

© 2001 by CRC Press LLC

Engineering

Analysis

Interactive Methods and Programs
with FORTRAN, QuickBASIC, MATLAB,
and Mathematica

Y. C. Pao

Boca Raton London New York Washington, D.C.
CRC Press

© 2001 by CRC Press LLC

Acquiring Editor:

Cindy Renee Carelli

Project Editor:

Albert W. Starkweather, Jr.

Cover design:

Dawn Boyd

Library of Congress Cataloging-in-Publication Data

Catalog record is available from the Library of Congress

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are listed.
Reasonable efforts have been made to publish reliable data and information, but the author and the
publisher cannot assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any information
storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion,
for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press
LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 Corporate Blvd., N.W., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trademarks, and are
only used for identification and explanation, without intent to infringe.

Mathematica

®

 is developed by Wolfram Research, Inc., Champaign, IL.

Windows

®

 is developed by Microsoft Corp., Redmond, WA.

© 1999 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-2016-X
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0
Printed on acid-free paper

© 2001 by CRC Press LLC

Files Available from CRC Press

FORTRAN

,

QuickBASIC

,

MATLAB

, and Mathematic files, which contain the
source and executable programs associated with this book are available from CRC
Press’ website — http://www.crcpress.com.

Before downloading, prepare two 3.5-inch, high-density disks — one for the
files and one for a backup. Also create a temporary directory named <interactive>
on your hard drive, which will expedite downloading. To download these files, type:

 http://www.crcpress.com/us/ElectronicProducts/downandup.asp.

 When prompted, enter

2016

 under name and

crcpress

 under password. Then store the files in the
<interactive> folder. If you encounter a problem, call 1-800-CRC-PRES (272-7737).
The dowloaded files may be copied to a 3.5-inch disk. The temporary <interactive>
folder then may be deleted. Don’t forget to make a backup copy of your 3.5-inch disk.

There are four subdirectories

<FORTRAN>

,

<QB>

,

<mFiles>

, and

<Math-
tica>

 which contain the

FORTRAN

 source and executable programs,

QuickBASIC

source and executable programs,

m

 files of

MATLAB

, and input and output state-
ments of for the

Mathematica

 operations depicted in this textbook, respectively:

1.

<FORTRAN>

 has the following files:

EDITFOR.EXE is provided for re-editing the *.FOR source programs such as
Bairstow.FOR, CubeSpln.FOR, etc. (refer to the

FORTRAN

 programs index) to
include supplementary subprograms describing the problem which need to be solved
interactively. To re-edit, insert the 3.5-inch disk into Drive A and when the a:\ prompt
shows, type cd fortran to switch to the

<FORTRAN>

 subdirectory. For example,
to solve a polynomial by the Bairstow’s method one needs to define the polynomial,
for which the roots are to be computed. To reedit Bairstow.FOR, the user enters
a:\editfor Bairstow.for to add new

FORTRAN

 statements or change them. Notice
that both upper and lower case characters are acceptable. While creating a new
version of Bairstow.FOR, the old version will be saved in Bairstow.BAK.

To create an object file, FOR1 filename such as Bairstow.FOR and FOR2 need
to be implemented. A BAISTOW.OBJ will then be generated. For linking with the

FORTRAN

 library functions,

FORTRAN

.LIB, one enters, for example, LINK
Bairstow to create an executable file Bairstow.EXE. To

run

, the user simply types
Bairstow after the prompt A:\ and then answers questions interactively.

Bairstow.FOR CharacEquationFOR CubeSpln.FOR DiffTabl.FOR

EditFOR.EXE EigenVec.FOR EigenvIt.FOR ExactFit.FOR

FindRoot.FOR FOR1.EXE FOR2.EXE FORTRAN.LIB

Gauss.FOR GauJor.FOR LagrangI.FOR LeastSq1.FOR

LeastSqG.FOR LINK.EXE MatxInvD.FOR NewRaphG.FOR

NuIntgra.FOR OdeBvpFD.FOR OdeBvpRK.FOR ParabPDE.FOR

Relaxatn.FOR RungeKut.FOR Volume.FOR WavePDE.FOR

http://www.crcpress.com
http://www.crcpress.com/us/ElectronicProducts/downandup.asp

© 2001 by CRC Press LLC

2.

<QuickBASIC>

 has the following files:

To commence

QuickBASIC

, when a:\ is prompted on screen, the user enters
QB. QB.EXE and BRUN40.EXE therefore are included in

<QB>

. The program

Select

 enables user to select the available

QuickBASIC

 program in this textbook.
After user responds with C:\Select, the screen shows a menu as shown in Figure 1
and user then follow the screen help-messages to run a desired program.

3.

<mFiles>

 is a subdirectory associated with

MATLAB

 and has the following
files:

When the 3.5-inch disk containing all of these

m

 files is in Drive A, any of these
files can be accessed by enclosing the filename inside a pair of parentheses as
illustrated in

Section 3.2

 where F.m and FP.m are required for FindRoot.m and in

Section 5.2

 where an integrand function

integrnd.m

 is defined for numerical inte-
gration. If all files have been added into

MATLAB

 library m files, then no reference
to the Drive A is necessary and the pair of parentheses can also be dropped.

4.

<Mathtica>

 is a subdirectory associated with

Mathematica

 and has the files of:

Select.BAS Select.EXE

Bairstow.EXE BRUN40.EXE CharacEq.EXE CubeSpln.EXE

EigenStb.EXE EigenVec.EXE EigenVib.EXE EigenvIt.EXE

ExactFit.EXE FindRoot.EXE Gauss.EXE LagrangI.EXE

LeastSq1.EXE LeastSqG.EXE MatxInvD.EXE NuIntgra.EXE

OdeBvpFD.EXE OdeBvpRK.EXE ParabPDE.EXE QB.EXE

Relaxatn.EXE RungeKut.EXE Volume.EXE

Bairstow.QB CharacEq.QB CubeSpln.QB DiffTabl.QB

EigenStb.QB EigenVec.QB EigenVib.QB EigenvIt.QB

ExactFit.QB FindRoot.QB GauJor.QB Gauss.QB

LagrangI.QB LeastSq1.QB LeastSqG.QB MatxAlgb.QB

MatxMtpy.QB NewRaphG.QB NuIntgra.QB OdeBvpFD.QB

OdeBvpRK.QB ParabPDE.QB Relaxatn.QB RungeKut.QB

Volume.QB WavePDE.QB

BVPF.m DerivatF.m DiffTabl.m EigenvIt.m

F.m FindRoot.m FP.m Functns.m

FuncZ.m FuncZnew.m FunF.m GauJor.m

integrnd.m LagrangI.m LeastSqG.m NewRaphG.m

ParabPDE.m Relaxatn.m Volume.m Warping.m

WavePDE.m

Bairstow.MTK CubeSpln.MTK DiffTabl.MTK EigenVec.MTK

ExactFit.MTK FindRoot.MTK FUNCTNS.MTK EigenvIt.MTK

Gauss.MTK GauJor.MTK LagrangI.MTK LeastSq1.MTK

LeastSqG.MTK MatxAlgb.MTK NewRaphG.MTK NuIntgra.MTK

OdeBvpFD.MTK OdeBvpRK.MTK ParabPDE.MTK Rexalatn.MTK

RungeKut.MTK Volume.MTK WavePDE.MTK

© 2001 by CRC Press LLC

Any of the above programs can be executed by

Mathematica

 via mouse oper-
ation. First, by clicking the

File

 option and when the pull-down menu appears, select

Open

 and then enter the filename such as a:\Mathtica\MatxAlgb.MTK (assuming
the 3.5-inch disk containing

<Mathtica>

 is in Drive A) and press the

Enter

 key.
When all lines of this file is displayed on screen, move cursor to any input line such
as

In[1]

: A = {{1,2},{3,4}}; MatrixForm[A] and hit the

Enter

 key.

Mathematica

will respond by repeating those lines for

Out[1]

. Hence, user can reproduce all of
the output lines by sequentially running the input lines [1] through [9]. However, if
user first run In[1] and then In[3],

Mathematica

 cannot perform the addition of [A]
because [B] is not defined. If after having run In[1], user selects In[5], or, In[6],

Mathematica

 then has no problem of giving out results.

FIGURE 1.

The Select screen.

© 2001 by CRC Press LLC

Dedication

This book is dedicated to Prof. E. J. Marmo,
who offered a congenial work-environment for the author

to grow in the computer-aided engineering field.

© 2001 by CRC Press LLC

Preface and Acknowledgments

Writing textbooks on topics in the field of

Computer Aided Engineering

 (CAE)
indeed has been a very satisfying experience. First, I had the pleasure of being a
coauthor with Prof. Thomas C. Smith of the book

Introduction to Digital Computer
Plotting

 by Gordon & Breach in 1973. The book

Elements of Computer-Aided
Design and Manufacturing, CAD/CAM

, was published in 1982 by John Wiley &
Sons. The book

A First Course in Finite Element Analysis

 published by Allyn &
Bacon followed in 1986, and

Engineering Drafting and Solid Modeling with Silver-
Screen,

 published by CRC Press, appeared in 1993.
Having taught the subjects of computer methods for engineering analysis since

1966, I finally have the courage to organize this textbook out of a large volume of
classroom notes collected over the past 31 years.

The rapid growth of computer technology is difficult for any one to keep pace,
and to make revision of textbooks in the CAE field. However, the computational
methods developed by the pioneers, such as Euler, Gauss, Lagrange, Newton, and
Runge, continue to serve us incredibly effective. These computational algorithms
remain classic, only are now executed with modern computer technology.

As far as the programming languages are concerned,

FORTRAN

 has been
dominating the scientific fields for many decades.

BASIC

 considered by many to
be too plain and cumbersome while

C

 is considered by others to be too sophisticated;
both, however, are gaining popularity and increasingly replacing

FORTRAN

 in the
computational community. This is particularly true when

QuickBASIC

 was intro-
duced by Microsoft.

MATLAB

 and

Mathematica

 developed by the MathWorks, Inc. and Wolfram
Research, Inc., respectively both contain a vast collection of files (similar to

FOR-
TRAN

’s library functions) which can perform the often-encountered computational
problems. For implementation, the

MATLAB

 and

Mathematica

 instructions to be
interactively entered through keyboard are extremely simple. And, it also provides
very easy-to-use graphic output. When students find it too easy to use, they often
become uninterested in learning what are the methods involved. This text is prepared
with

FORTRAN

,

QuickBASIC

,

MATLAB

 and

Mathematica

, and more impor-
tantly gives the algorithms involved in the methods. Ample number of sample
problems are solved to demonstrate how the developed programs should be inter-
actively applied. Furthermore, the development of the user-generated supplementary
files is emphasized so that more supporting subprograms can be added to the

MATLAB

 m-files and

Mathematica

 toolkits. It is a text for self-study as well as
for the need of general references.

Numerous friends, colleagues, and students have assisted in collecting the materials
assembled herein, and they have made a great number of constructive suggestions for
the betterment of this work. To them, I am most grateful. Especially, I would like to

© 2001 by CRC Press LLC

thank my long-time friends Dr. H. C. Wang, formerly with the IBM Thomas Watson
Research Laboratory and now with the Industrial Research Institutes in Hsingchu,
Taiwan; Dr. Erik L. Ritman of the Mayo Clinic in Rochester, MN, and Leon Hill
of the Boeing Company in Seattle, WA, for their help and encouragement throughout
my career in the CAE field. Profs. R. T. DeLorm, L. Kersten, C. W. Martin, R. N.
McDougal, G. M. Smith, and E. J. Marmo had assisted in acquiring equipment and
research funds which made my development in the CAE field possible, I extend my
most sincere gratitude to these colleagues at the University of Nebraska–Lincoln.
For providing constructive inputs to my published works, I should give credits to
Prof. Gary L. Kinzel of the Ohio State University, Prof. Donald R. Riley of the
University of Minnesota, Dr. L. C. Chang of the General Motors’ EDS Division, Dr.
M. Maheshiwari and Mr. Steve Zitek of the Brunswick Corp., my former graduate
assistants J. Nikkola, T. A. Huang, K. A. Peterson, Dr. W. T. Kao, Dr. David S. S.
Shy, C. M. Lin, R. M. Sedlacek, L. Shi, J. D. Wilson, Dr. A. J. Wang, Dave Breiner,
Q. W. Dong, and Michael Newman, and former students Jeff D. Geiger, Tim Car-
rizales, Krishna Pendyala, S. Ravikoti, and Mark Smith. I should also express my
appreciation to the readers of my other four textbooks mentioned above who have
frequently contacted me and provided input regarding various topics that they would
like to be considered as connected to the field of CAE and numerical problems that
they would like to be solved by application of computer. Such input has proven to
be invaluable to me in preparation of this text. CRC Press has been a delightful
partner in publishing my previous book and again this book. The completion of this
book would not be possible without the diligent effort and superb coordination of
Cindy Renee Carelli, Suzanne Lassandro, and Albert Starkweather, I wish to express
my deepest appreciation to them and to the other CRC editorial members. Last but
not least, I thank my wife, Rosaline, for her patience and encouragement.

Y. C. Pao

© 2001 by CRC Press LLC

Contents

1 Matrix Algebra and Solution of Matrix Equations

1.1 Introduction
1.2 Manipulation of Matrices
1.3 Solution of Matrix Equation
1.4 Program Gauss — Gaussian Elimination Method
1.5 Matrix Inversion, Determinant, and Program MatxInvD
1.6 Problems
1.7 Reference

2 Exact, Least-Squares, and Spline Curve-Fits

2.1 Introduction
2.2 Exact Curve Fit
2.3 Program LeastSq1 — Linear Least-Squares Curve-Fit
2.4 Program LeastSqG — Generalized Least-Squares Curve-Fit
2.5 Program CubeSpln — Curve Fitting with Cubic Spline
2.6 Problems
2.7 Reference

3 Roots of Polynomial and Transcendental Equations

3.1 Introduction
3.2 Iterative Methods and Program Roots
3.3 Program NewRaphG — Generalized Newton-Raphson

Iterative Method
3.4 Program Bairstow — Bairstow Method for Finding

Polynomial Roots
3.5 Problems
3.6 References

4 Finite Differences, Interpolation, and Numerical Differentiation

4.1 Introduction
4.2 Finite Differences and Program DiffTabl — Constructing

Difference Table
4.3 Program LagrangI — Applications of Lagrangian

Interpolation Formula
4.4 Problems
4.5. Reference

5 Numerical Integration and Program Volume

5.1 Introduction
5.2 Program NuIntGra — Numerical Integration by Application of the

Trapezoidal and Simpson Rules

© 2001 by CRC Press LLC

5.3 Program Volume — Numerical Solution of Double Integral
5.4 Problems
5.5 References

6 Ordinary Differential Equations — Initial and Boundary
Value Problems

6.1 Introduction
6.2 Program RungeKut — Application of Runge-Kutta Method

for Solving InitialValue Problems
6.3 Program OdeBvpRK — Application of Runge-Kutta Method

for Solving Boundary Value Problems
6.4 Program OdeBvpFD — Application of Finite-Difference Method

for Solving Boundary-Value Problems
6.5 Problems
6.6 References

7 Eigenvalue and Eigenvector Problems

7.1 Introduction
7.2 Programs EigenODE.Stb and EigenODE.Vib — for Solving

Stability and Vibration Problems
7.3 Program CharacEq — Derivation of Characteristic Equation

of a Specified Square Matrix
7.4 Program EigenVec — Solving Eigenvector by Gaussian

Elimination Method
7.5 Program EigenvIt — Iterative Solution of Eigenvalue

and Eigenvector
7.6 Problems
7.7 References

8 Partial Differential Equations

8.1 Introduction
8.2 Program ParabPDE — Numerical Solution of Parabolic Partial

Differential Equations
8.3 Program Relaxatn — Solving Elliptical Partial Differential

Equations by Relaxation Method
8.4 Program WavePDE — Numerical Solution of Wave Problems

Governed by Hyperbolic Partial Differential Equations
8.5 Problems
8.6 References

1

© 2001 by CRC Press LLC

Matrix Algebra
and Solution
of Matrix Equations

1.1 INTRODUCTION

Computers are best suited for repetitive calculations and for organizing data into
specialized forms. In this chapter, we review the

matrix

 and

vector

 notation and
their manipulations and applications. Vector is a one-dimensional array of numbers
and/or characters arranged as a single column. The number of rows is called the

order

 of that vector. Matrix is an extension of vector when a set of numbers and/or
characters are arranged in rectangular form. If it has M rows and N column, this
matrix then is said to be of order M by N. When M = N, then we say this

square

matrix is of order N (or M). It is obvious that vector is a special case of matrix when
there is only one column. Consequently, a vector is referred to as a column matrix
as opposed to the row matrix which has only one row. Braces are conventionally
used to indicate a vector such as {V} and brackets are for a matrix such as [M].

In writing a computer program, DIMENSION or DIM statements are necessary
to declare that a certain variable is a vector or a matrix. Such statements instruct
the computer to assign multiple memory spaces for keeping the values of that vector
or matrix. When we deal with a large number of different entities in a group, it is
better to arrange these entities in vector or matrix form and refer to a particular
entity by specifying where it is located in that group by pointing to the row (and
column) number(s). Such as in the case of having 100 numbers represented by the
variable names A, B, …, or by A(1) through A(100), the former requires 100 different
characters or combinations of characters and the latter certainly has the advantage
of having only one name. The A(1) through A(100) arrangement is to adopt a vector;
these numbers can also be arranged in a matrix of 10 rows and 10 columns, or 20
rows and five columns depending on the characteristics of these numbers. In the
cases of collecting the engineering data from tests of 20 samples during five different
days, then arranging these 100 data into a matrix of 20 rows and five columns will
be better than of 10 rows and 10 columns because each column contains the data
collected during a particular day.

In the ensuing sections, we shall introduce more definitions related to vector
and matrix such as transpose, inverse, and determinant, and discuss their manipula-
tions such as addition, subtraction, and multiplication, leading to the organizing of
systems of linear algebraic equations into matrix equations and to the methods of
finding their solutions, specifically the Gaussian Elimination method. An apparent
application of the matrix equation is the transformation of the coordinate axes by a

© 2001 by CRC Press LLC

rotation about any one of the three axes. It leads to the derivation of the three basic
transformation matrices and will be elaborated in detail.

Since the interactive operations of modern personal computers are emphasized
in this textbook, how a simple three-dimensional brick can be displayed will be
discussed. As an extended application of the display monitor, the transformation of
coordinate axes will be applied to demonstrate how animation can be designed to
simulate the continuous rotation of the three-dimensional brick. In fact, any three-
dimensional object could be selected and its motion animated on a display screen.

Programming languages,

FORTRAN

,

QuickBASIC

,

MATLAB

, and

Mathe-
matica

 are to be initiated in this chapter and continuously expanded into higher
levels of sophistication in the later chapters to guide the readers into building a
collection of their own programs while learning the computational methods for
solving engineering problems.

1.2 MANIPULATION OF MATRICES

Two matrices [A] and [B] can be added or subtracted if they are of same order, say
M by N which means both having M rows and N columns. If the sum and difference
matrices are denoted as [S] and [D], respectively, and they are related to [A] and
[B] by the formulas [S] = [A] + [B] and [D] = [A]-[B], and if we denote the elements
in [A], [B], [D], and [S] as a

ij

, b

ij

, d

ij

, and s

ij

 for i = 1 to M and j = 1 to N, respectively,
then the elements in [S] and [D] are to be calculated with the equations:

(1)

and

(2)

Equations 1 and 2 indicate that the element in the ith row and jth column of [S]
is the sum of the elements at the same location in [A] and [B], and the one in [D]
is to be calculated by subtracting the one in [B] from that in [A] at the same location.
To obtain all elements in the sum matrix [S] and the difference matrix [D], the index
i runs from 1 to M and the index j runs from 1 to N.

In the case of

vector

 addition and subtraction, only one column is involved (N =
1). As an example of addition and subtraction of two vectors, consider the two
vectors in a two-dimensional space as shown in Figure 1, one vector {V

1

} is directed
from the origin of the x-y coordinate axes, point O, to the point 1 on the x-axis
which has coordinates (x

1

,y

1

) = (4,0) and the other vector {V

2

} is directed from the
origin O to the point 2 on the y-axis which has coordinates (x

2

,y

2

) = (0,3). One may
want to find the resultant of {R} = {V

1

} + {V

2

} which is the vector directed from
the origin to the point 3 whose coordinates are (x

3

,y

3

) = (4,3), or, one may want to
find the difference vector {D} = {V

1

} – {V

2

} which is the vector directed from the
origin O to the point 4 whose coordinates are (x

4

,y

4

) = (4,–3). In fact, the vector
{D} can be obtained by adding {V

1

} to the negative image of {V

2

}, namely {V

2–

}
which is a vector directed from the origin O to the point 5 whose coordinates are
(x

5

,y

5

). Mathematically, based on Equations 1 and 2, we can have:

s a bij ij ij= +

d a bij ij ij= −

© 2001 by CRC Press LLC

and

When Equation 1 is applied to two arbitrary two-dimensional vectors which
unlike {V

1

}, {V

2

}, and {V

2–

} but are not on either one of the coordinate axes, such
as {D} and {E} in Figure 1, we then have the sum vector {F} = {D} + {E} which
has components of 1 and –2 units along the x- and y-directions, respectively. Notice
that O467 forms a parallelogram in Figure 1 and the two vectors {D} and {E} are
the two adjacent sides of the parallelogram at O. To find the sum vector {F} of {D}
and {E} graphically, we simply draw a diagonal line from O to the opposite vertex
of the parallelogram — this is the well-known

Law of Parallelogram

.
It should be evident that to write out a vector which has a large number of rows

will take up a lot of space. If this vector can be rotated to become from one column
to one row, space saving would then be possible. This process is called transposition
as we will be leading to it by first introducing the length of a vector.

