ] . updat eCQut put () ; /1 make themall update their
out puts
}
public void collectQutputs()
{
i nt count =0;
f or (count =0; count <nunNeur ons; count ++)
net Qut put [ count ] =f bNeur on[ count] . out put () ;
}
public void initCutputs()
{
i nt count =0;
f or (count =0; count <nunNeur ons; count ++)
net Qut put [ count ] =0;
}
public void clockHandl er ()
{
Tenper on. updat eTi me() ;

/1 Systemout.println("Systemtinme is: "+Tenperon.getTinme());
ti meFi el d. set Text (String. val ueO (Tenperon. getTinme()));
collectQutputs(); // stick "emin an array
i f(weightUpdateFlag) // if they need to be updated...

updat eWei ghts(); // update 'em
wei ght UpdateFlag = false; // and don't update 'em next tine
i nput Handl er () ;
updat eAl | Neur ons();
i f (wei ght Updat eBox. get State())
{
repai nt Wei ght s() ;
}
i f (graphUpdat eBox. get State())
{
graphHandl er () ;
/!l Here's the file output stuff
try
outputDataFile.witelnt((int)convertQutputs());
numQut put Poi nt s++;
}
catch (1 OException e)
{
Systemout.println(e);
/1 Systemout. println(">> "+convertQutputs());

i f (numQut put Poi nts % FLUSH _EVERY == 0)
flushAll ();

nouseHandl er () ;
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1 gy pus0
}

public void inputHandl er()
{

nmet hod

/!l we are going to tie the first input to the 'faci nglbstacl e’

i f (nouseApp. faci ngObstacl e()) inputNeuron[0].setQutput(l);
el se i nput Neuron[ 0] . set Qut put (0);

/'l the second to the 'rightHandObstacl e' nethod

i f (nouseApp. ri ght HandCObst acl e()) i nput Neuron[1]. set Qut put(1);
el se i nput Neuron[ 1] . set Qut put (0);

/1 the third to the 'pointingAt' nethod

i f (nouseApp. poi nti ngAt Gbstacl e()) inputNeuron[2].setQutput(l);
el se i nput Neuron[ 2] . set Qut put (0);

/1 and the fourth to the 'closeTo' nethod

i f (nouseApp. cl oseToObst acl e()) inputNeuron[3].setQutput(l);
el se i nput Neuron[ 3] . set Qut put (0);

/1 add a fifth which is opposite of the righthand obstacle

i f (nouseApp. ri ght HandCbst acl e()) i nput Neuron[ 4] . set Qut put (0);
el se i nput Neuron[ 4] . set Qut put (1);

}

public void nmouseHandl er ()

{
int check = (int)convertCQutputs() & MOWE_MASK;

swi t ch( check)

{
case 3: nouseApp.fd(1); break;

case 2: nouseApp.rl(2); break;
case 1: nouseApp.rr(2); break;

}

public void graphHandl er ()

{
doubl e dat a[] =new doubl e[ 2] ;

Graphics g;

/1 add the new data points to the graph...
data[ 1] = (doubl e)convert Qut puts();

dat a[ 0] = nunDat aPoi nt s++;

i f (nunDat aPoi nts >= MAX_GRAPH_PQO NTS)

{
out put Dat a. del et e(0, 0);
/1 Systemout.println("Deleting a point fromthe graph...");

try
{ out put Dat a. append(dat a, 1) ;
z:at ch (Exception e)
System out. println("clockHandl er: error appending data");

g = out put Graph. get Graphics();
if( osi == null || iwidth != outputGaph.size().w dth
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|| iheight != outputGaph.size().height

iwi dt h = out put Graph. si ze().wi dt h;
i hei ght = out put Graph. si ze() . hei ght;
osi = out put Graph. creat el nage(iwi dth, i hei ght);
osg = osi.get Gaphics();
}

0sg. set Col or (out Frane. get Background());
osg.fill Rect(0,0,iw dth,iheight);
0sg. set Col or(g.getCol or());
osg. clipRect(0,0,iw dth,iheight);
out put G aph. updat e(0sg) ;
g. drawi mage( osi, 0, 0, out put Graph) ;
out Frane. repaint();
}
public void goHandl er ()
if (goThread==null)
del ay = Integer. parselnt(del ayFi el d. get Text());
/] System out. println("got here");

goThread = new Thread(this);
goThread. start();

}
el se
goThread = null;
}
public void run()
{
long tine = SystemcurrentTimeM | lis();
whil e (goThread! =nul I)
{
try
o .
time += delay; // mliseconds between cl ocks
Thread. sl eep(Mat h. max(0,tinme - SystemcurrentTimneMIlis()));
}
catch (InterruptedException e){};
cl ockHandl er () ;
}
}
public bool ean action(Event e, Object 0)
{

if (e.target instanceof Button) // the Cock button was pushed so
updat e outputs...
i f(o=="0 ock")
{
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PLogkhepALer O
else if (o=="Reset |nputs")
for(int count=0; count <(nunmNeur ons) ; count ++)
f bNeur on[ count ] . set Cut put ( Doubl e. val ueO (i nput Array[count].getText()).d
oubl eVal ue());

for(int count=0;count <numl nputs; count ++)

i nput Neur on[ count] . set Qut put ( Doubl e. val ueX (i nput Array[ numNeur ons+count
].get Text ()).doubl eval ue());
repaint();
return true;

}
el se if(o=="Update Wei ghts")
wei ght Updat eFl ag=t r ue;
repaint();
return true;
}
el se i f(o0o=="Random Weéi ghts")
{
random zeWei ght s();
wei ght Updat eFl ag = true;
el se if(o=="Update Tine")
{
Tenper on. updat eTi me() ;
/1 Systemout.println("Systemtinme is: "+Tenperon.getTinme());
ti meFi el d. set Text (String. val ueO (Tenperon. getTinme()));
}
else if(o=="G0O")

goHandl er () ;
flushAll ();