For the calculation of the

length

 of a two-dimensional or three-dimensional vector,
such as {V

1

} and {V

2

} in Figure 1, it would be a simple matter because they are
oriented along the directions of the coordinate axes. But for the vectors such as {R}

FIGURE 1.

Two vectors in a two-dimensional space.

R V V{ } = { } + { } = 





+ 





= 





1 2

4

0

0

3

4

3

D V V{ } = { } − { } = 





− 





=
−







1 2

4

0

0

3

4

3

© 2001 by CRC Press LLC

and {D} shown in Figure 1, the calculation of their lengths would need to know the

components

 of these vectors in the coordinate axes and then apply the

Pythagorean
theorem

. Since the vector {R} has components equal to r

x

 = 4 and r

y

 = 3 units along
the x- and y-axis, respectively, its length, here denoted with the symbol

� �

, is:

(3)

To facilitate the calculation of the length of a generalized vector {V} which has
N components, denoted as v

1

 through v

N

, its length is to be calculated with the
following formula obtained from extending Equation 3 from two-dimensions to N-
dimensions:

(4)

For example, a three-dimensional vector has components v

1

 = v

x

 = 4, v

2

 = v

y

 =
3, and v

3

 = v

z

 = 12, then the length of this vector is

�

{V}

�

 = [4

2

 + 3

2

 + 12

2

]

0.5

 = 13.
We shall next show that Equation 4 can also be derived through the introduction of
the multiplication rule and transposition of matrices.

1.2 MULTIPLICATION OF MATRICES

A matrix [A] of order L (rows) by M (columns) and a matrix [B] of order M
by N can be multiplied in the order of [A][B] to produce a new matrix [P] of order
L by N. [A][B] is said as [A]

post-multiplied

 by [B], or, [B]

pre-multiplied

 by [A].
The elements in [P] denoted as p

ij

 for i = 1 to N and j = 1 to M are to be calculated
by the formula:

(5)

Equation 5 indicates that the value of the element p

ij

 in the ith row and jth column
of the product matrix [P] is to be calculated by multiplying the elements in the ith
row of the matrix [A] by the corresponding elements in the jth column of the matrix
[B]. It is therefore evident that the number of elements in the ith row of [A] should
be equal to the number of elements in the jth column of [B]. In other words, to
apply Equation 5 for producing a product matrix [P] by multiplying a matrix [A]
on the right by a matrix [B] (or, to say multiplying a matrix [B] on the left by a
matrix [A]), the number of columns of [A] should be equal to the number of row
of [B]. A matrix [A] of order L by M can therefore be post-multiplied by a matrix
[B] of order M by N; but [A] cannot be pre-multiplied by [B] unless L is equal to N!

As a numerical example, consider the case of a square, 3

×

 3 matrix post-
multiplied by a rectangular matrix of order 3 by 2. Since L = 3, M = 3, and N = 2,
the product matrix is thus of order 3 by 2.

R r rx y{ } = +[] = +[] =2 2
0 5

2 2 0 5
4 3 5

. .

V v v vN{ } = + +…+[]1
2

2
2 2 0 5.

p a bij ik kj
k

M
=

=∑ 1

© 2001 by CRC Press LLC

More exercises are given in the Problems listed at the end of this chapter for
the readers to practice on the matrix multiplications based on Equation 5.

It is of interest to note that the square of the length of a vector {V} which has
N components as defined in Equation 4,

�

{V}

�

2

, can be obtained by application of
Equation 5 to {V} and its transpose denoted as {V}

T

 which is a row matrix of order
1 by N (one row and N columns). That is:

(6)

For a L-by-M matrix having elements e

ij

 where the row index i ranges from 1
to L and the column index j ranges from 1 to M, the transpose of this matrix when
its elements are designated as t

rc

 will have a value equal to e

cr

 where the row index
r ranges from 1 to M and the column index c ranges from 1 to M because this
transpose matrix is of order M by L. As a numerical example, here is a pair of a
3

×

 2 matrix [G] and its 2

×

 3 transpose [H]:

If the elements of [G] and [H] are designated respectively as g

ij

 and h

ij

, then
h

ij

 = g

ji

. For example, from above, we observe that h

12

 = g

21

 = 5, h

23

 = g

32

 = –1, and
so on. There will be more examples of applications of Equations 5 and 6 in the
ensuing sections and chapters.

Having introduced the transpose of a matrix, we can now conveniently revisit
the addition of {D} and {E} in Figure 1 in algebraic form as {F} = {D} + {E} =
[4 –3]

T

 + [–3 1]

T

 = [4+(–3) –3+1]

T

 = [1 –2]

T

. The resulting sum vector is indeed
correct as it is graphically verified in Figure 1. The saving of space by use of
transposes of vectors (row matrices) is not evident in this case because all vectors
are two-dimensional; imagine if the vectors are of much higher order.

Another noteworthy application of matrix multiplication and transposition is to
reduce a system of linear algebraic equations into a simple, (or, should we say a
single)

matrix equation

. For example, if we have three unknowns x, y, and z which
are to be solved from the following three linear algebraic equations:

1 2 3

4 5 6

7 8 9

6 3

5 2

4 1

1 6 2 5 3 4

4 6 5 5 6 4

7 6 8 5 9 4

1 3 2 2 3 1

4 3 5 2 6 1

7

















−
−
−

















=
() + () + ()
() + () + ()
() + () + ()

−() + −() + −()
−() + −() + −()

−−() + −() + −()

















=
+ + − − −
+ + − − −
+ + − − −

















=
−
−
−

















3 8 2 9 1

6 10 12 3 4 3

24 25 24 12 10 5

42 40 32 21 16 9

28 10

73 27

114 46

V V V v v vT{ } = { } { } = + +…+2

1
1

2
2

3
2

G H G T[] =
−
−
−

















[] = [] =
− − −





× ×3 2 2 3

6 3

5 2

4 1

6 5 4

3 2 1
 and

© 2001 by CRC Press LLC

(7)

Let us introduce two vectors, {V} and {R}, which contain the unknown x, y,
and z, and the right-hand-side constants in the above three equations, respectively.
That is:

(8)

Then, making use of the multiplication rule of matrices, Equation 5, the system
of linear algebraic equations, 7, now can be written simply as:

(9)

where the

coefficient

 matrix [C] formed by listing the coefficients of x, y, and z in
first equation in the first row and second equation in the second row and so on. That is,

There will be more applications of matrix multiplication and transposition in
the ensuing chapters when we discuss how matrix equations, such as [C]{V} = {R},
can be solved by employing the Gaussian Elimination method, and how ordinary
differential equations are approximated by finite differences will lead to the matrix
equations. In the abbreviated matrix form, derivation and explanation of computa-
tional methods becomes much simpler.

Also, it can be observed from the expressions in Equation 8 how the transposition
can be conveniently used to define the two vectors not using the column matrices
which take more lines.

FORTRAN V

ERSION

Since Equations 1 and 2 require repetitive computation of the elements in the
sum matrix [S] and difference matrix [D], machine could certainly help to carry out
this laborous task particularly when matrices of very high order are involved. For
covering all rows and columns of [S] and [D], looping or application of

DO

 statement
of the

FORTRAN

 programming immediately come to mind. The following program
is provided to serve as a first example for generating [S] and [D] of two given
matrices [A] and[B]:

x y z

x y z

x

+ + =
+ + =
− − =

2 3 4

5 6 7 8

2 37 9

V x y z

x

y

z

and R
T T{ } = [] =

















{ } = [] =
















 4 8 9

4

8

9

C V R[]{ } = { }

C[] =
− −

















1 2 3

5 6 7

2 3 0

© 2001 by CRC Press LLC

The resulting display on the screen is:

To review

FORTRAN

 briefly, we notice that matrices should be declared as
variables with two subscripts in a DIMENSION statement. The displayed results of
matrices A and B show that the values listed between // in a DATA statment will be
filling into the first column and then second column and so on of a matrix. To instruct
the computer to take the values provided but to fill them into a matrix row-by-row,
a more explicit DATA needs to be given as:

DATA ((A(I,J),J = 1,3),I = 1,3)/1.,4.,7.,2.,5.,8.,3.,6.,9./

When a number needs to be repeated, the * symbol can be conveniently applied
in the DATA statement exemplified by those for the matrix [B].

Some sample WRITE and FORMAT statements are also given in the program.
The first * inside the parentheses of the WRITE statement when replaced by a
number allows a device unit to be specified for saving the message or the values of
the variables listed in the statement. * without being replaced means the monitor
will be the output unit and consequently the message or the value of the variable(s)
will be displayed on screen. The second * inside the parentheses of the WRITE

© 2001 by CRC Press LLC

statement if not replaced by a statement number, in which formats for printing the
listed variables are specified, means “unformatted” and takes whatever the computer
provides. For example, statement number 15 is a FORMAT statement used by the
WRITE statement preceding it. There are 18 variables listed in that WRITE statement
but only six F5.1 codes are specified. F5.1 requests five column spaces and one digit
after the decimal point to be used to print the value of a listed variable. / in a
FORMAT statement causes the print/display to begin at the first column of the next
line. 6F5.1 is, however, enclosed by the inner pair of parentheses that allows it to
be reused and every time it is reused the next six values will be printed or displayed
on next line. The use (*,*) in a WRITE statement has the convenience of viewing
the results and then making a hardcopy on a connected printer by pressing the

PrtSc

(Print Screen) key.

I

NTERACTIVE

 O

PERATION

Program

MatxAlgb.1

 only allows the two particular matrices having their ele-
ments specified in the DATA statement to be added and subtracted. For finding the
sum matrix [S] and difference matrix [D] for any two matrices of same order N, we
ought to upgrade this program to allow the user to enter from keyboard the order
N and then the elements of the two matrices involved. This is

interactive

 operation
of the program and proper messages should be given to instruct the user what to do
which means the program should be

user-friendly

. The program

MatxAlgb.2

 listed
below is an attempt to achieve that goal:

© 2001 by CRC Press LLC

The interactive execution of the problem solved by the previous version

Matxalgb.1

now can proceed as follows:

© 2001 by CRC Press LLC

The results are identical to those obtained previously. The READ statement
allows the values for the variable(s) to be entered via keyboard. A WRITE statement
has no variable listed serves for need of skipping a line to provide better readability
of the display. Also the I and E format codes are introduced in the statement 10. Iw
where w is an integer in a FORMAT statement requests w columns to be provided
for displaying the value of the integer variable listed in the WRITE statement, in
which the FORMAT statement is utilized. Ew.d where w and d should both be integer
constants requests w columns to be provided for display a real value in the scientific
form and carrying d digits after the decimal point. Ew.d format gives more feasibility
than Fw.d format because the latter may cause an

error message

 of insufficient width
if the value to be displayed becomes too large and/or has a negative sign.

M

ORE

 P

ROGRAMMING

 R

EVIEW

Besides the operation of matrix addition and subtraction, we have also discussed
about the transposition and multiplication of matrices. For further review of computer
programming, it is opportune to incorporate all these matrix algebraic operations
into a single interactive program. In the listing below, three subroutines for matrix
addition and subtraction, transposition, and multiplication named as

MatrixSD

,

Transpos

, and

MatxMtpy

, respectively, are created to support a program called

MatxAlgb

 (Matrix Algebra).

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

The above program shows that Subroutines are independent units all started with
a SUBROUTINE statement which includes a name followed by a pair of parentheses
enclosing a number of

arguments

. The Subroutines are called in the main program
by specifying which variables or constants should serve as arguments to connect to
the subroutines. Some arguments provide input to the subroutine while other argu-
ments transmit out the results determined by the subroutine. These are referred to
as

input arguments

 and

output arguments

, respectively. In many instances, an argu-
ment may serve a dual role for both input and output purposes. To construct as an
independent unit, a subprogram which can be in the form of a SUBROUTINE, or

FUNCTION

 (to be elaborated later) must have RETURN and END statements.
It should also be remarked that program

MatxAlgb

 is arranged to handle any
matrix having an order of no higher than 25 by 25. For this restriction and for having
the flexibility of handling any matrices of lesser order, the Lmax, Mmax, and Nmax
arguments are added in all three subroutines in order not to cause any mismatch of
matrix sizes between the main program and the called subroutine when dealing with
any L, M, and N values which are interactively entered via keyboard.

Computed GOTO and arithmetic IF statements are also introduced in the pro-
gram

MatxAlgb

. GOTO (i,j,k,…) C will result in going to (execute) the statement
numbered i, j, k, and so on when C has a value equal to 1, 2, 3, and so on, respectively.
IF (Expression) a,b,c will result in going to the statement numbered a, b, or c if the
value calculated by the expression or a single variable is less than, equal to, or,
greater than zero, respectively.

It is important to point out that in describing any derived procedure of numerical
computation,

indicial notation

 such as Equation 5 should always be preferred to
facilitate programming. In that notation, the indices are directly used, or, literally
translated into the index variables for the DO loops as can be seen in Subroutine
MatxMtpy which is developed according to Equation 5. Subroutine MatrixSD is
another example of literally translating Equations 1 and 2. For defining the values
of the element in the following

tri-diagonal band matrix:

© 2001 by CRC Press LLC

we ought not to write 25 separate statements for the 25 elements in this matrix but
derive the indicial formulas for i,j = 1 to 5:

and

Then, the matrix [C] can be generated with the DO loops as follows:

The above short program also demonstrates the use of the

CONTINUE

 state-
ment for ending the DO loop(s), and the logical IF statements. The true, or, false
condition of the expression inside the outer pair of parentheses directs the computer
to execute the statement following the parentheses or the next statement immediately
below the current IF statement. Reader may want to practice on deriving indicial
formulas and then write a short program for calculating the elements of the matrix:

(10)

C[] =
−

−
−

−























1 2 0 0 0

3 1 2 0 0

0 3 1 2 0

0 0 3 1 2

0 0 0 3 1

c if j i or j iij = > + < −0 2 2, , ,

ci i, ,+ =1 2

ci i, − = −1 3

M[] =

































1 0 0 0 0 0 0 0

2 1 0 0 0 0 0 0

3 2 1 0 0 0 0 0

4 3 2 1 0 0 0 0

5 4 3 2 1 0 0 0

6 5 4 3 2 1 0 0

7 6 5 4 3 2 1 0

8 7 6 5 4 3 2 1

© 2001 by CRC Press LLC

As another example of writing a computer program based on indicial notation,
consider the case of calculating ex based on the infinite series:

(11)

With the understanding that 0! = 1, we have expressed the series as a summation
involving the index i which ranges from zero to infinity. A FUNCTION ExpoFunc
can be developed for calculating ex based on Equation 11 and taking only a finite
number of terms for a partial sum of the series when the contribution of additional
term is less than certain percentage of the sum in magnitude, say 0.001%. This
FUNCTION may be arranged as:

To further show the advantage of adopting vector and matrix notation, here let
us apply FUNCTION ExpoFunc to examine the surface z(x,y) = ex + y above the
rectangular area 0≤x≤2.0 and 0≤y≤1.5. The following program, ExpTest, will enable
us to compare the values of ex + y generated by the FUNCTION ExpoFunc and by
the function EXP available in the FORTRAN library (hence called library function).

e
x x x x

i

x
i

x
i

i

i

= + + + +…+ +…

=
=

∞

∑

1
1 2 3

1 2 2

0

! ! ! !

!

© 2001 by CRC Press LLC

The resulting printout is:

It is apparent that two approaches produce almost identical results, so the 0.001%
accuracy appears quite adequate for the x and y ranges studied. Also, arranging the
results in vector and matrix forms make the presentation much easy to comprehend.

We have experienced how the summation process for an indicial formula involv-
ing a Σ should be programmed. Another operation symbol of importance is Π which
is for multiplication of many factors. That is:

(12)

An obvious application of Equation 12 is for the calculation of factorials. For
example, 5! = Πi for i ranges from 1 to 5. As an exercise, we display the values of
1! through 50! with the following program involving a subroutine IFACTO which
calculates I! for a specified I value:

a a a ai

i

N

N

=
∏ = …

1

1 2

© 2001 by CRC Press LLC

The resulting print out is (listed in three columns for saving space)

Another application of Equation 12 is for calculation of the binomial coefficients
for a real number r and an integer k defined as:

(13)

We shall have the occasion of applying Equations 12 and 13 when the finite
differences and Lagrangian interpolation are discussed.

Sample Applications

Program MatxAlgb has been tested interactively, the following are the resulting
displays of four test cases:

r

k
r r r r k

k
r i

i
i

k





= −() −()… − +() = − +

=
∏1 2 1 1

1
!

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

QUICKBASIC VERSION

The QuickBASIC language has the advantage over the FORTRAN language
for making quick changes and then running the revised program without compilation.
Furthermore, it offers simple plotting statements. Let us have a QuickBASIC version
of the program MatxAlgb and then discuss its basic features.

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Notice that the order limit of 25 needed in the FORTRAN version is removed
in the QuickBASIC version which allows the dim statement to be adjustable. ' is
replacing C in FORTRAN to indicate a comment statement in QuickBASIC. READ
and WRITE in FORTRAN are replaced by INPUT and PRINT in QuickBASIC,
respectively. The DO loop in FORTRAN is replaced by the FOR and NEXT pair
in QuickBASIC.

Sample Applications

When the four cases previously run by the FORTRAN version are executed by
the QuickBASIC version, the screen prompting messages, the interactively entered
data, and the computed results are:

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

MATLAB APPLICATIONS

MATLAB developed by the Mathworks, Inc. offers a quick tool for matrix
manipulations. To load MATLAB after it has been set-up and stored in a subdirectory
of a hard drive, say C, we first switch to this subdirectory by entering (followed by
pressing ENTER)

C:\cd MATLAB

and then switch to its own subdirectory BIN by entering (followed by pressing ENTER)

C:\MATLAB>cd BIN

Next, we type MATLAB to obtain a display of:

C:\MATLAB>BIB>MATLAB

Pressing the ENTER key results in a display of:

>>

which indicates MATLAB is ready to begin. Let us rerun the cases of matrix
subtraction, addition, transposition, and multiplication previously considered in the
FORTRAN and QuickBASIC versions. First, we enter the matrix [A] in the form of:

>> A = [1,2;3,4]

When the ENTER key is pressed, the displayed result is:

Matrix [P]
Row 1
 0.1400E+02 0.2000E+02
Row 2
 0.3200E+02 0.4700E+02

© 2001 by CRC Press LLC

A =

1 2

3 4

Notice that the elements of [A] should be entered row by row. While the rows
are separated by ;, in each row elements are separated by comma. After the print
out of the above results, >> sign will again appear. To eliminate the unnecessary line
space (between A = and the first row 1 2), the statement format compact can be entered
as follows (the phrase “pressing ENTER key” will be omitted from now on):

>> format compact, B = [5,6;7,8]

B =

5 6

7 8

Notice that comma is used to separate the statements. To demonstrate matrix sub-
traction and addition, we can have:

>> A-B

ans =

–4 –4

–4 –4

>> A + B

ans =

6 8

10 12

To apply MATLAB for transposition and multiplication of matrices, we can have:

>> C = [1,2,3;4,5,6]

C =

1 2 3

4 5 6

>> C'

ans =

1 4

2 5

3 6

© 2001 by CRC Press LLC

>> D = [1,2,3;4,5,6]; E = [1,2;2,3;3,4]; P = D*E

P =

14 20

32 47

Notice that MATLAB uses ' (single quote) in place of the superscripted symbol
T for transposition. When ; (semi-colon) follows a statement such as the D statement,
the results will not be displayed. As in FORTRAN and QuickBASIC, * is the
multiplication operator as is used in P = D*E, here involving three matrices not three
single variables. More examples of MATLAB applications including plotting will
ensue. To terminate the MATLAB operation, simply enter quit and then the
RETURN key.

MATHEMATICA APPLICATIONS

To commence the service of Mathematica from Windows setup, simply point
the mouse to it and double click the left button. The Input display bar will appear
on screen, applications of Mathematica can start by entering commands from
keyboard and then press the Shift and Enter keys. To terminate the Mathematica
application, enter Quit[] from keyboard and then press the Shift and Enter keys.

Mathematica commands, statements, and functions are gradually introduced
and applied in increasing degree of difficulty. Its graphic capabilities are also utilized
in presentation of the computed results.

For matrix operations, Mathematica can compute the sum and difference of
two matrices of same order in symbolic forms, such as in the following cases of
involving two matrices, A and B, both of order 2 by 2:

In[1]: = A = {{1,2},{3,4}}; MatrixForm[A]

Out[1]//MatrixForm =

1 2

3 4

In[1]: = is shown on screen by Mathematica while user types in A =
{{1,2},{3,4}}; MatrixForm[A]. Notice that braces are used to enclose the elements
in each row of a matrix, the elments in a same row are separated by commas, and
the rows are also separated by commas. MatrixForm demands that the matrix be
printed in a matrix form. Out[1]//MatrixForm = and the rest are response of Math-
ematica.

In[2]: = B = {{5,6},{7,8}}; MatrixForm[B]

Out[2]//MatrixForm =

5 6
7 8

© 2001 by CRC Press LLC

In[3]: = MatrixForm[A + B]

Out[3]//MatrixForm =

6 8

10 12

In[4]: = Dif = A-B; MatrixForm[Dif]

Out[4]//MatrixForm =

–4 –4

–4 –4

In[3] and In[4] illustrate how matrices are to be added and subtracted, respec-
tively. Notice that one can either use A + B directly, or, create a variable Dif to
handle the sum and difference matrices.

Also, Mathematica has a function called Transpose for transposition of a
matrix. Let us reuse the matrix A to demonstrate its application:

In[5]: = AT = Transpose[A]; MatrixForm[AT]

Out[5]//MatrixForm =

1 3

2 4

1.3 SOLUTION OF MATRIX EQUATION

Matrix notation offers the convenience of organizing mathematical expression in an
orderly manner and in a form which can be directly followed in coding it into
programming languages, particularly in the case of repetitive computation involving
the looping process. The most notable situation is in the case of solving a system
of linear algebraic equation. For example, if we need to determine a linear equation
y = a1 + a2x which geometrically represents a straight line and it is required to pass
through two specified points (x1,y1) and (x2,y2). To find the values of the coefficients
a1 and a2 in the y equation, two equations can be obtained by substituting the two
given points as:

(1)

and

(2)

1 1 1 2 1() + () =a x a y

1 1 2 2 2() + () =a x a y

© 2001 by CRC Press LLC

To facilitate programming, it is advantageous to write the above equations in
matrix form as:

(3)

where:

(4)

The matrix equation 3 in this case is of small order, that is an order of 2. For
small systems, Cramer’s Rule can be conveniently applied which allows the unknown
vector {A} to be obtained by the formula:

(5)

Equation 5 involves the calculation of three determinants, i.e., , �[C1]�, �[C2]�, and
�[C]� where [C1] and [C2] are matrices derived from the matrix [C] when the first
and second columns of [C] are replaced by {Y}, respectively. If we denote the
elements of a general matrix [C] of order 2 by cij for i,j = 1,2, the determinant of
[C] by definition is:

(6)

The general definition of the determinant of a matrix [M] of order N and whose
elements are denoted as mij for i,j = 1,2,…,N is to add all possible product of N
elements selected one from each row but from different column. There are N! such
products and each product carries a positive or negative sign depending on whether
even or odd number of exchanges are necessary for rearranging the N subscripts in
increasing order. For example, in Equation 6, c11 is selected from the first row and
first column of [C] and only c22 can be selected and multiplied by it while the other
possible product is to select c12 from the second row and first column of [C] and
that leaves only c21 from the second row and first column of [C] available as a factor
of the second product. In order to arrange the two subscripts in non-decreasing order,
one exchange is needed and hence the product c12c21 carries a minus sign. We shall
explain this sign convention further when a matrix of order 3 is discussed. However,
it should be evident here that a matrix whose order is large the task of calculating
its determinant would certainly need help from computer. This will be the a topic
discussed in Section 1.5.

Let us demonstrate the application of Cramer’s Rule by having a numerical case.
If the two given points to be passed by the straight line y = a1 + a2x are (x1,y1) =
(1,2) and (x2,y2) = (3,4). Then we can have:

C A Y[]{ } = { }

C
x

x
A

a

a
Y

y

y
[] =









 { } =









 { } =











1

1
1

2

1

2

1

2

, , and

A c c CT{ } = [] [][] []1 2

C c c c c[] = −11 22 12 21

© 2001 by CRC Press LLC

and

Consequently, according to Equation 5 we can find the coefficients in the
straight-line equation to be:

Hence, the line passing through the points (1,2) and (3,4) is y = a1 + a2x = 1 + x.
Application of Cramer’s Rule can be extended for solving three unknowns from

three linear algebraic equations. Consider the case of finding a plane which passes
three points (xi,yi) for i = 1 to 3. The equation of that plane can first be written as
z = a1 + a2x + a3y. Similar to the derivation of Equation 3, here we substitute the
three given points into the z equation and obtain:

(7)

(8)

and

(9)

Again, the above three equations can be written in matrix form as:

(10)

where the matrix [C] and the vector {A} previously defined in Equation 4 need to
be reexpanded and redefined as:

(11)

C
x

x
[] = = = × − × = − =

1

1

1 1

1 3
1 3 1 1 3 1 21

2

c
y x

y x1
1 1

2 2

2 1

4 3
2 3 1 4 6 4 2[] = = = × − × = − =

C
y

y2
1

2

1

1

1 2

1 4
1 4 2 1 4 2 2[] = = = × − × = − =

a C C a C C1 1 2 22 2 1 2 2 1= [] [] = = = [] [] = = and

1 1 1 2 1 3 1() + () + () =a x a y a z

1 1 2 2 2 3 2() + () + () =a x a y a z

1 1 3 2 3 3 3() + () + () =a x a y a z

C A Z[]{ } = { }

C

x y

x y

x y

A

a

a

a

Z

z

z

z

[] = { } = { } =
















1

1

1

1 1

2 2

3 3

1

2

3

1

2

3

, , and

© 2001 by CRC Press LLC

And, the Cramer’s Rule for solving Equation 10 can be expressed as:

(12)

where [Ci] for i = 1 to 3 for matrices formed by replacing the ith column of the
matrix [C] by the vector {Z}, respectively. Now, we need the calculation of the
determinant of matrices of order 3. If we denote the element in a matrix [M] as mij

for i,j = 1 to 3, the determinant of [M] can be calculated as:

(13)

To give a numerical example, let us consider a plane passing the three points,
(x1,y1,z1) = (1,2,3), (x2,y2,z2) = (–1,0,1), and (x3,y3,z3) = (–4,–2,0). We can then have:

and

According to Equation 13, we find a1 = �[C1]�/�[C]� = 0/(–2) = 0, a2 = �[C2]�/�[C]� =
2/(–2) = –1, and a3 = �[C3]�/�[C]� = –4/(–2) = 2. Thus, the required plane equation is
z = a1 + a2x + a3y = -x + 2y.

QUICKBASIC VERSION OF THE PROGRAM CRAMERR

A computer program called CramerR has been developed as a reviewing exer-
cise in programming to solve a matrix equation of order 3 by application of Cramer

A C C C C
T

{ } = [][][][] []1 2 3

M m m m m m m m m m

m m m m m m m m m

[] = − +

− + −

11 22 33 11 23 32 12 23 31

12 21 33 13 21 32 13 22 31

C

x y

x y

x y

[] = = −
− −

= −
1

1

1

1 1 2

1 1 0

1 4 2

2
1 1

2 2

3 3

C

z x y

z x y

z x y
1

1 1 1

2 2 2

3 3 3

3 1 2

1 1 0

0 4 2

0[] = = −
− −

=

C

z y

z y

z y
2

1 1

2 2

3 3

1

1

1

1 3 2

1 1 0

1 0 2

2[] = =
−

=

C

x z

x z

x z
3

1 1

2 2

1

1

1

1 1 3

1 1 1

1 4 2

4[] = = −
− −

= −

© 2001 by CRC Press LLC

Rule and the definition of determinant of a 3 by 3 square matrix according to
Equations 12 and 13, respectively. First, a subroutine called Determ3 is created
explicitly following Equation 13 as listed below:

To interactively enter the elements of the coefficient matrix [C] and also the
elements of the right-hand-side vector {Z} in Equation 12 and to solve for {A}, the
program CramerR can be arranged as:

© 2001 by CRC Press LLC

1.4 PROGRAM GAUSS

Program Gauss is designed for solving N unknowns from N simultaneous, linear
algebraic equations by the Gaussian Elimination method. In matrix notation, the
problem can be described as to solve a vector {X} from the matrix equation:

(1)

where [C] is an NxN coefficient matrix and {V} is a Nx1 constant vector, and both
are prescribed. For example, let us consider the following system:

(2)

(3)

(4)

If the above three equations are expressed in matrix form as Equation 1, then:

(5,6)

and

(7)

where T designates the transpose of a matrix.

GAUSSIAN ELIMINATION METHOD

A systematic procedure named after Gauss can be employed for solving x1, x2,
and x3 from the above equations. It consists of first dividing Equation 28 by the
leading coefficient, 9, to obtain:

(8)

This step is called normalization of the first equation of the system (1). The next
step is to eliminate x1 term from the other (in this case, two) equations. To do that,
we multiply Equation 8 by the coefficients associated with x1 in Equations 3 and 4,
respectively, to obtain:

C X V[]{ } = { }

9 101 2 3x x x+ + =

3 6 141 2 3x x x+ + =

2 2 3 31 2 3x x x+ + =

C V[] =
















{ } =
















9 1 1

3 6 1

2 2 3

10

14

3

, ,

X

x

x

x

x x x
T{ } =

















= []
1

2

3

1 2 3

x x x1 2 3

1
9

1
9

10
9

+ + =

© 2001 by CRC Press LLC

(9)

and

(10)

If we subtract Equation 9 from Equation 3, and subtract Equation 10 from Equa-
tion 4, the x1 terms are eliminated. The resulting equations are, respectively:

(11)

and

(12)

This completes the first elimination step. The next normalization is applied to
Equation 11, and then the x2 term is to be eliminated from Equation 12. The resulting
equations are:

(13)

and

(14)

The last normalization of Equation 14 then gives:

(15)

Equations 8, 13, and 15 can be organized in matrix form as:

(16)

The coefficient matrix is now a so-called upper triangular matrix since all
elements below the main diagonal are equal to zero.

As x3 is already obtained in Equation 15, the other two unknowns, x2 and x3,
can be obtained by a sequential backward-substitution process. First, Equation 13
can be used to obtain:

3
1
3

1
3

10
31 2 3x x x+ + =

2
2
9

2
9

20
91 2 3x x x+ + =

17
3

2
3

32
32 3x x+ =

16
9

25
9

7
92 3x x+ =

x x2 3

2
17

32
17

+ =

393
153

393
1533x = −

x3 1= −

V

x

x

x

{ } =
































=
−

















1 1 9 1 9

0 1 2 17

0 0 1

10 9

32 17

1

1

2

3

x x2 3

32
17

2
17

32
17

2
17

1
32 2

17
2= − = − −() = + =

© 2001 by CRC Press LLC

Once, both x2 and x3 have been calculated, x1 can be obtained from Equation 8 as:

To derive a general algorithm for the Gaussian elimination method, let us denote
the elements in [C], {X}, and {V} as ci,j, xi, and vi, respectively. Then the normal-
ization of the first equation can be expressed as:

(17)

and

(18)

Equation 17 is to be used for calculating the new coefficient associated with xj

in the first, normalized equation. So, j should be ranged from 2 to N which is the
number of unknowns (equal to 3 in the sample case). The subscripts old and new
are added to indicate the values before and after normalization, respectively. Such
designation is particularly helpful if no separate storage in computer are assigned
for [C] for the values of its elements. Notice that (c1,1)new = 1 is not calculated.
Preserving this diagonal element enables the determinant of [C] to be computed.
(See the topic on matrix inversion and determinant.)

The formulas for the elimination of x1 terms from the second equation are:

(19)

for j = 2,3,…,N (there is no need to include j = 1) and

(20)

By changing the subscript 2 in Equations 19 and 20, x1 term in the third equation
can be eliminated. In other words, the general formulas for elimination of x1 terms
from all equation other than the first equation are, for k = 2,3,…,N

(21)

for j = 2,3,…,N

x x x1 2 3

10
9

1
9

1
9

10
9

1
9

2
1
9

1
10 2 1

9
1= − − = − () − −() = − + =

c c cj new j old old1 1 1 1, , ,() = () ()

v v c
new old old1 1 1 1() = () (),

c c c cj new j old old j old2 2 2 1 1, , , ,() = () − () ()

v v c v
new old old old2 2 2 1 1() = () − () (),

c c c ck j new k j old k l old j old, , , ,() = () − () ()1

© 2001 by CRC Press LLC

(22)

Instead of normalizing the first equation, we can generalize Equations 17 and
18 for normalization of the ith equation, for i = 1,2,…,N to the expressions:

(23)

for j = i + 1,i + 2,…,N and

(24)

Note that (ci,i)new should be equal to 1 but no need to calculate since it is not
involved in later calculation for finding {X}.

Similarly, elimination of xi term from kth equation for k = i + 1,i + 2,…,N
consists of using the general formula:

(25)

for j = i + 1,i + 2,…,N and

(26)

Backward substitution for finding xi involves the calculation of:

(27)

for i = N–1,N–2,…,2,1. Note that xN is already found equal to vN after the Nth
normalization.

Program Gauss listed below in both QuickBASIC and FORTRAN languages
is developed for interactive specification of the number of unknowns, N, and the
values of the elements of [C] and {V}. It proceeds to solve for {X} and prints out
the computed values. Sample applications of both languages are provided immedi-
ately following the listed programs.

A subroutine Gauss.Sub is also made available for the frequent need in the
other computer programs which require the solution of matrix equations.

v v c vk new k old k old old
() = () − () (),1 1

c c ci j new i j old i i old, . ,() = () ()

v v ci new i old i i old
() = () (),

c c c ck j new k j old k i old i j old, , , ,() = () − () ()

v v c vk new k old k i old i old
() = () − () (),

x v c xi i i j j

j i

N

= −
= +
∑ ,

1

© 2001 by CRC Press LLC

QUICKBASIC VERSION

Sample Application

© 2001 by CRC Press LLC

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

GAUSS-JORDAN METHOD

One slight modification of the elimination step will make the backward substi-
tution steps completely unnecessary. That is, during the elimination of the xi terms
from the linear algebraic equations except the ith one, Equations 25 and 26 should
be applied for k equal to 1 through N and excluding k = i. For example, the x3 terms
should be eliminated from the first, second, fourth through Nth equations. In this
manner, after the Nth normalization, [C] becomes an identity matrix and {V} will
have the elements of the required solution {X}. This modified method is called
Gauss-Jordan method.

A subroutine called GauJor is made available based on the above argument. In
this subroutine, a block of statements are also added to include the consideration of
the pivoting technique which is required if ci,i = 0. The normalization steps,
Equations 49 and 50, cannot be implemented if ci,i is equal to zero. For such a
situation, a search for a nonzero ci,k is necessary for i = k + 1,k + 2,…,N. That is,
to find in the kth column of [C] and below the kth row a nonzero element. Once
this nonzero ci,k is found, then we can then interchange the ith and kth rows of [C]
and {V} to allow the normalization steps to be implemented; if no nonzero ci,k can
be found then [C] is singular because the determinant of [C] is equal to zero! This
can be explained by the fact that when ck,k = 0 and no pivoting is possible and the
determinant D of [C] can be calculated by the formula:

(28)

where � indicates a product of all listed factors.

D c c c c ck k N N k k

k

N

= … … =
=

∏1 1 2 2

1

, , , , ,

© 2001 by CRC Press LLC

A subroutine has been written based on the Gauss-Jordan method and called
GauJor.Sub. Both QuickBASIC and FORTRAN versions are made available and
they are listed below.

QUICKBASIC VERSION

© 2001 by CRC Press LLC

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Applications

The same problem previously solved by the program Gauss has been used again
but solved by application of subroutine GauJor. The results obtained with the Quick-
BASIC and FORTRAN versions are listed, in that order, below:

MATLAB APPLICATIONS

For solving the vector {X} from the matrix equation [C]{X} = {R} when both
the coefficient matrix [C] and the right-hand side vector {R} are specified, MATLAB
simply requires [C] and {R} to be interactively inputted and then uses a statement
X = C\R to obtain the solution vector {X} by multiplying the vector {R} on the left
of the inverse of [C] or dividing {R} on the left by [C]. More details are discussed
in the program MatxAlgb. Here, for providing more examples in MATLAB appli-
cations, a m file called GauJor.m is presented below as a companion of the FOR-
TRAN and QuickBASIC versions:

© 2001 by CRC Press LLC

This file GauJor.m should then be added into MATLAB. As an example of
interactive application of this m file, the sample problem used in the FORTRAN
and QuickBASIC versions is again solved by specifying the coefficient matrix [C]
and the right hand side vector {R} to obtain the resulting display as follows:

The results of the vector {X} and determinant D for the coefficient matrix [C]
are same as obtained before.

MATHEMATICA APPLICATIONS

For solving a system of linear algebraic equations which has been arranged in
matrix form as [A]{X} = {R}, Mathematica’s function LinearSolve can be applied

© 2001 by CRC Press LLC

to solve for {X} when the coefficient matrix [A] and the right-hand side vector {R}
are both provided. The following is an example of interactive application:

In[1]: = A = {{3,6,14},{6,14,36},{14,36,98}}

Out[1]: =

{{3, 6, 14}, {6, 14, 36}, {14, 36, 98}}

In[2]: = MatrixForm[A]

Out[2]//MatrixForm: =

3 6 14

6 14 36

14 36 98

In[3]: = R = {9,20,48}

Out[3]: =

{9, 20, 48}

In[4]: = LinearSolve[A,R]

Out[4]: =

{–9,13,–3}

Output[2] and Output[1] demonstrate the difference in display of matrix [A]
when MatrixeForm is requested, or, not requested, respectively. It shows that without
requesting of MatrixForm, some screen space saving can be gained. Output[4] gives
the solution {X} = [–9 13 –3]T for the matrix equation [A]{X} = {R} where the
coefficient matix [A] and vector {R} are provided by Input[1] and Input[3], respectively.

1.5 MATRIX INVERSION, DETERMINANT,
AND PROGRAM MatxInvD

Given a square matrix [C] of order N, its inverse as [C]–1 of the same order is defined
by the equation:

(1)

where [I] is an identity matrix having elements equal to one along its main diagonal
and equal to zero elsewhere. That is:

(2)

C C C C I[] [] = [] [] = []− −1 1

I[] =



















1 0 0

0 1 0 0

0 0 1

. . . .

. . .

.

. . . .

© 2001 by CRC Press LLC

To find [C]–1, let cij and dij be the elements at the ith row and jth column of the
matrices [C] and [C]–1, respectively. Both i and j range from 1 to N. Furthermore,
let {Dj} and {Ij} be the jth column of the matrices [C]–1 and [I], respectively. It is
easy to observe that {Ij} has elements all equal to zero except the one in the jth row
which is equal to unity. Also,

(3)

and

(4)

Based on the rules of matrix multiplication, Equation 1 can be interpreted as
[C]{D1} = {I1}, [C]{D2} = {I2}, …, and [C]{DN} = {IN}. This indicates that program
Gauss can be successively employed N times by using the same coefficient matrix
[C] and the vectors {Ii} to find the vectors {Di} for i = 1,2,…,N. Program MatxInvD
is developed with this concept by modifying the program Gauss. It is listed below
along with a sample interactive run.

QUICKBASIC VERSION

D d d dj lj j Nj

T{ } = …[]2

C D D DN

T[] = …[]−1
1 2

© 2001 by CRC Press LLC

Sample Application

FORTRAN VERSION

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Sample Applications

MATLAB APPLICATION

MATLAB offers very simple matrix operations. For example, matrix inversion
can be implemented as:

To check if the obtained inversion indeed satisfies the equation [A}[A]–1 = [I]
where [I] is the identity matrix, we enter:

Once [A]–1 becomes available, we can solve the vector {X} in the matrix equation
[A]{X} = {R} if {R} is prescribed, namely {X} = [A]–1{R}. For example, may enter
a {R} vector and find {X} such as:

© 2001 by CRC Press LLC

MATHEMATICA APPLICATIONS

Mathematica has a function called Inverse for inversion of a matrix. Let us
reuse the matrix A that we have entered in earlier examples and continue to dem-
onstrate the application of Inverse:

In[1]: = A = {{1,2},{3,4}}; MatrixForm[A]

Out[1]//MatrixForm =

1 2

3 4

In[2]: = B = {{5,6},{7,8}}; MatrixForm[B]

Out[2]//MatrixForm =

5 6

7 8

In[3]: = MatrixForm[A + B]

Out[3]//MatrixForm =

6 8

10 12

In[4]: = Dif = A-B; MatrixForm[Dif]

Out[4]//MatrixForm =

–4 –4

–4 –4

In[5]: = AT = Transpose[A]; MatrixForm[AT]

Out[5]//MatrixForm =

1 3

2 4

In[6]: = Ainv = Inverse[A]; MatrixForm[Ainv]

Out[6]//MatrixForm =

–2 1

3
2

1
2

− 





© 2001 by CRC Press LLC

To verify whether or not the inverse matrix Ainv obtained in Output[6] indeed
satisfies the equations [A][A]–1 = [I] which is the identity matrix, we apply Math-
ematica for matrix multiplication:

In[7]: = Iden = A.Ainv; MatrixForm[Iden]

Out[7]//MatrixForm =

1 0

0 1

A dot is to separate the two matrices A and Ainv which is to be multiplied in that
order. Output[7] proves that the computed matrix, Ainv, is the inverse of A! It should
be noted that D and I are two reserved variables in Mathematica for the determinant
of a matrix and the identity matrix. In their places, here Dif and Iden are adopted,
respectively. For further testing, we show that [A][A]T is a symmetric matrix:

In[8]: = S = A.AT; MatrixForm[S]

Out[8]//MatrixForm =

5 11

11 25

And, the unknown vector {X} in the matrix equation [A]{X} = {R} can be
solved easily if {R} is given and [A]–1 are available:

In[9]: = R = {13,31}; X = Ainv.R

Out[9] = {5, 4}

The solution of x1 = 5 and x2 = 4 do satisfy the equations x1 + 2x2 = 13 and 3x1

+ 4x2 = 31.