}
el se if(o=="Load Weights...")
| oadHandl er () ;

}
el se i f(o=="Save Wi ghts")

{
saveHandl er () ;
}
else if (e.target instanceof Checkbox)

{
return fal se;
/1 do not hing
el se // soneone updated a wei ght or sonething

wei ght UpdateFlag = true; // they now need to be updated...
return true;

return fal se;

}
private void | oadHandl er ()
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{ Dat al nput Stream i nst = new Dat al nput St rean( System i n);
System out. println("Which weight data table? ");
String s = null;
try{s = inst.readLine();}catch(lOException e){}
File fn = null;
try{fn = new Fil e(WEl GHT_FI LE_NAME+s+".dat");}
cat ch(Nul | Poi nt er Exception e){Systemerr.println("loadHandl er:
"+e);}
get Wi ght s(fn);
}

private void saveHandl er ()

dunpWei ght s(checkFi | eName( VWEI GHT_FI LE_NAME, fi | eCounter));
}

public void updat eWei ght s()

{
System out . println("Updating weights");
for (int outNeuron=0; out Neur on<numiNeur ons; out Neur on++)

for (int inNeuron=0;inNeuron<numNeur ons+num nput s; i nNeur on++)

f bNeur on[ out Neur on] . set Wei ght At (i nNeur on, Doubl e. val ueO (wei ght Mat ri x[ ou
t Neuron] [ i nNeur on] . get Text () ). doubl eVal ue());

}

public void random zeWei ght s()
{

System out . printl n("Randonm zi ng wei ghts");
for (int outNeuron=0; out Neur on<numiNeur ons; out Neur on++)
for (int inNeuron=0;inNeuron<numNeur ons+num nput s; i nNeur on++)
\/\gi ght Mat ri x[ out Neur on] [ i nNeur on] . set Text (St ri ng. val ueOf (2d* Mat h. random
0 % ));
public void dunpWeights(File fn)
{ i f (wei ght Updat eFl ag) updat eWei ghts();

FileQutputStreamfil eFil e;
Dat aQut put St r eam wei ght Fi | e;

top: {
try
fileFile=new Fil eQut put Strean(fn);
z:atch (1 OException e)
Systemerr.println("Error opening data file: "+fn+" for wite:

"+e);
break top;

}
wei ghtFil e = new DataQut put Strean(fileFile);

i nt count =0;
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for (int outNeuron=0; out Neur on<numiNeur ons; out Neur on++)
for (int inNeuron=0;inNeuron<numNeur ons+num nput s; i nNeur on++)

doubl e current = fbNeuron[out Neuron]. get Wi ght At (i nNeur on) ;
try

wei ghtFil e. witeDoubl e(current);
count ++;

}

catch(1 OException e)

{
Systemerr.println("Error dunping weights!: "+e);
break top;

try{
wei ght Fi | e. fl ush(); wei ghtFi |l e. cl ose();
fileFile.flush();fileFile.close();

}
catch(1 OException e){}
Systemerr.println("Dunped "+count+" weights to file: "+fn);
}
}

public void repai nt Wi ghts()
{
doubl e epsil on=0. 00001;
doubl e previ ous=0;
doubl e current =0;
/1 System out . println("Repainting wei ghts");
for (int outNeuron=0; out Neur on<numiNeur ons; out Neur on++)

for (int inNeuron=0;inNeuron<numNeur ons+num nput s; i nNeur on++)

{
previous =
Doubl e. val ueO (wei ght Mat ri x[ out Neur on] [ i nNeur on] . get Text () ) . doubl eVal ue() ;
current = fbNeuron[ out Neuron]. get Wi ght At (i nNeur on) ;

wei ght Mat ri x[ out Neuron] [i nNeuron] . set Text (String.val ueX (current));
i f (previous>current+epsilon)

wei ght Mat ri x[ out Neuron] [ i nNeur on] . set Backgr ound( Col or. green);
el se if (previous<current-epsilon)

wei ght Mat ri x[ out Neur on] [ i nNeur on] . set Backgr ound( Col or. bl ue);
el se

wei ght Mat ri x[ out Neur on] [ i nNeur on] . set Backgr ound( Col or. white);

}

public void getWights(File fn)
{
FilelnputStreamfil eFil e;
Dat al nput Stream wei ght Fi | e;
doubl e current =0;
top: {
try
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{ fileFile=new Fil el nput Strean(fn);
}
catch (1 OException e)
Systemerr.println("Error opening data file: "+fn+" for wite:
"+e);
break top;
}
wei ghtFile = new Datal nputStrean(fileFile);
i nt count =0;
for (int outNeuron=0; out Neur on<numiNeur ons; out Neur on++)
for (int inNeuron=0;inNeuron<numNeur ons+num nput s; i nNeur on++)
{
try
{
current = wei ghtFile.readDoubl e();
Systemerr.println("Read: "+current);
count ++;
}
catch(1 OException e)
Systemerr.println("Error readi ng weights!: "+e);
break top;
}
f bNeur on[ out Neur on] . set Wi ght At (i nNeuron, current);
}
try{
wei ghtFile.close();
fileFile.close();
}
catch(1 OException e){}
Systemerr.println("Read "+count+" weights fromfile: "+fn);
}
repai nt Wei ght s() ;
}
public long convertQutputs() // converts all the outputs frombinary to
deci nmal
{ /! note: works only as long as all the outputs are binary
| ong tenp=0;
for(int count=0; count <nunNeur ons; count ++)
tenp+= (| ong) Mat h. pow( 2, count) * (int)netCQutput[count]; //
updat ed
return tenp;
}
A }
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