TRANSFORMATION OF COORDINATE SYSTEMS, ROTATION, AND ANIMATION

Matrix algebra can be effectively applied for transformation of coordinate sys-
tems. When the cartesian coordinate system, x-y-z, is rotated by an angle �z about
the z-axis to arrive at the system x�-y�-z� as shown in Figure 2, where z and z� axes
coincide and directed outward normal to the plane of paper, the new coordinates of
a typical point P whose coordinates are (xP,yP,zP) can be easily obtained as follows:

′ = −() = () + ()
= +

′ = −() = () − ()
= +

x OP OP OP

x y

y OP OP OP

x y

P P z P z P z

P z p z

P P z P z P z

p z p z

cos cos cos sin sin

cos sin

sin sin cos cos sin

sin sin

θ θ θ θ θ θ

θ θ

θ θ θ θ θ θ

θ θ

© 2001 by CRC Press LLC

and

In matrix notation, we may define {P} = [xP yP zP]T and {P'} = [xP' yP' zP']T and
write the above equations as {P'} = [Tz]{P} where the transformation matrix for a
rotation of z-axis by �z is:

(5)

In a similar manner, it can be shown that the transformation matrices for rotating
about the x- and y-axes by angles �x and �y, respectively, are:

(6)

and

(7)

FIGURE 2. The cartesian coordinate system, x-y-z, is rotated by an angle �z about the z-
axis to arrive at the system x�-y�-z�.

′ =z zP P

Tz

z z

z z[] = −
















cos sin

sin cos

θ θ
θ θ

0

0

0 0 1

Tx x x

x x

[] =
−

















1 0 0

0

0

cos sin

sin cos

θ θ
θ θ

Ty

y y

y y

[] =
−















cos sin

sin cos

θ θ

θ θ

0

0 1 0

0

© 2001 by CRC Press LLC

It is interesting to note that if a point P whose coordinates are (xP,yP,zP) is rotated
to the point P' by a rotation of �z as shown in Figure 3, the coordinates of P' can
be easily obtained by the formula {P'} = [Rz]{P} where [Rz] = [Tz]T. If the rotation
is by an angle �x or �y, then {P'} = [Rx]{P} or {P'} = [Ry]{P} where [Rx] = [Tx]T

and [Ry] = [Ty]T.
Having discussed about transformations and rotations of coordinate systems,

we are ready to utilize the derived formulas to demonstrate the concept of ani-
mation. Motion can be simulated by first generating a series of rotated views of
a three-dimensional object, and showing them one at a time. By erasing each
displayed view and then showing the next one at an adequate speed, a smooth
motion of the object is achievable to produce the desired animation. Program
Animate1.m is developed to demonstrate this concept of animation by using a
4 � 2 � 3 brick and rotating it about the x-axis by an angle of 25° and then
rotating about the y-axis as many revolutions as desired. The front side of the
block (x-y plane) is marked with a character F, and the right side (y-z plane) is
marked with a character R, and the top side (x-z plane) is marked with a character
T for helping the viewer to have a better three-dimensional perspective of the
rotated brick (Figure 4). The x-rotation prior to y-rotation is needed to tilt the top
side of the brick toward the front. The speed of animation is controlled by a
parameter Damping. This parameter and the desired number of y-revolutions,
Ncycle, are both to be interactively specified by the viewer (Figure 5).

FIGURE 3. Point P whose coordinates are (xP,yP,zP) is rotated to the point P' by a rotation
of �z.

© 2001 by CRC Press LLC

FIGURE 4. The characters F, R, and T help the viewer to have a better three-dimensional
perspective of the rotated brick.

FIGURE 5. The speed of animation is controlled by a parameter Damping. This parameter and
the desired number of y-revolutions, Ncycle, are both to be interactively specified by the viewer.

© 2001 by CRC Press LLC

FUNCTION ANIMATE1(NCYCLE,DAMPING)

Notice that the coordinates for the corners of the brick are defined in arrays xb,
yb, and zb. The coordinates of the points to be connected by linear segments for
drawing the characters F, R, ant T are defined in arrays xf, yf, and zf, and xr, yr,
and zr, and xt, yt, and zt, respectively.

The equations in deriving [Rx] (= [Tx]T) and [Ry] (= [Ty]T) are applied for x-
and y- rotations in the above program. Angle increments of 5 and 10° are arranged
for the x- and y-rotations, respectively. The rotated views are plotted using the new
coordinates of the points, (xbn,ybn,zbn), (xfn,yfn,zfn), etc. Not all of these new
arrays but only those needed in subsequent plot are calculated in this m file.

MATLAB command clg is used to erase the graphic window before a new
rotated view the brick is displayed. The speed of animation is retarded by the “hold”
loops in both x- and y-rotations involving the interactively entered value of the
parameter Damping. The MATLAB command pause enables Figure 4 to be read
and requires the viewer to press any key on the keyboard to commence the animation.
Notice that a statement begins with a % character making that a comment statement,
and that % can also be utilized for spacing purpose.

The xs and ys arrays allow the graphic window to be scaled by plotting them
and then held (by command hold) so that all subsequent plots are using the same

© 2001 by CRC Press LLC

scales in both x- and y-directions. The values in xs and ys arrays also control where
to properly place the texts in Figure 4 as indicated in the text statements.

QUICKBASIC VERSION

A QuickBASIC version of the program Animate1.m called Animate1.QB also
is provided. It uses commands GET and PUT to animate the rotation of the 4 � 3
� 2 brick. More features have been added to show the three principal views of the
brick and also the rotated view at the northeast corner of screen, as illustrated in
Figure 6.

The window-viewport transformation of the rotated brick for displaying on the
screen is implemented through the functions FNTX and FNTY. The actual ranges
of the x and y measurements of the points used for drawing the brick are described
by the values of V1 and V2, and V3 and V4, respectively. These ranges are mapped
onto the screen matching the ranges of W1 and W2, and W4 and W3, respectively.

The rotated views of the brick are stored in arrays S1 through S10 using the
GET command. Animation retrieves these views by application of the PUT com-
mand. Presently, animation is set for 10 y-swings (Ncycle = 10 in the program
Animate1.m, arranged in Line 600). The parameter Damping described in the
program Animate1.m here is set equal to 1500 (in Line 695).

FIGURE 6. Animation of a rotating brick.

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

1.6 PROBLEMS

MATRIX ALGEBRA

1. Calculate the product [A][B][C] by (1) finding [T] = [A][B] and then
[T][C], and (2) finding [T] = [B][C] and then [A][T] where:

2. Calculate [A][B] of the two matrices given above and then take the
transpose of product matrix. Is it equal to the product of [B]T[A]T?

3. Are ([A][B][C])T and the product [C]T[B]T[A]T identical to each other?

A B C[] = 





[] =
















[] =
− −
− −







1 2 3

4 5 6

6 5

4 3

2 1

1 2

3 4

© 2001 by CRC Press LLC

4. Apply the QuickBASIC and FORTRAN versions of the program Matx-
Algb to verify the results of Problems 1, 2, and 3.

5. Repeat Problem 4 but use MATLAB.
6. Apply the program MatxInvD to find [C]–1 of the matrix [C] given in

Problem 1 and also to ([C]T)–1. Is ([C]–1)T equal to ([C]T)–1?
7. Repeat Problem 6 but use MATLAB.
8. For statistical analysis of a set of N given data X1, X2, …, XN, it is often

necessary to calculate the mean, m, and standard deviation, 5, by use of
the formulas:

and

Use indicial notation to express the above two equations and then develop
a subroutine meanSD(X,N,RM,SD) for taking the N values of X to
compute the real value of mean, RM, and standard deviation, SD.

9. Express the ith term in the following series in indicial notation and then
write an interactive program SinePgrm allowing input of the x value to
calculate sin(x) by terminating the series when additional term contributes
less than 0.001% of the partial sum of series in magnitude:

Notice that Sin(x) is an odd function so the series contains only terms of
odd powers of x and the series carries alternating signs. Compare the
result of the program SinePgrm with those obtained by application of the
library function Sin available in FORTRAN and QuickBASIC.

10. Same as Problem 9, but for the cosine series:

Notice that Cos(x) is an even function so the series contains only terms
of even powers of x and the series also carries alternating signs.

11. Repeat Problem 4 but use Mathematica.
12. Repeat Problem 6 but use Mathematica.

m
N

X X XN= + +…+()1
1 2

σ = −() + −() +…+ −()[]


1
1

2

2

2 2
0 5

N
X m X m X mN

.

Sin x
x x x

! ! !

= − + −…
1 3 5

1 3 5

Cos x
x x x

! ! !

= − + − +…1
2 4 6

2 4 6

© 2001 by CRC Press LLC

GAUSS

1. Run the program GAUSS to solve the problem:

2. Run the program GAUSS to solve the problem:

What kind of problem do you encounter? “Divided by zero” is the mes-
sage! This happens because the coefficient associated with x1 in the first
equation is equal to zero and the normalization in the program GAUSS
cannot be implemented. In this case, the order of the given equations
needs to be interchanged. That is to put the second equation on top or
find below the first equation an equation which has a coefficient associated
with x1 not equal to zero and is to be interchanged with the first equation.
This procedure is called “pivoting.” Subroutine GauJor has such a feature
incorporated, apply it for solving the given matrix equation.

3. Modify the program GAUSS by following the Gauss-Jordan elimination
procedure and excluding the back-substitution steps. Name this new pro-
gram GauJor and test it by solving the matrix equations given in Problems
1 and 2.

 4. Show all details of the normalization, elimination, and backward substi-
tution steps involved in solving the following equations by application of
Gaussian Elimination method:

4x1 + 2x2 – 3x3 = 8

5x1 – 3x2 + 7x3 = 26

–x1 + 9x2 – 8x3 = –10

5. Present every normalization and elimination steps involved in solving the
following system of linear algebraic equations by the Gaussian Elimina-
tion Method:

5x1 – 2x2 + 2x3 = 9, –2x1 + 7x2 – 2x3 = 9, and 2x1 – 2x2 + 9x3 = 41

1 2 3

4 5 6

7 8 10

2

8

14

1

2

3

































=
















x

x

x

0 2 3

4 5 6

7 8 9

1

8

14

1

2

3

































=
−















x

x

x

© 2001 by CRC Press LLC

6. Apply the Gauss-Jordan elimination method to solve for x1, x2, and x3

from the following equations:

Show every normalization, elimination, and pivoting (if necessary) steps
of your calculation.

7. Solve the matrix equation [A]{X} = {C} by Gauss-Jordan method
where:

Show every interchange of rows (if you are required to do pivoting before
normalization), normalization, and elimination steps by indicating the
changes in [A] and {C}.

8. Apply the program GauJor to solve Problem 7.
9. Present every normalization and elimination steps involved in solving the

following system of linear algebraic equations by the Gauss-Jordan Elim-
ination Method:

5x1 – 2x2 + x3 = 4

–2x1 + 7x2 – 2x3 = 9

x1 – 2x2 + 9x3 = 40

10. Apply the program Gauss to solve Problem 9 described above.
11. Use MATLAB to solve the matrix equation given in Problem 7.
12. Use MATLAB to solve the matrix equation given in Problem 9.
13. Use Mathematica to solve the matrix equation given in Problem 7.
14. Use Mathematica to solve the matrix equation given in Problem 9.

MATRIX INVERSION

1. Run the program MatxInvD for finding the inverse of the matrix:

0 1 1

2 9 3

4 24 7

1

1

1

1

2

3

−































=
















x

x

x

3 2 1

2 5 1

4 1 7

2

3

3

1

2

3

−
































=
−
−

















x

x

x

A[] =
















3 0 2

0 5 0

2 0 3

© 2001 by CRC Press LLC

2. Write a program Invert3 which inverts a given 3 × 3 matrix [A] by using
the cofactor method. A subroutine COFAC should be developed for cal-
culating the cofactor of the element at Ith row and Jth column of [A] in
term of the elements of [A] and the user-specified values of I and J. Let
the inverse of [A] be designated as [AI] and the determinant of [A] be
designated as D. Apply the developed program Invert3 to generate all
elements of [AI] by calling the subroutine COFAC and by using D.

3. Write a QuickBASIC or FORTRAN program MatxSorD which will
perform the addition and subtraction of two matrices of same order.

4. Write a QuickBASIC or FORTRAN program MxTransp which will
perform the transposition of a given matrix.

5. Translate the FORTRAN subroutine MatxMtpy into a MATLAB m file
so that by entering the matrices [A] and [B] of order L by M and M by
N, respectively, it will produce a product matrix [P] of order L by N.

6. Enter MATLAB commands interactively first a square matrix [A] and
then calculate its trace.

7. Use MATLAB commands to first define the elements in its upper right
corner including the diagonal, and then use the symmetric properties to
define those in the lower left corner.

8. Convert either QuickBasic or FORTRAN version of the program Matx-
InvD into a MATLAB function file MatxInvD.m with a leading statement
function [Cinv,D] = MatxInvD(C,N)

9. Apply the program MatxInvD to invert the matrix:

Verify the answer by using Equation 1.
10. Repeat Problem 9 but by MATLAB operation.
11. Apply the program MatxInvD to invert the matrix:

Verify the answer by using Equation 1.
12. Repeat Problem 11 but by MATLAB operations.
13. Derive [Rx] and verify that it is indeed equal to [Tx]T. Repeat for [Ry] and

[Rz].
14. Apply MATLAB to generate a matrix [Rz] for θz = 45° and then to use

[Rz] to find the rotated coordinates of a point P whose coordinates before
rotation are (1,–2,5).

A[] =
















1 3 4

5 6 7

8 9 10

A[] =
− − −
− − −
− − −

















9 1 2

3 4 5

6 7 8

© 2001 by CRC Press LLC

15. What will be the coordinates for the point P mentioned in Problem 14 if
the coordinate axes are rotated counterclockwise about the z-axis by 45°?
Use MATLAB to find your answer.

16. Apply MATLAB to find the location of a point whose coordinates are
(1,2,3) after three rotations in succession: (1) about y-axis by 30°, (2)
about z-axis by 45° and then (3) about x-axis by –60°.

17. Change m file Animate1.m to animate just the rotation of the front (F)
side of the 4 � 2 � 3 brick in the graphic window.

18. Write a MATLAB m file for animation of pendulum swing1 as shown in
Figure 7.

19. Write a MATLAB m file for animation of a bouncing ball1 using an
equation of y = 3e–0.1xsin(2x + 1.5708) as shown in Figure 8.

20. Write a MATLAB m file for animation of the motion of crank-piston
system as shown in Figure 9.

21. Write a MATLAB m file to animate the vibrating system of a mass
attached to a spring as shown in Figure 10.

FIGURE 7. Problem 18.

© 2001 by CRC Press LLC

22. Write a MATLAB m file to animate the motion of a cam-follower system
as shown in Figure 11.

23. Write a MATLAB m file to animate the rotary motion of a wankel cam
as shown in Figure 12.

24. Repeat Problem 9 but by Mathematica operation.
25. Repeat Problem 11 but by Mathematica operation.
26. Repeat Problem 14 but by Mathematica operation.
27. Repeat Problem 15 but by Mathematica operation.
28. Repeat Problem 16 but by Mathematica operation.

FIGURE 8. Problem 19.

© 2001 by CRC Press LLC

FIGURE 9. Problem 20.

© 2001 by CRC Press LLC

FIGURE 10. Problem 21.

FIGURE 11. Problem 22.

© 2001 by CRC Press LLC

1.7 REFERENCE

1. Y. C. Pao, “On Development of Engineering Animation Software,” in Computers in
Engineering, edited by K. Ishii, ASME Publications, New York, 1994, pp. 851–855.

FIGURE 12. Problem 23.

2

© 2001 by CRC Press LLC

Exact, Least-Squares, and
Cubic Spline Curve-Fits

2.1 INTRODUCTION

Engineers conduct experiments and collect data in the laboratories. To make use of
the collected data, these data often need to be fitted with some particularly selected
curves. For example, one may want to find a parabolic equation y = c

1

 + c

2

x + c

3

x

2

which passes three given points (x

i

,y

i

) for i = 1,2,3. This is a problem of

exact curve-
fit

. Or, since knowing in advance that these three points should all fall on a straight
line, but the reason that they are not is because of bad calibration of the measuring
equipment or because of presence of noises in the testing environment.

In case that we may want express this straight line by the equation y = c

1

 + c

2

x
for the stress and strain data collected for a stretching test of a metal bar in the
elastic range, then the question of how to determine the two coefficients c

1

 and c

2

is a matter of deciding on which criterion to adopt. The

Least-Squares

 method is
one of the criteria which is most popularly used. The two cases cited are the
consideration of adopting the two and three lowest

polynomial

 terms, x

0

, x

1

, and x

2

,
and linearly combining them.

If the collected data are supposed to represent a sinusoidal function of time, the
curve to be determined may have to be assumed as x(t) = c

1

sint + c

2

sin3t + c

3

sin5t
+ c

4

sin7t by linearly combining 4 odd sine terms. This is the case of selecting four
particular functions, namely, f

i

(t) = sin(2i–1)t for i = 1,2,3,4., and to determine the
coefficients c

1–4

 by application of the least-squares method.
Often some special form of curve needs to be selected to fit a given set of data,

the least-squares criterion can still be applied if mathematical transformations can
be found to convert the equation describing the curve into linear equations. This is
discussed in a section devoted to transformed least-squares curve-fit.

Another commonly applied curve-fit technique is the cubic spline method which
allows smooth cubic equations to be derived to ensure continuous slopes and cur-
vatures passing all given points. The mathematics involved in this method will be
presented.

In the following sections, we shall discuss the development of the programs

ExactFit

,

LeastSq1

,

LeastSqG

, and

CubeSpln

 for the four curve-fit needs men-
tioned above.

2.2 EXACT CURVE FIT

As another example of solving a matrix equation, let us consider the problem
of finding a parabolic equation y = c

1

 + c

2

x + c

3

x

2

 which passes three given points

© 2001 by CRC Press LLC

(x

i

,y

i

) for i = 1,2,3. This is a problem of

exact curve-fit

. By simple substitutions of
the three points into the parabolic equation, we can obtain:

(1)

In matrix form, we write these equations as:

(2)

where {C} = [c

1

 c

2

 c

3

]

T

, {Y} = [y

1

 y

2

 y

3

]

T

, and [A] is a three-by-three coefficient
matrix whose elements if denoted as a

i,j

 are to be calculated using the formula:

(3)

It is easy to extend the above argument for the general case of exactly fitting N
given points by a N-1st degree polynomial y = c

1

 + c

2

x + ••• + c

N

x

N–1

. The only
modification needed is to allow the indices i and j in Equations 1 and 3 to be extended
to reach a value of N. A program called

ExactFit

 has been prepared for this need
by utilizing the subroutine

GauJor

 to solve for the vector {C} from Equation 1 for
the general case of exactly fitting N given points. Listings for both

FORTRAN

 and

QuickBASIC

 versions along with sample numerical results are presented below.

FORTRAN V

ERSION

c c x c x y ii i i1 2 3
2 1 2 3+ + = =for , ,

A C Y[]{ } = { }

a x i ji j i
j

, , , ,= =−1 1 2 3for

© 2001 by CRC Press LLC

Sample Applications

© 2001 by CRC Press LLC

Q

UICK

BASIC V

ERSION

Sample Application

MATLAB Application

For handling the exact curve fit of N given points with a N-1st degree polynomial,
there is no need to convert either the

FORTRAN

 or

QuickBASIC

 program

Exact-
Fit

. The sample problems therein can be readily solved by

MATLAB

 as follows:

© 2001 by CRC Press LLC

Notice that the coefficient {C} for the curve-fit polynomial is obtained by
solving [A]{C} = {Y} where matrix [A] is formed by substituting the X values
into the x

i

 terms for i = 0 to N–1 where N is the number of points provided.

MATLAB

 function

ones

 has been used to generate the first column of [A] and

MATLAB

 matrix operation of C = A\Y which premultiplies {Y} by [A]

–1

 to
obtain {C}.

Also, this exact curve-fit problem can be treated as a special case of fitting N
given points by a linear combination of N selected functions which in this case
happens to be the polynomial terms of x

0

 to x

N–1

, by the least-squares method. A m
file called

LeastSqG.m

 which is discussed in the program

LeastSqG

 can be readily
applied to treat such a exact curve-fit problem. Here, we demonstrate how

Least-
SqG.m

 is used by

MATLAB

 interactive operation in solving the sample problems
previously presented in the

FORTRAN

 and

QuickBASIC

 versions of the program

ExactFit

. First, a function must be prepared to describe the ith selected function x

i

as follows:

The results of four

MATLAB

 applications are:

© 2001 by CRC Press LLC

Notice the coefficient vector {C} in the curve-fit polynomial p(x) = c

1

 + c

2

x +
… + c

N

x

N–1

 is solved from the matrix equation [A]{C} = {R} where {A} and {R}
are generated using the specified points based on the least squares criterion. The
solution of [A]{C} = {R} is simply implemented by

MATLAB

 with the statement
C = A\R in the file LeastSqG.m.

To verify whether the points have really been fitted exactly, Figure 1 is presented.
It is plotted with the following

MATLAB

 statements, adding to those already listed
above:

Notice that for application of polyval.m,

MATLAB

 needs the coefficients of the
polynomial arranged in descending order. Since the array C contains the coefficients

© 2001 by CRC Press LLC

in ascending order, a new array called Creverse is thus created for calculation of the
curve values for 1

≤

X

≤

3 and with an increment of 0.1. Figure 1 shows that the
parabolic curve passes through all of the three given points.

2.3 PROGRAM LEASTSQ1 — LEAST-SQUARES LINEAR CURVE-FIT

Program

LeastSq1

 is designed for curve-fitting of a set of given data by a linear
equation based on the least-squares criterion.

2

 If only two points are specified, a
linear equation which geometrically describes a straight line can be uniquely derived
because the line must pass the two specified points. This is the case of

exact fit

. (See
programs

Gauss

 and

LagrangI

for examples of exact fit.) However, the specified
data are often recorded from a certain experiment and due to inaccurate calibration
of equipment or due to environmental disturbances such as noise, heat, and so on,
these data not necessarily follow an expected behavior which may be described by
a type of predetermined equation. Under such a circumstance, a so-called

forced fit

is then required. As a simple example, supposing that we expect the measured set
of three data points (X

i

,Y

i

) for i = 1,2,3 to satisfy a linear law Y = c

1

 + c

2

X. If these
three points happen to fall on a straight line, then we have a case of exact fit and

FIGURE 1.

The parabolic curve passes through all of the three given points.

© 2001 by CRC Press LLC

the coefficients c

1

 and c

2

 can be

uniquely

 computed. If these three points are not all
on a straight line and they still need to be fitted by a linear equation Y = c

1

 + c

2

X,
then they are forced to be fitted by a particular straight line based on a selected
criterion, permitting errors to exist between the data points and the line.

The least-squares curve-fit for finding a linear equation Y = c

1

 + c

2

X best repre-
senting the set of N given points, denoted as (X

i

,Y

i

) for i = 1 to N, is to minimize
the errors between the straight line and the points to be as small as possible. Since
the given points may be above, on, or below the straight line, and these errors may
cancel from each other if they are added together, we consider the sum of the squares
of these errors. Let us denote y

i

 to be the value of Y at X

i

 and S be the sum of the
errors denoted as e

i

 for i = 1 to N, then we can write:

(1)

where for i = 1,2,…,N

(2)

It is obvious that since X

i

 and Y

i

 are constants, the sum S of the errors is a
function of c

i

 and c

2

. To find a particular set of values of c

1

 and c

2

 such that S reaches
a minimum, we may therefore base on calculus

3

 and utilize the conditions

∂

S/

∂

c

1

 =
0 and

∂

S/

∂

c

2

 = 0. From Equation 1, we have the partial derivatives of S as:

and

From Equation 2, we note that

∂

e

i

/

∂

c

1

 = 1 and

∂

e

i

/

∂

c

2

 = X

i

. Consequently, the
two extremum conditions lead to two algebraic equations for solving the coefficients
c

1

 and c

2

:

(3)

S e e e eN i

i

N

= + +…+ =
=

∑1
2

2
2 2 2

1

e y y c c X Yi i i i i= − = + −1 2

∂
∂

= ∂
∂

+ ∂
∂

+…+
∂
∂







= ∂
∂

=
∑S

c
e

e

c
e

e

c
e

e

c
e

e

cN
N

i
i

i

N

1
1

1

1
2

2

1 1 11

2 2

∂
∂

= ∂
∂

+ ∂
∂

+…+
∂
∂







= ∂
∂

=
∑S

c
e

e

c
e

e

c
e

e

c
e

e

cN
N

i
i

i

N

2
1

1

2
2

2

2 2 21

2 2

1
1

1

1

2

1i

N

i

i

N

i

i

N

c X c Y
= = =

∑ ∑ ∑







 +









 =

© 2001 by CRC Press LLC

and

(4)

Program LeastSq1 provided in both FORTRAN and QuickBASIC versions is
developed using the above two equations. It can be readily applied for calculating
the coefficients c1 and c2. Two versions are listed and sample applications are
presented below.

QUICKBASIC VERSION

X c X c X Yi

i

N

i

i

N

i i

i

N

= = =
∑ ∑ ∑







 +









 =

1

1
2

1

2

1

© 2001 by CRC Press LLC

Sample Application

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

MATLAB APPLICATION

A m file in MATLAB called polyfit.m can be applied to fit a set of given points
(Xi,Yi) for i = 1 to N by a linear equation Y = C1X + C2 based on the least-squares
criterion. The function polyfit has three arguments, the first and second arguments
are the X and Y coordinate arrays of the given points, and the third argument specifies
to what degree the fitted polynomial is required. For linear fit, the third argument
should be set equal to 1. The following shows how the results obtained for the sample
problem used in the FORTRAN and QuickBASIC program LeastSq1:

>> X = [1,2,3,5,8]; Y = [2,5,8,11,24]; A = polyfit(X,Y,1)

C = 3.0195 – 1.4740

If the third argument for the function polyfit is changed (from 1) to 2, 3, and
4, we also can obtain the least-squares fits of the five given points with a quadratic,
cubic, and quartic polynomials, respectively. When the third argument is set equal
to 4, we then have the case of exact curve-fit of five points by a fourth-order
polynomial. Readers are referred to the program ExactFit for more discussions.

Also, it is of interest to know whether one may select an arbitrary set of
functions and linearly combine them for least-squares fit, instead of the unbroken
set of polynomial terms X0, X1, X2, …, XN. Program LeastSqG to be presented
in the next section will discuss such generalized least-squares curve-fit. But before
we do that, let us first look into a situation where program LeastLQ1 can be
applied for a given set of data after some mathematical transformations are
employed to modify the data.

Transformed Least-Squares Curve-Fit

There are occasions when we know in advance that a given set of data supposed
to fall on a curve described by exponential equations of the type:

© 2001 by CRC Press LLC

(5)
or

(6)

To determine the coefficients b1 and b2, or, c1 and c2 based on the least-squares
criterion, Equation 5 or 6 need to be first transformed into a linear form. To do so,
let us first consider Equation 5 and take natural logarithm of both sides. It gives:

(7)

If we introduce new variable z, and new coefficients a1 and a2 such that:

(8,9,10)

Then Equation 7 becomes:

(11)

Hence, if we need to determine the coefficients b1 and b2 for Equation 2.8 based
on N pairs of (xi,yi), for i = 1 to N, values and on the least-squares criterion, we
simply generate N z values according to Equation 2.11 and then use the N (xi,zi)
values as input for the program LeastSq1 and expect the program to calculate a1 and
a2. Equations 9 and 10 suggest that b2 is to have the value of a2 while b1 should be
equal to e raised to the a1 power, or, EXP(a1) with EXP being the exponential function
available in the FORTRAN or QuickBASIC library.

Equation 6 can be treated in a similar manner by taking logarithms of both sides
to obtain:

or

(12)

If we introduce new variable z, and new coefficients a1 and a2 such that:

(13,14,15)

Then, Equation 12 becomes Equation 11 and a1 and a2 can be obtained by the
program LeastSq1 using the data set of (xi,yi/xi) values.

As a numerical example, consider the case of a set of nine stress-versus-strain
(� vs. �) data collected from a stretching test of a long bar: (.265,1025), (.4,1400),
(.5,1710), (.7,2080), (.95,2425), (1.36,2760), (2.08,3005), (2.45,2850), and

y b eb x= 1
2

y c xec x= 1
2

� � � �n y n b n e n b b xb x= + = +1 1 2
2

z n y a n b a b= = =� �, , 1 1 2 2and

z a a x= +1 2

� � � � � �n y n c n x n e n c n x c xc x= + + = + +1 1 2
2

� � � �n y n x n
y
x

n c c x− = = +1 2

z n y x a n c c= () = =� �, , 1 1 2 2and a

© 2001 by CRC Press LLC

(2.94,2675) where the units for the strains and stresses are in microinch x 102 and
lb/in2, respectively. When program LeastSq1 is applied for the modified data of
(�,���), the coefficients for the linear fit are a1 = 15.288 and a2 = –537.71. Conse-
quently, according to Equations 13 and 14, and realizing that x and y are now � and
�, respectively, we have arrived at � = 4.3615 × 106�e–537.71. The derived curve and
the given points are plotted in Figure 2 which shows the curve passes the origin as
it should.

FIGURE 2. The curve passes the origin as it should.

© 2001 by CRC Press LLC

2.4 PROGRAM LEASTSQG — GENERALIZED
LEAST-SQUARES CURVEFIT

Program LeastSqG is designed for curve-fitting of a set of given data by a linear
combination of a set of selected functions based on the least-squares criterion.2

Let us consider N points whose coordinates are (Xk,Yk) for k = 1 to N and let
the M selected function be f1(X) to fM(X) and the equation determined by the least-
squares curve-fit be:

(1)

The least-squares curve-fit for finding the coefficients c1–M is to minimize the
errors between the computed Y values based on Equation 1 and the given Y values
at all Xk’s for k = 1 to N. Let us denote yk to be the value of Y calculated at Xk

using Equation 1 and S be the sum of the errors denoted as ek for k = 1 to N. Since
the yk could either be greater or less than Yk, these errors ek’s may cancel from each
other if they are added together. We therefore consider the sum of the squares of
these errors and write:

(2)

where for k = 1,2,…,N

(3)

It is obvious that since Xk and Yk are constants, the sum S of the errors is a
function of a1 to M. To find a particular set of values of a1 to M such that S reaches a
minimum, we may therefore base on calculus3 and utilize the conditions ∂S/∂ai = 0
for i = 1 to M. From Equation 2, we can have the partial derivatives of S with respect
to ai’s, for i = 1 to M, as:

From Equation 3, we note that ∂ek/∂ai = fi(Xk). Consequently, the M extremum
conditions, ∂S/∂ai = 0 for i = 1 to M, lead to M algebraic equations for solving the
coefficients a1 to M. That is, for i = 1 to M:

(4)

Y X a f X a f X a f X a f XM M j j

j

M

() = () + () +…+ () = ()
=

∑1 1 2 2

1

S e e e eN k

k

N

= + +…+ =
=

∑1
2

2
2 2 2

1

e y Y a f X Yk k k j j

j

M

k k= − = ()












−
=

∑
1

∂
∂

= ∂
∂

+ ∂
∂

+…+
∂
∂







= ∂
∂

=
∑S

a
e

e

a
e

e

a
e

e

a
e

e

ai i
N

N

i
k

k

N

k

i

2 21
1

1
2

2

1

f X f X a f X Yi k j k

k

N

j i

k

N

k k

j

M

() ()












= ()
= ==

∑ ∑∑
1 11

© 2001 by CRC Press LLC

If we express Equation 4 in matrix notation, it has the simple form:

(5)

where [C] is a MxM square coefficient matrix, and {A} and {R} are Mx1 column
matrices (vectors). {A} contains the unknown coefficients a1 to M needed in Equation 1.
If we denote the elements in [C] and {R} as cij and ri, respectively, Equation 5
indicates that these elements are to be calculated using the formulas, for i = 1,2,…,M:

(6)

and

(7)

The above derivation appears to be too mathematical; a few examples of actual
curve-fit will clarify the procedure involved. As a first example, consider the case
of selecting two (M = 2) functions f1(X) = 1 and f2(X) = X to fit three given points
(N = 3), (X1,Y1) = (1,1), (X2,Y2) = (2.6,2), and (X3,Y3) = (2.8,2). Equations 6 and 7
then provide the following:

and

Hence, the system of two linear algebraic equations for finding a1 and a2 for the
straight-line equation is:

C A R[]{ } = { }

c f X f Xij i

k

N

k j k= () ()
=

∑
1

r f X Yi i

k

N

k k= ()
=

∑
1

3 6 4

6 4 15 6

5

11 8
1

2

.

. . .














 = 





a

a

© 2001 by CRC Press LLC

The solution can be obtained by application of Cramer’s Rule to be a1 = 0.42466
and a2 = 0.58219. More examples will be given after we discuss how computer
programs can be written to compute [C] and {R} and then solve for {A}.

Program LeastSqG provided in both FORTRAN and QuickBASIC versions
is developed using the above two equations. It can be readily applied for calculating
the coefficients c1 to M. Both QucikBASIC and FORTRAN versions are listed and
sample applications are presented below.

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Applications

When four functions are selected as those listed in SUB FS, an interactive
application of the program LeastSqG QuickBASIC version using the input data
entered through keyboard has resulted in a screen display of:

If three sinusoidal functions, sin(�x/20), sin(3�x/20), and sin(5�x/20) were
selected and replacing those listed in SUB FS, another interactive application of the
program LeastSqG QuickBASIC version is shown below.

© 2001 by CRC Press LLC

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

By selecting the four functions listed in Subroutine FS, an interactive application
of the program LeastSqG using the input data given below has resulted in a screen
display of:

MATLAB APPLICATION

A LeastSqG.m file can be created and added to MATLAB m files which will
take N sets of X and Y points and fitted by a linear combination of M selected
functions in the least-squares sense. The selected functions can be specified in
another m file called FS.m (using the same name as in the FORTRAN and Quick-
BASIC versions). First, let us look at a version of LeastSqG.m:

Notice that the coefficients C’s is obtained by solving [A]{C} = {R} as in the
text. For MATLAB, a simple matrix multiplication of the inverse of [A] to and on
the left of the vector {R}. Complete execution of LeastSqG.m will be indicated by
a display of the matrix [A], vector {R}, and the solution vector {C}. The expression
feval(funfcn,i,X(k)) in the above program is to evaluate the ith function at X(k)
defined in a function file to be specified when LeastSqG.m is applied which is to
be illustrated next.

© 2001 by CRC Press LLC

Consider the case of given 5 (X,Y) points (N = 5) which are (1.4,2.25), (3.2,15),
(4.8,26.25), (8,33), and (10,35). And, the selected functions are sin(�X/20),
sin(3�X/20), and sin(5�X/20). That is, M = 3. The supporting function FS.m is
simply:

function F=FS(i,xv)
F=sin((2.*i-1).*xv.(pi./20);

Having prepared this file FS.m on a disk which is in drive A, we can now apply
LeastSqG.m interactively as follows:

>> X = [1.4,3.2,4.8,8,10]; Y = [2.25,15,26.25,33,35]; C = LeastSqG(�A:FS�,X,Y,3,5)

The results shown on screen are:

If four functions X, X2, sin(X), and cos(X) are selected, we may change the
FS.m file to:

© 2001 by CRC Press LLC

Same as for the FORTRAN and QuickBASIC versions, if we are given six
(X,Y) points, (1,2), (2,4), (3,7), (4,11), (5,23), and (6,45), MATLAB application of
LeastSqG.m will be:

>> X=[1,2,3,4,5,6]; Y=[2,4,7,11,23,45]; C-LeastSqG('A:FS',X,Y,4,6)

The results are:

Notice that the values in [A] and {R} are to be multiplied by the factor 1.0e +
003 as indicated. For saving space, [A], {R}, and {C} are listed side-by-side when
actually they are displayed from top-to-bottom on screen. To further utilize the
capability of MATLAB, the obtained {C} values are checked to plot the fitted curve
against the provided six (X,Y) points. The following additional statements are
entered in order to have a screen display as illustrated in Figure 3:

FIGURE 3. The ‘*’ argument in the second plot statement requests that the character * is
to be used for plotting the given points,

© 2001 by CRC Press LLC

The statement XC = [1:0.2:6] generates a vector of XC containing value from
1 to 6 with an increment of 0.2. The command “hold” enables the first plot of XC
vs. YC which is the resulting least-squares fitted curve, to be held on screen until
the given points (X,Y) are superimposed. The ‘*’ argument in the second plot
statement requests that the character * is to be used for plotting the given points, as
illustrated in Figure 3.

Next, another example is given to show how MATLAB statements can be applied
directly with defining a m function, such as FS which describes the selected set of
functions for least-squares curve fit. Consider the problem of least-squares fit of the
points (1,2), (3,5), and (4,13) by the linear combination Y = C1f1(X) + C2f2(X) where
f1(X) = X–1 and f2(X) = X2. An interactive application of MATLAB may go as follows:

The resulting curve is plotted in Figure 4 using 31 points, (XC,YC), calculated
based on the equation Y = –7.0526(X–1) + 2.1316X2 for X values ranging from 1
to 4. The three given points, (X,Y), are superimposed on the graph using ‘*’
character. Notice from the above statements, the coefficients C(1) and C(2) are solved
from the matrix equation [A]{C} = {R} where the elements in [A] are generated
using interactively entered statement and so are the elements of {R}. MATLAB
matrix operations such as transposition, subtraction, multiplication, and inversion
are all involved. Also, notice that here no use of MATLAB ‘hold’ as for generating
Figure 1, is necessary if X, Y, XC, and YC are all used as arguments in calling the

© 2001 by CRC Press LLC

plot function. The statement XC = 1:0.1:4 generates a XC row matrix having ele-
ments starting from a value equal to 1, equally incremented by 0.1 until a value of
4 is reached.

MATHEMATICA APPLICATIONS

Mathematica has a function called Fit which least-squares fits a given set of
(x,y) points by a linear combination of a number of selected functions. As the first
example of interactive application, let us find the best straight line which gives the
least squared errors for fitting a set of five points. This is the case of two selected
functions f1(x) = 1 and f2(x) = x. the interactive application goes as follows:

In[1]: = Fit[{{1,2},{2,5},{3,8},{5,11},{8,24}}, {1, x}, x]

Out[1]: = –1.47403 + 3.01948 x

Notice that Fit has three arguments: first argument specifies the data set, second
argument lists the selected function, and the third argument is the variable for the

FIGURE 4. The curve is plotted using 31 points, (XC,YC), calculated based on the equation
Y = –7.0526(X–1) + 2.1316X2 for X values ranging from 1 to 4.

© 2001 by CRC Press LLC

derived equation. In case that three points are given and the two selected functions
are f1(x) = x–1 and f2(x) = x2, then the interactive operation goes as follows:

In[2]: = Fit[{{1,2},{3,5},{4,13}}, {x–1, x^2}, x]

Out[2]: = –7.05263 (–1 + x) + 2.13158 x

Two other examples previously presented in the MATLAB applications can also
be considered and the results are:

In[3]: = (Fit[{{1,2}, {2,4}, {3,7}, {4,11}, {5,23}, {6,45}},
{x, x^2, Sin[x], Cos[x]}, x])

Out[3]: = –4.75756 x + 2.11159 x2 – 0.986915 Cos[x] + 5.76573 Sin[x]

and

In[4]: = (Fit[{{1.4, 2.25}, {3.2, 15}, {4.8, 26.25}, {8, 33}, {10, 35}},
{Sin[Pi*x/20], Sin[3*Pi*x/20], Sin[5*Pi*x/20]}, x])

All of the results obtained here are in agreement with those presented earlier.

2.5 PROGRAM CUBESPLN — CURVE FITTING
WITH CUBIC SPLINE

If a set of N given points (Xi,Yi) for i = 1, 2,…,N is to be fitted with a polynomial
of N–1 degree passing these points exactly, the polynomial curve will have many
fluctuations between data points as the number of points, N, increases. A popular
method for avoiding such over-fluctuation is to fit every two adjacent points with a
cubic equation and to impose continuity conditions at the point shared by two
neighboring cubic equations. This is like using a draftsman’s spline attempting to
pass through all of the N given points. It is known as cubic-spline curve fit. For a
typical interval of X, say Xi to Xi + 1, the cubic equation can be written as:

(1)

where ai, bi, ci, and di are unknown coefficients. If there are N–1 intervals and each
interval is fitted by a cubic equation, the total number of unknown coefficients is
equal to 4(N–1). They are to be determined by the following conditions:

1. Each curve passes two specified points. The first and last specified points
are used once by the first and N-1st curves, respectively, whereas all
interior points are used twice by the two cubic curves meeting there. This
gives 2 + 2(N–2), or, 2N–2 conditions.

Out[4]:= 





− 





− 





35 9251
20

1 19261
3

20
3 46705

5
20

. . .Sin
Pi x

Sin
Pi x

Sin
Pi x

Y a X b X c X di i i i= + + +3 2

© 2001 by CRC Press LLC

2. Every two adjacent cubic curves should have equal slope (first derivative
with respect to X) at the interior point which they share. This gives N–2
conditions.

(2)

3. For further smoothness of the curve fit, every two adjacent cubic curves
should have equal curvature (second derivative with respect to X) at the
interior point which they share. This gives N–2 conditions.

 4. At the end points, X1 and XN, the nature spline requires that the curvatures
be equal to zero. This gives 2 conditions.

Instead of solving the coefficients in Equation 1, the usual approach is to apply
the above-listed conditions for finding the curvatures, Y″ at the interior points, that
is for i = 2,3,…,N–1 since (Y″)1 = (Y″)N = 0. To do so, we notice that if Y is a cubic
polynomial of X, Y″ is then linear in X and can be expressed as:

(3)

If this is used to fit the ith interval, for which the increment in X is here denoted
as Hi = Xi + 1–Xi, we may replace the unknown coefficients A and B with the
curvatures at Xi and Xi + 1, (Y″)i and (Y″)i + 1 by solving the two equations:

(4,5)

By using the Cramer’s rule, it is easy to obtain:

(6,7)

Consequently, Equation 3 can be written as:

(8)

Equation 8 can be integrated successively to obtain the expressions for Y� and
Y as:

(9)

and

(10)

′′ = +Y AX B

′′ = + ′′ = ++ +Y AX B Y AX Bi i i i and 1 1

A
Y Y

X X
B Y

X Y Y

X X
i i

i i

i i i

i i

= ′ − ′′
−

= ′′ −
′′ − ′′()

−
+

+

+

+

1

1

1

1

 and

′′ = ′′ −() + ′′ −()+
+Y

Y

H
X X

Y

H
X Xi

i
i

i

i
i1

1

′ + − ′′ −() + ′′ −() ++
+Y

Y

H
X X

Y

H
X X Ci

i
i

i

i
i2 21

2 1 2

1

Y
Y

H
X X

Y

H
X X C X Ci

i
i

i

i
i= ′′ −() + ′′ −() + ++

+

6 61

3 1 3

1 2

© 2001 by CRC Press LLC

The integration constants C1 and C2 can be determined by the conditions that at
Xi, Y = Yi and at Xi + 1, Y = Yi + 1. Based on Equation 10, the two conditions lead to:

(11,12)

Again, Cramer’s rule can be applied to obtain:

(13)

and

(14)

Substituting C1 and C2 into Equations 11 and 12 and rearranging into terms
involving the unknown curvatures, the expressions for the cubic curve are:

(15)

and

(16)

Equation 15 indicates that the cubic curve for the ith interval is completely
defined if in addition to the specified values of Yi and Yi + 1, the curvatures at Xi and
Xi + 1, (Y″)i and (Y″)i + 1 respectively, also can be found. To find all of the curvatures
at the interior points X2 through XN–1, we apply the remaining unused conditions
mentioned in (2). That is, matching the slopes of two adjacent cubic curves at these

Y
Y

H C X C Y
Y

H C X Ci
i

i i i
i

i i= ′′ + + = ′′ + ++
+

+6 6
2

1 2 1
1 2

1 1 2 and

C
Y Y H Y Y

H
i i i i i

i
1

1 1

6
=

′′− ′′()
− −+ +

C
X Y X Y H X Y

H

X Y

H
i i i i i i i

i

i i

i
2

1 1 1 1

6
= −

′′− ′′() − −+ + + +

Y
Y X X

H
H X X

Y X X

H
H X Xi i

i
i i

i i

i
i i= ′′ −() − −()













+ ′′ −() − −()












+
+

+

6 6
1

3

1
1

3

+ −





+ −





+
+Y

X X

H
Y

X X

Hi
i

i
i

i

i

1
1

′ = ′′ −
−()











+ ′′
−() −













+ −+
+

+Y Y
H X X

H
Y

X X

H

H Y Y

Hi
i i

i
i

i

i

i i i

i6 2 2 6
1

2

1

2

1

© 2001 by CRC Press LLC

interior points. To match the slope at Xi, first we need to have the slope equation
for the preceding interval, that is from Xi–1 to Xi, for which the increment is denoted
as Hi–1. From Equation 16, we can easily write out that slope equation as:

(17)

Using Equations 16 and 17 and matching the slopes at the interior point Xi and
after collecting terms, we obtain:

(18)

This equation can be applied for all interior points, that is, at X = Xi for i =
2,3,…,N–1. Hence, we have N–2 equations for solving the N–2 unknown curvatures,
(Y″)i for i = 2,3,…,N–1 when the X and Y coordinates of N + 1 points are specified
for a cubic-spline curve fit. Upon substituting the calculated curvatures into Equation
15, we obtain the desired cubic polynomial for each interval of X.

If the N given points, (Xi,Yi) for i = 1,2,…,N, has a periodic pattern for every
increment of XN-X1, we can change the above formation for the open case to suit
this particular need by requiring that the points be specified with YN = Y1 and that
curvatures also should be continuous at the first and last points. That is to remove
the 4th rule, and also one condition each for the 2nd and 3rd rules described in (2).
Equation 18 is to be used for i = 1,2,…,N to obtain N equations for solving the N
curvatures. For obtaining the first and last equations, we utilize the fact that since
Y and its derivatives are periodic, in addition to YN = Y1, (Y″)N = (Y″)1, HN = H1,
we also have YN + 1 = Y2, Y0 = YN–1, (Y″)N + 1 = (Y″)2, (Y″)0 = (Y″)N–1, and H0 = HN–1.

A program called CubeSpln has been prepared to handle both the nonperiodic
and periodic cases. It formulates the matrix equation [A]{Y″} = {C} for solving the
curvatures at Xi for i = 1,2,…,N based on Equation 18. A Gaussian elimination
scheme is needed by this subroutine for obtaining the solutions of Y″. Program
CubeSpln also has a block of statements for plotting of the spline curves. This
subroutine is listed below.

QUICKBASIC VERSION

′ = ′′ −
−()











+ ′′
−() −













+ −
−

−

−

−

−

−

−

Y Y
H X X

H
Y

X X

H

H Y Y

Hi
i i

i
i

i

i

i i i

i
1

1

2

1

1

2

1

1

16 2 2 6

H Y H H Y H Y
Y Y

H

Y Y

Hi i i i i i i
i i

i

i i

i
− − − +

−

−

−′′ + +() ′′ + ′′ = − − −



1 1 1 1

1

1

12 6

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Sample Application

When program CubeSpln is run, it gives a plot of the cubic spline curves as
shown in Figure 5. The given points are marked with + symbols. Between every two
adjacent points, a third-order polynomial is derived. There are two different third-
order polynomials for the left and right sides of every in-between points, at which
the slopes and curvatures determined by the two third-order polynomials are both
continuous.

MATLAB APPLICATION

MATLAB has a function file called spline.m which can be applied to perform
the curve fit of cubic spline. The function has three arguments: the first and second
arguments are for the coordinates of the data points for which a cubic spline curve
fit is to be obtained, and the third argument should be an array containing a more
finely spaced abscissa at which the curve ordinates should be calculated for plotting
the spline curve. Let us redo the problem for which Figure 5 has been obtained. The
MATLAB application and the resulting display are as follows:

© 2001 by CRC Press LLC

The plot of the spline curve using XC and YC data superimposed with the given
5 (X,Y) points marked by the * character is shown in Figure 6 which is identical to
Figure 5 except different in the ranges of the axes.

For dealing with data sets, more features of plot.m of MATLAB can be utilized.
Figure 7 shows how different data sets can be marked with different characters, axes
can be labeled, and various text can be added. The interactive MATLAB commands
entered are:

Notice the commands xlabel, ylabel, and text are adding labels for the x and y
axes, and text, respectively. The specific content string of label or text is to be spelled
out inside the two single quotation signs. The first two arguments for text are the
coordinates, at which the left lower corner of the first character of that string.

FIGURE 5. When program CubeSpln is run, it gives a plot of the cubic spline curves.

© 2001 by CRC Press LLC

FIGURE 6. The plot of the spline curve using XC and YC data superimposed with the given
5 (X,Y) points marked by the * character is identical to Figure 5 except different in the ranges
of the axes.

FIGURE 7. How different data sets can be marked with different characters, axes can be
labeled, and various text can be added.

© 2001 by CRC Press LLC

MATHEMATICA APPLICATIONS

Mathematica has an interpolation function which fits a collection of specified
points by a polynomial. The command InterpolationOrder specifies the order of
polynomial and the default order is 3. Here are some examples of applications and
plots.

Input[1]: =

x = {1,2,3,4,5}

Output[1] =

{1, 2, 3, 4, 5}

Input[2]: =

y = {2,4,7,8,11}

Output[2] =

{2, 4, 7, 8, 11}

Input[3]: =

Plot[Evaluate[Interpolation[y]][x], {x,1,5},
Frame->True, AspectRatio->1]

Output[3] =

FIGURE 8.

© 2001 by CRC Press LLC

Evaluate calculates the values of the fitted polynomial within the specified
interval. In this case, the y values are interpolated using the cubic polynomial.

To add more features to a plot, Mathematica has commands Text allowing a
string of characters to be placed at a desired location, and FrameLabel allowing
labels to be added to the axes. In fact, Figure 8 is not the result of Input[3] but the
addition of the five + markers with the statement

Input[4]: =

Show[%,Graphics[Table[Text[“+”,{x[[i]],y[[i]]}],{i,1,5}]]]

Output[4] =

—Graphics—

% refers to the previous output and %% refers to the next-to-the-last output,
and so on. Show and Graphics enable additional graphics to be shown. Table lists
a series of entries specified by the running index variable which in this case is I
having a starting value of 1 and incremented by 1 (omitted), and ending at a value
equal to 5. Notice that the four * markers are not exactly located at the coordinates
specified, for the reason that the character itself is not centered but offsets like a
superscript.

As another example, consider the plot shown in Figure 9 which is resulted from
of the following statements:

Input[1]: =

X = {1,2,3,4}

Output[1] =

{1, 2, 3, 4}

Input[2]: =

Y = {2, 4, 7, 13}

Output[2] =

{2, 4, 7, 13}

Input[3]: =

X1 = {0.5, 1.2, 2.5, 3.7}

Output[3] =

{0.5, 1.2, 2.5, 3.7}

© 2001 by CRC Press LLC

Input[4]: =

Y1 = {3, 6, 5, 11}

Output[4] =

{3, 6, 5, 11}

Input[5]: =

X2 = {3.0, 3.6, 4.2, 5.1}

Output[5] =

{3.0, 3.6, 4.2, 5.1}

Input[6]: =

Y2 = {3, 6, 8, 11}

Output[6] =

{3, 6, 8, 11}

Input[7]: =

g1 = Show[Graphics[Table[Text[“*”,{X[[i]],Y[[i]] }],{i,1,5}],
Table[Text[“ + ”,{X1[[i]],Y1[[i]]}],{i,1,5}],
Table[Text[“.”,{X2[[i]],Y2[[i]]}],{i,1,5}]]]

Output[7] =

—Graphics—

Input[8]: =

g2 = Show[g1, Frame->True, AspectRatio->1,
FrameLabel->{“X”,“Y”}]

Output[8] =

—Graphics—

Input[9]: =

Show[g2,Graphics[Text[“X–Y — *”,{0.7,12},{–1,0}],
Text[“X1–Y1 — + ”,{0.7,11},{–1,0}],
Text[“X2–Y2 — .”,{0.7,10}],{–1,0}]]]

© 2001 by CRC Press LLC

Output[9] =

The two intermediate plots designated as g1 and g2 are actually displayed on
screen but not presented here. Only the final plot showing all of the ingredients is
presented in Figure 9. Giving plot names facilitates the later referral; a better arrange-
ment than using the % option. In Figure 9, it is also illustrated that the label for the
vertical axis is rotated by 90 degrees.

Mathematica has a package called SplineFit can also be called into service for
the need of spline curve-fit. For creating Figure 9, we may enter the request as
follows:

Input[1]: = <<NumericalMath`SplineFit`

Input[2]: = XYS = {{1,2},{2,4},{3,7},{4,8},{5,11}};

Input[3]: = Spline = SplineFit[XYS, Cubic]

Output[3] = SplineFunction[Cubic, {0.,4.}, <>]

Input[4]: = ParametricPlot[Spline[x], {x,0,4}, Frame->True, AspectRatio->1]

FIGURE 9.

© 2001 by CRC Press LLC

Output[4] = —Graphics—

Input[5]: = Show[%,Graphics[Table[Text[“X”,{XYS[[i]]}],{i,1,5}]]]

Output[5] = —Graphics—

In Input[1], << loads the specified package `SplineFit`. Input[2] illustrates how
the coordinates of points can be entered as pairs and ; can be used to suppress the
display of the output. “Cubic” spline fit is requested in Input[3] and in Input[5] the
ParametricPlot command is applied so that the coordinates of the points on the cubic
spline curves are generated using a third parameter. Input[5] also demonstrates how
a matrix should be called in a looping situation.

Notice that two plots for Output[4] and Output[5] are not presented here, for
the reason that Figure 9 already shows all of the needed details. However, it should
be mentioned that use of “X” as the character in Text for marking the five XYS
points in Input[5] will enable it to be centered at the coordinates specified instead
of being upwardly offset as is the case of using the character “*” in Figure 9.

2.6 PROBLEMS

EXACT CURVE-FIT

1. Modify the program ExactFit so that the given points (1,3), (3,8), and
(4,23) can be exact-fitted by the equation y = c1x + c2x2 + c3x4.

2. Modify the program ExactFit so that the given points (0,0.2), (2,0.5),
(5,–0.4), and (7,–0.2) can be exact-fitted by the equation y = c1sinx +
c2sin2x + c3sin3x + c4sin4x.

LEASTSQ1

1. Given five points (1,1), (2,3), (3,2), (4,5), and (5,4), calculate the coeffi-
cients c1 and c2 in the linear equation y = c1 + c2x which fits the five points
by the least-squares method.

2. For a given set of data (1,–2), (2,0), (3,1), and (4,3), two equations have
been suggested to fit these points. They are Y = X–2 and Y = (-X2 +
7X–10)/2. Based on the least-squares criterion, which equation should be
chosen to provide a better fit? Explain why?

3. During a tensile-strength test of a metallic material the following data
(Xi,Yi) for i = 1,2,…,7 where X and Y represent strain (extension per unit
length) and stress (force per unit area), respectively, have been collected:

X .265 .395 .695 .955 1.35 2.05 2.45 (x10–3)

Y 1.03 1.41 1.71 2.09 2.42 2.76 3.01 (x103)

© 2001 by CRC Press LLC

Fit these data by the least-squares method with an equation Y =
b1XExp(b2X) and calculate the values of the coefficients b1 and b2. (Note:
ln(Y/X) = ln(b1) + b2X)

4. Apply polyfit of MATLAB to the data given in Problem 1 and fit them
linearly. Compare the answer with that of Problem 1.

5. Same as Problem 4 except the data are to be fitted by a quadratic equation.
6. Same as Problem 4 except the data are to be fitted by a cubic equation.
7. Same as Problem 4 except the data are to be fitted by a quartic equation.
8. Use the results of Problems 4 through 7 and enter MATLAB statements

to compare their errors.
9. Apply polyfit of MATLAB to the data given in Problem 3 and fit them

linearly. Compare the answer with that of Problem 3.
10. Same as Problem 9 except the data are to be fitted by a quadratic equation.
11. Same as Problem 9 except the data are to be fitted by a cubic equation.
12. Same as Problem 9 except the data are to be fitted by a quartic equation.
13. Use the results of Problems 9 through 12 and enter MATLAB statements

to compare their errors.
14. Save the results of Problems 4 through 7 and generating the four curves

determined by the least-squares method. Obtain a composite graph of
these four curves superimposed with the given points marked using the
character * by application of plot.

15. Same as Problem 14 but for the curves determined by Problems 9 through 12.
16. Try Mathematica to obtain and compare results for the above problems.

LEASTSQG

1. Given four points (1,0.5), (2.5,0.88), (3.2,1.35), and (4.5,2.76), they are
to be least-squares fitted by a linear combination of two selected functions,
f1(x) = e-x and f2(x) = e–2x, in the form of f(x) = c1f1(x) + c2f2(x). Find c1

and c2.
2. For a given set of 10 points, (xi,yi) for i = 1,2,…,10, the least-squares

method has been applied to fit these data by two students. Student A
selects 3 functions f1(x) = x, f2(x) = x3, and f3(x) = x5 to obtain the coef-
ficients a1, a2, and a3 for the expressiony = a1x + a2x3 + a3x5. Student B
selects 3 other functions f1(x) = sinx, f2(x) = sin3x, and f3(x) = sin5x to
obtain the coefficients b1, b2, and b3 for the expression y = b1sinx + b2sin3x
+ b3sin5x. Write a program to calculate the least-squares errors EA and
EB for the curve-fit approaches taken by the students A and B, respectively.

3. Apply the least-squares method to curve-fit the following three given
points by a linear combination of two selected functions f1(x) = x and
f2(x) = x3, namely, y = c1x + c2x3:

Find c1 and c2 by use of Cramer’s Rule.

x 0 1 2

y –1 0 2

© 2001 by CRC Press LLC

4. Given eight data points (Xi,Yi) for i = 1,2,…,8 as listed, fit them by the
least-squares method with the equation Y = a1 + a2X + a3X2. Find a1–3 by
applying the computer program LeastSqG.

5. A set of three points are provided as listed: (1,0.2), (2,0.5), and (3,0.6).
These points are to be fitted by application of the least-squares method
using a linear combination of (a) two functions x and x2, or (b) two other
functions x0 and x3. Which fit will be better, a or b? Back up your answer
with detailed calculations.

6. Given three points (1,2), (3,5), and (4,13), two selected functions f1(x) =
x–1 and f2(x) = x3 are to be linearly combined to fit these points by the
equation y = a1f1(x) + a2f2(x) = a1(x–1) + a2x3. Derive two equations
needed for solving a1 and a2 by use of the Least-Squares method.

7. Given 7 points of which the coordinates are X(i) and Y(i) for i = 1 to 7,
a least-squares fit of these points with a linear combination of 3 selected
functions f1(X) = X, f2(X) = sin2X, and f3(X) = e-X in the form of Y(X) =
C(1)f1(X) + C(2)f2(X) + C(3)f3(X) has been conducted and the coefficients
C(1) to C(3) have been found. Complete the following segment of FOR-
TRAN program to calculate the total error E which is the sum of the
squares of the differences between Y(X(i)) and Y(i) for i = 1 to 7.

DIMENSION X(7),Y(7),C(3)
DATA X,Y,C/(17 real numbers separated by,)/

insert statements for
< - - - calculation of E involving

C, X, Y, and f1, f2, and f3.

WRITE (*,*) E
STOP
END

8. For a given set of data (1,–2), (2,0), (3,1), and (4,3), two equations have
been suggested to fit these points. They are Y = X–2 and Y = (-X2 +
7X–10)/2. Based on the least-squares criterion, which equation should be
chosen to provide a better fit? Explain why.

9. Given 12 points of which the coordinates are X(i) and Y(i) for i = 1 to 7,
a least-squares fit of these points with a linear combination of 4 selected
functions f1(X) = X, f2(X) = sin2X, f3(X) = cos3X, and f4(X) = e-X in the
form of Y(X) = C(1)f1(X) + C(2)f2(X) + C(3)f3(X) + C(4)f4(X) has been
conducted and the coefficients C(1) to C(4) have been found. Complete
the following segment of FORTRAN program to calculate the total error
E which is the sum of the squares of the differences between Y(X(i)) and
Y(i) for i = 1 to 12, using a FUNCTION subprogram F(I,X) which evaluate
the Ith selected function at a specified X value for i = 1 to 4.

X 1 2 3 4 5 6 7 8

Y 1.13 1.45 1.76 2.19 2.43 2.79 3.51 4.88

© 2001 by CRC Press LLC

DIMENSION X(12),Y(12),C(4)
DATA X,Y,C/(28 real numbers separated by,)/

insert statements for
< - - - calculation of E involving

C, X, Y, and f1, f2, and f3.

WRITE (*,*) E
STOP
END

10. Any way one can solve the above-listed problem by application of MAT-
LAB? Compare the computed results obtained by QuickBASIC, FOR-
TRAN, and MATLAB approaches.

11. Try Mathematica and compare results for the above problems.

CUBIC SPLINE

1. Presently, program CubeSpln is not interactive. Expand its capability to
allow interactive input of the number of points, N, and coordinates (Xi,Yi)
for i = 1 to N. Also, user should be able to specify the KK value so that
both periodic or nonperiodic data points can be fitted. Call this program
CubeSpln.X and rerun the case used in Sample Application.

2. Change the program CubeSpln slightly to allow a sixth point to be con-
sidered. Add a sixth point whose Y value is equal to that of the first point
then run it as a periodic case by changing KK equal to 2. The resulting
plot for X(6) = 5.5 should be as shown below.

© 2001 by CRC Press LLC

3. Use the program CubeSpln.X to run Problem 2.
4. Apply spline.m of MATLAB to fit the points (1,2), (2,4), (3,7), and (4,13)

and then plot the curve by using plot.m. Mark the points by the character *.
5. Apply spline.m of MATLAB to fit the points (0.5,3), (1.2,6), (2.5,5), and

(3.7,11) and then plot the curve by using plot.m. Mark the points by the
character + .

6. Apply spline.m of MATLAB to fit the points (3,3), (3.6,6), (4.2,8), and
(5.1,11) and then plot the curve by using plot.m.

7. Combine the curves obtained in Problems 4 to 6 into a composite graph
by using solid, broken, and center lines which in use of plot.m require to
specify with ‘-’, ‘- - -’, and ‘-.’, respectively. The resulting composite
graph should look like the figure below.

8. Use text command of MATLAB to add texts ‘Problem 4’, ‘Problem 5’,
and ‘Problem 6’ near the respective curves already drawn in Problem 7.

9. The temperature data in °F, collected during a period of seven days are (2,75),
(3,80), (4,86), (5,92), (6,81), and (7,90). Cubic-spline fit these data, plot the
curve, and label the horizontal axis with ‘Days’ and vertical axis with ‘Tem-
perature, in Fahrenheit’ by use of xlabel and ylabel commands of MATLAB.

© 2001 by CRC Press LLC

10. Add to the graph obtained for Problem 9 by marking the data points with
the character * and also a text ‘Cubic Spline of Temperature Data’ at an
appropriate location not touching the spline curve.

2.7 REFERENCES

1. Y. C. Pao, “On Development of Engineering Animation Software,” in Computers in
Engineering, K. Ishii, editor, ASME Publications, New York, 1994, pp. 851–855.

2. A. Ralston, A First Course in Numerical Analysis, McGraw-Hill, New York, 1965.
3. H. Flanders, R. R. Korfhage, and J. J. Price, A First Course in Calculus with Analytic

Geometry, Academic Press, New York, 1973.

3

© 2001 by CRC Press LLC

Roots of Polynomials and
Transcendental Equations

3.1 INTRODUCTION

In the preceding chapter, we derive equations which fit a given of data either exactly,
or, by using a criterion such as the least-squares method. Once such equations have
been obtained in the form of y = C(x) when the data are two-dimensional, or, z =
S(x,y) when the data are three-dimensional. It is next of common interest to find
where the curve C(x) intercepts the x-axis, or, where the surface S(x,y) intercepts
with the x-y plane. Mathematically, these are the problems of finding the

roots

 of
the equations C(x) = 0 and S(x,y) = 0, respectively. The equation to be solved could
be a

polynomial

 of the form P(x) = a

1

 + a

2

x + … + a

i

x

i–1

 + … + a

N + 1

x

N

 which is
of Nth order, or, a

transcendental equation

 such as C(x) = a

1

sinx + a

2

sin2x + a

3

sin3x.
As it is well known, a polynomial of Nth order should have N roots which could

be real, or, complex conjugate pair if the coefficients of the polynomial are all real.
Geometrically speaking, only those real roots really pass the x-axis. For a transcen-
dental equation, there may be infinite many roots. In this chapter, we shall introduce
computational methods for finding the roots of polynomials and transcendental
equations. Beginning with the very primitive approach of incremental and half-
interval searches, the approximate location of a particular root is to be located. More
refined, systematic methods such as the linear interpolation and Newton-Raphson
methods are then followed to determine the more precise location of the root. A
program called

FindRoot

 incorporating the four methods is to be presented for
interactive solution of a particular root of a given polynomial or transcendental
equation when the upper and lower bounds of the root are provided.

Also discussed is a method called

Successive Substitution

. A transcendental
equation derived from analysis of a four-bar linkage problem is used to demonstrate
how roots are to be found by application of this method. Another transcendental
equation has been derived for the unit-step response analysis of a mechanical vibra-
tion system and its roots solved by application of the Newton-Raphson method to
illustrate how the design specifications are checked in the time domain.

Since the Newton-Raphson method for solving F(x) = 0 which can be a poly-
nomial, or, transcendental equation of one variable is based on the Taylor’s series
involving the derivatives of F(x), it can be extended to the solution of two-equations
F

1

(x,y) = 0 and F

2

(x,y) = 0 by application of Taylor’s series involving partial deriv-
atives of both F

1

 and F

2

 with respect to x and y. A program called

NewRaphG

 has
been developed for this purpose. Also, this generalized Newton-Raphson method
allows the quadratic factors of a higher order polynomial to be iteratively and contin-
uously extracted and their quadratic roots solved by the so-called

Bairstow

 method.
For that, a program called Bairstow is made available for interactive application.

© 2001 by CRC Press LLC

Both

QuickBASIC

 and

FORTRAN

 versions for the above-mentioned programs
are presented. Both the application of the

roots

 m-file of

MATLAB

 in place of the
program Bairstow and direct conversion of the program

FindRoot

 into

MATLAB

version are also presented. The

Mathematica

’s function

NSolve

 is introduced in
place of the program

Bairstow

 if the user prefers. Also the linear interpolation
method used in the program

FindRoot

 has been translated into

Mathematica

version. In fact.

Mathematica

 has its own

FindRoot

 based on the Newton-Raphson
method.

3.2 ITERATIVE METHODS AND PROGRAM FINDROOT

Program FindRoot is developed for interactive selection of an iterative method
among the four made available: (1) Incremental Search, (2) Bisection Search, (3)
Linear Interpolation, and (4) Newton-Raphson Iteration. Polynomials are often
encountered in engineering analyses such as the characteristic equations in vibra-
tional and buckling problems. The roots of a polynomial are related to some impor-
tant physical properties of the systems being analyzed, such as the frequencies of
vibration or buckling loads. A nth degree polynomial can be expressed as:

(1)

For n = 1,2,3, there are formulas readily available in standard mathematical
handbooks

1

 for finding the roots. But for large n values, computer methods are then
necessary to help find the roots of a given polynomial. The methods to be discussed
here are simple and direct and are applicable to not only polynomials but also
transcendental equations such as 5 + 7cosx – cos60° – cos(60° – x) = 0 related to a
linkage design problem

2

 or x = 40000/{1–0.35sec[40(x/10

7

)

0.5

]} arisen from buck-
ling study of slender rods.

3

I

NCREMENTAL

 S

EARCH

For convenience of discussion, let us consider a cubic equation:

(2)

To find a root of P(x), we first observe that P(x = –

∞

)<0, P(x = 0) = 1, and P(x =
–

∞

)>0. This indicates that the P(x) curve must cross the x axis, possibly once or an
odd number of times. Also, the curve may remain above the x-axis or cross it an even
number of times. To further narrowing down the range on the x-axis, in which the root
is located, we can begin to check the sign of P(x) at x = –10 and search toward the
origin using an increment of x equal to 2. That is, we may construct a list such as:

P x a a x a x a x a x

a x

n
n

n
n

k
k

k

n

() = + + +…+ +

= =

−
+

−

=

+

∑
1 2 3

2 1
1

1

1

1

0

P x x x x() = + + + =1 2 3 4 02 3

© 2001 by CRC Press LLC

Since P(x) changes sign from x = –2 to x = 0, this incremental search can be
continued using an increment of x equal to 0.2 and the left bound x = –10 by replaced
by x = –2 to obtain:

The search continues as follows:

If only three significant figures accuracy is required, then x = 0.606 is the root
and it has taken 23 incremental search steps to arrive at this answer. If better accuracy
is required, the root should then be sought between x = –0.6060 and x = –0.6058.

Program

FindRoot

 prepared both is

QuickBASIC

 and

FORTRAN

 has one of
the options using the above-explained incremental search method, it also has other
methods of finding the roots of polynomials and transcendental equations to be
introduced next.

B

ISECTION

 S

EARCH

The above example of incremental search shows that if we search from left to
right of the x-axis for the root of 4x

3

 + 3x

2

 + 2x + 1 = 0 between x = –2 and x = 0,
it would be longer than if we search from right to left because the root is near x =
0. Rather than using a fixed incremental in the incremental search method, the
bisectional method uses the mid-point of the two bounds of x in search of the root.
It involves the testing of the signs of the polynomial at the bounds of the root and
replacing the bounds. The two search methods follow the same procedure. So, the
bisection method would go as follows:

X –10 –8 –6 –4 –2 0

P(x) – – – – – +

X –1.8 –1.6 • • • –0.8 –0.6

P(x) – – – – +

x –0.78 –0.76 • • • –0.62 –0.60

P(x) – – – – +

x –0.618 –0.616 • • • –0.606 –0.604

P(x) – – – – +

x –0.6058

P(x) +

x –10 0 –5 –2.5 –1.25 –0.625 –0.3125

P(x) – + – – – – +

x –0.46875 –0.546875 –0.5859375 –0.6054688

P(x) + + + +

© 2001 by CRC Press LLC

If we require only three significant figures accuracy, then –0.606 can be consid-
ered as the root after having taken 18 bisection search steps.

L

INEAR

 I

NTERPOLATION

Notice that both the incremental and bisection search methods make no use of
the values of the polynomials at the guessed x values. For example, at x = –10 and
x = 1, the polynomial P(x) has values equal to –3719 and 1, respectively. Since P(x =
1) has a smaller value than P(x = –10), we would certainly expect the root to be
closer to x = 1 than to x = –10. The linear interpolation makes use of the values of
P(x) at the bounds and calculates a new guessing value of the root using the following
formulas derived from the relationship between two similar triangles:

(3)

where x

L

 and x

R

 are the left and right bounds of the root, which in this case are
equal to –10 and 1, respectively. Based on Equation 3 and P(x

L

) = –3719 and P(x

R

) =
1, we can have x = –0.002688 and P(x) = 0.9946. Since P(x)>0, we can therefore
replace x

R

 = 1 with x

R

 = 0.002688. Linear interpolation involves the continuous use
of Equation 3 and updating of the bounds.

N

EWTON

-R

APHSON

 I

TERATIVE

 M

ETHOD

Linear interpolation method uses the value of the function, for which the root
is being sought; Newton-Raphson method goes one step farther by involving with
the derivative of the function as well. For example, the polynomial P(x) = 4x

3

 + 3x

2

+ 2x + 1 = 0 has its first-derivative expression P'(x) = 12x

2

 + 6x + 2. If we guess
the root of P(x) to be x = x

g

 and P(x

g

) is not equal to zero, the adjustment of x

g

,
calling

∆

x, can be obtained by application of the Taylor’s series:

Since the intention is to find an adjustment

�

x which should make P(x

g

 +

�

x)
equal to zero and

∆

x itself should be small enough to allow higher order of

�

x to
be dropped from the above expression. As a consequence, we can have 0 = P(x

g

) +
P'(x

g

)

�

x, or

(4)

x –0.6152344 –0.6103516 –0.6079102 –0.6066895

P(x) – – – –

x –0.6060792 –0.6057741 –0.6059266

P(x) – + -2.68817E-04

x x P x x x P xL L R R−() − ()[] = −() ()

P x x P x P x x P x xg g g g+() = () + ′ ()[] + ′′ ()[]() …∆ ∆ ∆1 2 2! !

∆x P x P xg g= − () ′()

© 2001 by CRC Press LLC

Equation 4 is to be continuously used to make new guess, (x

g

)

new

 = x

g

 +

�

x, of
the root, until P(x = (x

g

)

new

) is negligibly small.
The major shortcoming of this method is that during the iteration, if the slope

at the guessing point becomes too small, Equation 4 may lead to a very large Dx
so that the x

g

 may fall outside the known bounds of the root. However, this method
has the advantage of extending the iterative procedure to solving multiple equations
of multiple variables (see program

NewRaphG

).
An interactive program called

FindRoot

 has been developed in both

QuickBA-
SIC

 and

FORTRAN

 languages with all four methods discussed above. User can
select any one of theses methods, edits the equation to be solved, specifies the bounds
of the root, and gives the accuracy tolerance for termination of the root finding. The
programs are listed below along with sample applications.

Q

UICK

BASIC V

ERSION

Sample Application

All four methods have been applied for searching the roots of the equation
x

2

–sin(x)–1 = 0 in the intervals (–1,–0.5) and (1,1.5). The negative root equal to
–0.63673 was found after 27, 15, 5, and 3 iterations and the positive root equal to 1.4096
after 29, 15, 4, and 4 iterations by the incremental search, bisection search, linear
interpolation, and Newton-Raphson methods, respectively. An accuracy tolerance of

© 2001 by CRC Press LLC

1.E–5 was used for all cases. For solving this transcendental equation, Newton-
Raphson therefore is the best method.

FORTRAN V

ERSION

© 2001 by CRC Press LLC

Sample Application

The interactive question-and-answer process in solving the polynomial 4x

3

 +
3x

2

 + 2x + 1 = 0 using the Newton-Raphson method and the subsequent display on
screen of the iteration goes as follows:

Notice that in the

FORTRAN

 program

FindRoot

, the

statement functions

 F(X)
and FP(X) are defined for calculating the values of the given function and its
derivative at a specified X value. Also, a

character variable

 AS is declared through
a CHARACTER*N with N being equal to 1 in this case when AS can have only
one character as opposed to the general case of having N characters.

© 2001 by CRC Press LLC

MATLAB A

PPLICATION

A

FindRoot.m

 file can be created and added to

MATLAB

 m files for the purpose
of finding a root of a polynomial or transcendental equation. In this file, the four
methods discussed in the

FORTRAN

 or

QuickBASIC

 versions can all be incorpo-
rated. Since some methods require that the left and right bounds, x

l

 and x

r

, be
provided, the m file listed below includes as arguments these bounds along with the
tolerance and the limited number of iterations:

Notice that the equation for which a root is to be found should be defined in a
mile file called

FofX.m

, and that if the Newton-Raphson method, i.e., option 4, is
to be used, then the first derivative of this equation should also be defined in a m
file called

DFDX.m

. We next present four examples demonstrating when all four
methods are employed for solving a root of the polynomial F(x) = 4x

3

 + 3x

2

 + 2x
+ 1 = 0 between the bounds x = –1 and x = 0 using a tolerance of 10

–5

. In addition
to

FindRoot.m

 file, two supporting m files for this case are:

© 2001 by CRC Press LLC

The four sample solutions are (some printout have been shortened for saving
spaces:

© 2001 by CRC Press LLC

Notice that incremental search, half-interval search, interpolation, and Newton-
Raphson methods take 28, 17, 16, and 4 iterations to arrive at the root x = –0.6058,
respectively. The last method therefore is the best, but is only for this polynomial
and not necessary so for a general case.

Method of Successive Substitution

As a closing remark, another method called successive substitution is sometimes
a simple way of finding a root of a transcendental equation, such as for solving the
angle in a four-bar linkage problem shown in Figure 1. Knowing the lengths L

AB

,
L

BC

 amd L

CD

, and the angle of the driving link AB, the angle of the driven link CD,
can be found by guessing an initial value of

γ

(0)

 and then continuously upgraded
using the equation:

(5)

where the superscript k serves as an iteration counter set equal to zero initially. For

α

changing from 0 to 360°, it is often required in study of such mechanism to find
the change in

γ

. This is left as a homework for the reader to exercise.

γ α α γk

BC
AB CD

k

L
L L+() − ()= − + −()[]








1 1 1
cos cos cos

© 2001 by CRC Press LLC

M

ATHEMATICA

 APPLICATIONS

To illustrate how Mathematica can be applied to find a root of F(x) = 1 + 2x
+ 3x2 + 4x3 = 0 in the interval x = [xl,xr] = [–1,0], the linear interpolation is used
below but similar arrangements could be made when the incremental, or, bisection
search, or, Newton-Raphson method is selected instead.

Input[1]: = F[x_]: = 1. + 2*x + 3*x^2 + 4*x^3

Input[2]: = xl = –1; xr = 0; fl = F[xl]; fr = F[xr]; fx = fl;

Input[3]: = Print[“xl = “,xl,” xr = “,xr,” F(xl) = “,fl,” F(xr) = “,fr]

Output[3]: = xl = –1 xr = 0 F(xl) = –2. F(xr) = 1.

Input[4]: = (While[Abs[fx]>0.00001, x = (xr*fl-xl*fr)/(fl-fr);fx = F[x];

Print[“x = “,N[x,5],” F(x) = “,N[fx,5]];
If[fx*fl<0, xr = x;fr = fx;, xl = x;fl = fx;]])

Output[4]: = x = –0.33333 F(x) = 0.51852

x = –0.47059 F(x) = 0.30633
x = –0.54091 F(x) = 0.1629
x = –0.57548 F(x) = 0.080224
x = –0.59185 F(x) = 0.037883
x = –0.59944 F(x) = 0.017521
x = –0.60292 F(x) = 0.0080245
x = –0.60451 F(x) = 0.0036586

FIGURE 1. Successive substitution sometimes is a simple way of finding a root of a tran-
scendental equation, such as for solving the angle γ in a four-bar linkage problem.

© 2001 by CRC Press LLC

x = –0.60523 F(x) = 0.0016646
x = –0.60556 F(x) = 0.00075666
x = –0.60571 F(x) = 0.00034379
x = –0.60577 F(x) = 0.00015618
x = –0.60580 F(x) = 0.000070940
x = –0.60582 F(x) = 0.000032222
x = –0.60582 F(x) = 0.000014635
x = –0.60583 F(x) = 6.6473x10–6

Notice that 16 iterations are required to achieve the accuracy that the value of
|F(x)| should be no greater than 0.00001. In Input[1], the equation being solved is
defined in F[x]. 1. is entered instead of an integer 1 so that all computed F(x) values
when printed will be in decimal form instead of in fractional form as indicated in
Output[3]. In Input[4], a pair of parentheses are added to allow long statements be
entered using many lines and broken and listed with better clarity. Also, N[exp,n]
is applied to request that the value of expression, exp, be handled with n significant
figures. The command If is also employed in Input[4]. It should be used in the form
of If[condition, GS1, GS2], which implements the statements in the group GS1 or
in the group GS2 when the condition is true or false, respectively. Abs computes
the absolute value of an expression specified inside the pair of brackets.

3.3 PROGRAM NEWRAPHG — GENERALIZED
NEWTON-RAPHSON ITERATIVE METHOD

Newton-Raphson method4 has been discussed in the program FindRoot in iterative
solution of polynomials and transcendental equation. Here, for an extended discus-
sion of this method for solving a set of specified equation, we reintroduce this method
in greater detail. This method is based on Taylor’s series.5 Let us start again with
the case of one equation of one variable. Let F(X) = 0 be the equation for which a
root Xr is to be found. If this root is known to be in the neighborhood of Xg, then
based on Taylor’s series expansion we may write:

(1)

where:

(2)

and the prime in Equation 1 represents differentiation with respect to X. Since Xr

is a root of F(X) = 0, therefore F(Xr) = 0. And if Xg is sufficiently close to Xr, �X
is small and the terms involving (�X)2 and higher powers of �X in Equation 1 can
be neglected. It leads to:

(3)

F X F X F X X F X Xr g g g() = () + ′() + ′′()() +…∆ ∆ 2 2!

∆X X Xr g= −

X X F X F Xr g g g= − () ′ ()[]

© 2001 by CRC Press LLC

This result suggests that if we use a projected root value according to Equation 3
as next guess, an iterative process can then be continued until the condition F(Xg) =
0 is, if not exactly, almost satisfied.

The Newton-Raphson iterative procedure is developed on the above mentioned
concept by using the formula:

(4)

where k is an iteration counter. By providing an initial guess, X(0)
g, Equation 4 is to

be repeatedly applied until F(X(k)
g) is almost equal to zero which by using a tolearance

can be tested with the condition:

(5)

As an example, consider the case of:

(6)

for which

(7)

If we make an initial guess of X(0))
g = 1.75 and set a tolerance of = 0.00001, the

Newton-Raphson iteration will proceed as follows:

Program FindRoot has a fourth option for Newton-Raphson iteration of a root
for a specified equation of one variable. The results tabulated above are obtained by
the program FindRoot.

TRANSCENDENTAL EQUATIONS

Not only for polynomials, Newton-Raphson iterative method can also be applied
for finding roots of transcendental equations. To introduce a transcendental equation,
let us consider the problem of a moving vehicle which is schematically represented
by a mass m in Figure 2. The leaf-spring and shock absorber are modelled by k and
c, respectively.

Trial No. X F(X)
0 1.7500 0.23438
1 2.0572 –0.05701
2 1.9825 0.01753
3 2.0008 –0.00085
4 2.0001 –0.00011
5 2.0000 0.00001

X X F X F Xg
k

g
k

g
k

g
k+() () () ()= − () ′()1

F Xg
k()() < ε

F X X X X() = − + − =3 26 11 6 0

′() = − +F X X X3 12 112

© 2001 by CRC Press LLC

If the vehicle is suddenly disturbed by a lift or drop of one of its supporting
boundaries by one unit (mathematically, that is a unit-step disturbance), it can be
shown2 that the elevation change in time of the mass, here designated as X(t), is
described by the equation:

(8)

where:

(9,10)

(11,12)

Equation 8 is a transcendental equation.
In actual design of a vehicle, it is necessary to know the lengths of time that are

required for the vehicle to respond to the unit-step disturbance and reaching to the
amounts equal to 10, 50, and 90 percent of the disturbance. Such calculations are
needed to ascertain the delay time, rise time, and other items among the design
specifications shown in Figure 3. If one wants to know when the vehicle will rise
up to 50 percent of a unit-step disturbance, then it is a problem of finding a root,
t = tr, which satisfies the equation:

FIGURE 2. Mechanical vibration system with one degree-of-freedom.

X t a Exp a t a t a() = − −() +()1 1 2 3 4sin

a k m a a c m1
0 5

3 2 2= () =′
. ,

a km c m a a a3 2
0 5

4
1

3 24 2= −() = ()−. , tanand

X t a Exp a t a t ar r r() = − −() +() =1 0 51 2 3 4sin .

© 2001 by CRC Press LLC

Or, the problem can be mathematically stated as solving for tr from the following
transcendental equation by knowing the constants a1–4:

As an example, let a1 = 1, a2 = 0.2 sec–1, a3 = 1 sec–1, and a4 = 1.37 radian then
the transcendental equation is:

(13)

To find a root tr for Equation 3, we select an initial guess tr
(0) = 0.5 and apply

the fourth option of the program FindRoot. The results are listed below. It indicates
that the mass reaches 50% of the unit-step disturbance in approximately 1.1 seconds.

FIGURE 3. Design specifications in time domain: overshoot xh, delay time td, rise time tr,
and settlement time ts.

a Exp a t a t a1 2 3 4 0 5 0−() +() − =sin .

e tt− +() − =. sin . .2 1 37 0 5 0

© 2001 by CRC Press LLC

An associated problem of the mechanical vibration problem is to find the mag-
nitude and time of overshoot when the mass reaches the farthest point as illustrated
in Figure 1. Instead of Equation 13, for calculation of overshoot we examine the
equation:

(14)

To determine the maximum of X(t), we differentiate Equation 14 with respect
to t to derive the expression for the first derivative of X(t). That is:

 (15)

The magnitude and time of maximum X(t) can then be determined by setting
Equation 15 equal to zero. In so doing, the fourth option of the program FindRoot
is again applied using the bounds tr = 1 and tr = 2 to find that Xmax is equal to 1.523
or overshoot is equal to 53% and occurs at t = 3.145 seconds. See Figure 2 for
definitions of these design specifications.

EXTENDED NEWTON-RAPHSON METHOD

The iterative method of Newton-Raphson for solving a either polynomial or
transcendental equation of one variable can be extended into solution of multiple
equations of multiple variables. Consider the case of two equations of two variables,
u(x,y) = 0 and v(x,y) = 0. Let (xg,yg) be a guessing solution of these two equations.
In that neighborhood, the Taylor’s series for f(x,y) and g(x,y) are:

(16)

and

 (17)

where u,��∂u/∂x and v,y�∂v/∂y, and the root location (xr,yr) is predicted using the
adjustments �x and �y. That is,

(18,19)

Since it is hoped that u(xr,yr) and v(xr,yr) would both be equal to zero,
Equations 16 and 17 therefore can be expressed, after dropping the higher order
terms of �x and �y, in the forms of:

(20)

and

(21)

X t e tt() = − +()−1 1 372. sin .

dX t dt e t tt() = +() − +()[]−. . sin . cos .2 2 1 37 1 37

u x y u x y u x y x u x y yr r g g x g g y g g, , , ,, ,() = () + () + () +…∆ ∆

v x y v x y v x y x v x y yr r g g x g g y g g, , , ,, ,() = () + () + () +…∆ ∆

x x x y y yr g r g= + = +∆ ∆ and

u x y x u x y y u x yx g g y g g g g, ,, , ,() + () = − ()∆ ∆

v x y x v x y y v x yx g g y g g g g, ,, , ,() + () = − ()∆ ∆

© 2001 by CRC Press LLC

Cramer’s rule can then be applied to obtain �x and �y as

(22)

and

(23)

where u, v, and their derivatives are to be evaluated at (xg,yg). Equations 22 and 23
are to be continuously applied to adjust the guessing values of (xr,yr) until both
u(xr,yr) and v(xr,yr) are negligibly small.

Program NewRaphG has been developed by use of the iterative equations 22
and 23. Both QuickBASIC and FORTRAN versions of this program are listed
below along with a sample application of solving the intercepts of two ellipses,
f(x,y) = (x/3)2 + (y/4)2–1 and g(x,y) = (x/4)2 + (y/3)2–1.

QUICKBASIC VERSION

FORTRAN VERSION

∆x uv vu u v u vy y x y y x= − +() −(), , , , , ,

∆y uv vu u v u vx x x y y x= + −() −(), , , , , ,

© 2001 by CRC Press LLC

Sample Application

MATLAB APPLICATIONS

Here, we provide a m file called NewRaphG.m as a companion of the FOR-
TRAN and QuickBASIC versions:

© 2001 by CRC Press LLC

For using this function, the problem to be solved needs to be defined by creating
two m files, in which the equations involved and the expressions for their first
derivatives should be spelled out. In case of solving the sample problem used in
FORTRAN and QuickBASIC versions, first we may define the equation as:

Next, the expressions for their first derivatives may then be written as:

© 2001 by CRC Press LLC

To solve this problem, the interactive application of MATLAB proceeds as
follows (some displays have been rearranged for saving spaces):

Notice that the initial values are taken as X(1) = –2 and X(2) = 2, a tolerance
of 10–5 and the iteration is limited to 20 trials. The solutions are found after four
Newton-Raphson trials when the sum of the absolute values of the two equations is
equal to 3.7361x10–8.

MATHEMATICA APPLICATIONS

Mathematica applies the Newton’s method in its function FindRoot which can
be applied for solving a polynomial, or, transcendental equation, and also for multiple
equations. We illustrate its applications by using the examples discussed earlier.
First, the root near X = 1.75 for a third-order polynomial is found:

In[1]: = FindRoot[{X^3–6*X^2 + 11*X–6 = = 0}, {X,1.75}]

Out[1] = {X -> 2.}

The solution is X = 2. The second example is for finding a root near T = 0.5 for
a transcendental equation described inside the first pair of braces:

In[2]: = FindRoot[{Exp[-.2*T]*Sin[T + 1.37] = = 0.5},{T,0.5}]

Out[2] = {T -> 1.09911}

For solving two simultaneous transcendental equations, two examples are pre-
sented below. The first is to find one of the intercepts of two ellipses and the second
is to find one of the intercepts of a circle of radius equal to 2 and a sine curve.

In[3]: = (FindRoot[{(X/3)^2 + (Y/4)^2 = = 1,(X/4)^2 + (Y/3)^2 = = 1},
{X,–2}, {Y,2}]

Out[3] = {X -> –2.4, Y -> 2.4}

In[4]: = FindRoot[{x = = Sqrt[4y^2],y = = Sin[2*x]},{x,1.95},{y,–0.6}]

Out[4] = {x -> 1.90272, y -> –0.616155}

© 2001 by CRC Press LLC

3.4 PROGRAM BAIRSTOW — BAIRSTOW’S METHOD FOR
FINDING POLYNOMIAL ROOTS

Program Bairstow is developed for finding the roots of polynomials based on the
Newton-Raphson’s iterative method for two variables (see program NewRaphG).
Let a nth-order polynomial be denoted as:

(1)

Notice that the highest term xN has a coefficient equal to 1; otherwise the entire
equation must be normalized by dividing by that coefficient. The Bairstow’s method
consists of first selecting a trial divider D(x) = x2 + d1x + d2, and to obtain the
quotient Q(x) = xN–2 + q1xN–3 + q2xN- 4 + ••• + qN–4x2 + qN–3x + qN–2 and a remainder
R(x) = r1x + r2. The objective is to continuously adjust the values of d1 and d2 until
both values of r1 and r2 are sufficiently small. It is apparent that both r1 and r2 are
dependent of d1 and d2. Taylor’s series expansions of r1 and r2 can be written as:

(2)

and

(3)

where

and so on.
The adjustments �d1 and �d2 are to be calculated so as to make the left-hand

side of Equations 2 and 3 both equal to zero and these adjustments are expected to
be small enough (if the guessed values of d1 and d2 values are sufficiently close to
those which make both r1 and r2 equal to zero) so that the second and higher derivative
terms in Equations 2 and 3 can be dropped. This leads to:

(4)

and

(5)

P x x a x a x a x a x aN N N
N N N() = + + +…+ + +− −

− −1
1

2
2

2
2

1

r d d d d r d d r d d d

r d d d

d

d

1 1 1 2 2 1 1 2 1 1 2 1

1 1 2 2

1

2

+ +() = () + ()
+ () +…

∆ ∆ ∆

∆

, , ,

,

,

,

r d d d d r d d r d d d

r d d d

d

d

2 1 1 2 2 2 1 2 2 1 2 1

2 1 2 2

1

2

+ +() = () + ()
+ () +…

∆ ∆ ∆

∆

, , ,

,

,

,

r r d r r dd d1 1 1 2 2 21 2, ,, ≡ ∂ ∂ ≡ ∂ ∂

r d d d r d d d r d dd d1 1 2 1 1 1 2 2 1 1 21 2, ,, , ,() + () = − ()∆ ∆

r d d d r d d d r d dd d2 1 2 1 2 2 1 2 2 2 1 21, ,, , ,() + () = − ()∆ ∆

© 2001 by CRC Press LLC

Cramer’s rule can then be applied to obtain �d1 and �d2 as:

(6)

and

(7)

where r1, r2, and their partial derivatives are to be evaluated at (d1,d2). Equations 6
and 7 are to be continuously applied to adjust the guessing values of (d1,d2) until
both r1(d1,d2) and r2(d1,d2) are negligibly small.

To calculate the adjustments �d1 and �d2 based on Equations 6 and 7, we need
to find the partial derivatives ∂r1/∂d1, ∂r1/∂d2, ∂r2/∂d1, and ∂r2/∂d2. These derivatives
are, however, depend on the d1 and d2, and the coefficients q’s in the quotient Q(x).
This can be shown by actually carried out the division of P(x) by D(x). The results
are:

(8,9)
and

(10)

It can also be shown that the coefficients in the remainder R(x) are:

(11,12)

We notice that Equations 11 and 12 can be included in Equation 10 if k is
extended to N and if the remainder is redefined as:

(13)

That is, r1 is renamed as qN–1 and r2 is equal to d1qN–1 + qN. As a consequence,
we need to replace r1 and r2 in Equations 6 and 7 by qN–1 and qN. For calculation of
the adjustments �d1 and �d2, Equation 10 should be used for qN–1 and qN and to
derive their partial derivatives respect to d1 and d2. Since all q’s are functions of d1

and d2, to derive the partial derivatives of the last two q’s we must find the partial
derivatives for all q’s starting with q1. From Equations 8 to 10, we can have:

(14,15)

(16)

∆d r r r r r r r rd d d d d d1 1 2 2 1 1 2 1 22 2 1 2 2 1
= − +() −(), , , , , ,

∆d r r r r r r r rd d d d d d2 1 2 2 1 1 2 1 21 1 1 2 2 1
= − +() −(), , , , , ,

q a d q a q d d1 1 1 2 2 1 1 2= − = − − and

q a q d q d k Nk k k k= − − = … −− −1 1 2 2 3 4 2, , , ,for

r a q d q d r a q dN N N N N1 1 2 1 3 2 2 2 2= − − = −− − − − and

R x x d q qN N() = +() +−1 1

∂ ∂ = − ∂ ∂ =q d q d1 1 1 21 0, ,

∂ ∂ = −∂ ∂() − = −q d q d d q d q2 1 1 1 1 1 1 1,

© 2001 by CRC Press LLC

(17)

and for k = 3,4,…,N

(18)

(19)

It can be concluded from the above results that:

(20)

Now, we can summarize the procedure of Bairstow’s method for factorizing a
quadratic equation from an Nth-order polynomial as follows: (Some changes of
variables are made in the computer programs to be presented next, such as q’s are
changed to b’s, d1 and d2 are changed to u and v, respectively, and c’s are introduced
to represent the derivatives of q’s.)

(1) Specify the values of N, a1 through aN, and a tolerance �.
(2) Assume an initial guessing values for d1 and d2 for the divider D(x).
(3) Calculate the coefficients q1 through qN–2 for the quotient Q(x) using

Equations 8 to 10.
(4) Also use Equation 10 to calculate the coefficients qN–1 and qN for the

remainder R(x).
(5) Test the absolute values of qN–1 and qN. If they are both less than �, two

root of P(x) are to be calculated by use of the quadratic formulas. The
order of P(x), N, is to be reduced by 2, and q1 through qN–2 are to become
a1 through aN–2, respectively, and return to Step 2. This looping continues
until the quotient Q(x) is of order two or one, for which the root(s) easily
can be calculated.

(6) If the absolute value of either qN–1 or qN is greater than ε, calculate the
partial derivatives of qk with respect to d1, c’s using Equations 14, 16, and
18 for k = 3,4,…,N. The derivatives of qk with respect to d2 are already
available due to Equation 20.

(7) Use Equations 6 and 7 to calculate the adjustments �d1 and �d2, noticing
that r1 and r2 are to be replaced by qN–1 and qN, respectively. The iteration
is resumed by returning to Step 3.

Both QuickBASIC and FORTRAN versions of the program Bairstow coded
following the steps described above are to be presented next.

∂ ∂ = − ∂ ∂() − = −q d q d q2 2 1 2 1 1

∂ ∂ = − ∂ ∂() − − ∂ ∂()− − −q d q d d q q d dk k k k1 1 1 1 1 2 1 2

∂ ∂ = − ∂ ∂() − − ∂ ∂()+ − −q d q d d q q d dk k k k1 2 2 1 1 1 2 2

∂ ∂ = ∂ ∂ = … −+q d q d k Nk k1 2 1 1 2 1 , , ,for

© 2001 by CRC Press LLC

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Application

As an example, the polynomial P(x) = x4–5x3 + 13x2–19x + 10 = 0 is solved by
application of the QuickBASIC version of the program Bairstow. The response on
screen is:

The quotient in this case is a quadratic equation:

FORTRAN VERSION

Q x x i x i x i x x() = − +()[] − −()[] = −() − () = − + =1 2 1 2 1 2 2 5 02 2 2 .

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Sample Application

Consider the polynomial P(x) = x3 + 2x2 + 3x + 4 = 0. When the FORTRAN
version of the program Bairstow is run, the response on screen is:

When the ITERATIONS column indicates 1, it signals that the quotient is of
order one or two. In this case, the quotient is Q(x) = x + 1.65063. In fact, no iteration
has been performed for solving Q(x).

MATLAB APPLICATION

MATLAB has a file called roots.m which can be applied to find the roots of a
polynomial p(x) = 0. To do so, the coefficients of an nth-order p(x) should be ordered
in descending powers of x into a row matrix of order n + 1. For example, to solve
p(x) = x3 + 2x2 + 3x + 4 = 0, we enter:

>> p = [1,2,3,4]; x = roots(p)

and obtain a screen display

As a second example of solving x4–5x3 + 13x2–19x + 10 = 0, MATLAB inter-
active entries indicated by the leading >> signs and the resulting display are:

© 2001 by CRC Press LLC

Comparing the two examples, we notice that by placing ; after a statement
suppresses the display of the computed value(s). The elements of the first p matrix
(a single row) is not displayed!

It is of interest to introduce the plot capability of MATLAB by use of the results
presented above which involve a polynomial P(x) and its roots. From graphical
viewpoint, the roots are where the polynomial curve crossing the x-axis. MATLAB
has a plot.m file which can be readily applied here. Let us again consider the
polynomial P(x) = x4–5x3 + 13x2–19x + 10 = 0 and plot it for 0≤x≤3. For adequate
smoothness of the curve, an increment of x equal to 0.1 can be selected for plotting.
The interactive MATLAB commands entered for obtaining Figure 4 are:

>> p=[1,–5,13,–19,10]; x=[0:0.1:3]; y=polyval (p,x);
>> plot(x,y), hold
>> XL=[0 3]; YL=[0 0]; plot(XL,YL)

Notice that another m file polyval of MATLAB has been employed above. The
statement y = polyval(p,x) generates a array of y values using the polynomial defined
by the coefficient vector p and calculated at the values specified in the x array. The
hold statement put the current plot “on hold” so that an additional horizontal line
connecting the two points defined in the XL and YL arrays can be superimposed.
The first plot statement draws the curve and axes and tic marks while the second
plot statement draws the horizontal line.

The horizontal line drawn at y = 0 help to show the intercepts of the polynomial
curve and the x-axis, by observation near x = 1 and x = 2 which confirm the result
found by the MATLAB file roots.m.

MATHEMATICA APPLICATIONS

For finding the polynomial roots, Mathematica’s function NSolve can be
applied readily.

Keyboard input (and then press shift and Enter keys)

NSolve[x^3 + 2x^2 + 3x + 4 = = 0,x]

The Mathematica response is:

Input[1]: =

NSolve[x^3 + 2x^2 + 3x + 4 = = 0,x]

© 2001 by CRC Press LLC

Output[1] =

{{x -> –1.65063}, {x -> –0.174685 — 1.54687 I},
{x -> –0.174685 — 1.54687 I}}

Keyboard input (and then press Shift and Enter keys)

NSolve[x^4–5x^3 + 13x^2–19x + 10 = = 0,x]

The Mathematica response is:

Input[2]: =

NSolve[x^4–5x^3 + 13x^2–19x + 10 = = 0,x]

Output[2] =

{{x -> 1. – 2. I}, {x -> –1 + 2. I}, {x -> 1.}, {x -> 2.}}

To show the locations of the roots of a polynomial, Mathematica’s function
Plot can be applied to draw the polynomial. The following statements (Keyboard
input will hereon be omitted since it is always repeated in the Input response) enable
Figure 5 to be generated:

FIGURE 4.

© 2001 by CRC Press LLC

Input[3]: =

Plot[x^4–5x^3 + 13x^2–19x + 10,{x,0,3},
Frame->True, AspectRatio->1]

Output[3] =

Notice that {x,0,3} specifies the range of x for plotting, Frame->True requests that
the plot be framed, and AspectRatio-> requests that the scales in horizontal and vertical
directions be equal. The graph clearly shows that there are two roots at x = 1 and x = 2.

3.5 PROBLEMS

FINDROOT

1. A root of F(x) = 3x–2e0.5x = 0 is known to exist between x = 1 and x = 2.
Calculate the guessed locations of this root twice by application of the
linear interpolation method.

2. A root is known to exist between x = 0 and x = 1 for the polynomial
P(x) = x3–4.5x2 + 5.75x–1.875 = 0 because P(x = 0) = –1.875 and P(x =
1) = 3.75. What will be the next two guessed root values if linear inter-
polation method is used? Show details of your calculation.

3. A root is known to exist between x = 1 and x = 2 for the polynomial x3

+ 0.5x2 + 3x–9 = 0.
Based on the linear interpolation method, make two successive guesses
of the location of the root. Show details of the calculations.

FIGURE 5.

© 2001 by CRC Press LLC

4. For finding a root of the polynomial x3–8.9x2–21.94x + 128.576 = 0 within
the bounds x = 0 and x = 4, the linear interpolation method is to be
applied. Show only the details involved in computation of two successive
trial guesses of the root.

5. Use the Newton-Raphson iterative method to find the root of 2X3–5 = 0
between X = 1 and X = 2.

6. Complex roots of a polynomial can be calculated by application of the
program FindRoot simply by treating the variable X in the polynomial
F(X) as a complex variable. Using a complex number which has a real
part and an imaginary part as an initial guess for X to evaluate F(X) and
its derivatives, both values will also be complex. The Newton-Raphson
iterative process is to be continued until both the real and imaginary parts
of F(X) are sufficiently small. According to this outline, modify program
FindRoot to generate a new program NewRaphC for determining a
complex root for the polynomial X4 + 5X2 + 4 = 0.

7. In solving eigenvalue problems (see programs CharacEq and Eigen-
ODE), the characteristic equation of an engineering system is in the form
of a polynomial. Physically, the roots of this polynomial may have the
meaning of frequency, or, buckling load, or others. In the program Eigen-
ODE, a vibrational problem leads to a characteristic equation of �3–50
�2 + 600 � – 1000 = 0. Apply the program FindRoot to find a root between
λ equal to 1 and 2 accurate to three significant figures. This root represents
the lowest frequency squared.

8. Apply the Newton-Raphson method to find a root of the polynomial f(x) =
3x3 + 2x2–x–30 = 0 by first guessing it to be equal to 3.0. Carry out two
iterative steps by hand calculation to obtain the adjustments that need to
be made in guessing the value of this root.

9. Apply the program FindRoot to solve Problem 8 given above.
10. Apply the linear interpolation method to find a root of the polynomial

f(x) = 3x3 + 2x2–x–30 = 0 between x = 1 and x = 3. Carry out two iterative
steps by hand calculation to obtain the new bounds.

12. The well known secant formula for column bucking3 relating the average
unit load P/A to the eccentricity ratio ec/r2 is:

where σmax is the proportional limit of the column, L/r is the slenderness
ratio, and E is Young’s modulus of elasticity. Solve the above transcen-
dental equation by using σmax = 620 MPa and E = 190 GPa to find P/A
for ec/r2 = 0.1 and L/r = 20.

13. Solve the friction factor f from the Colebrook and White equation6 for
the flow in a pipe (1/f)1/2 = 1.74–0.868{(2K/D) + [18.7/Re(f)1/2]} where
Re is the Reynold’s number and K/D is the relative roughness parameter.
Plot a curve of f vs. Re, and compare the result with the Moody’s diagram.

14. Find the first five positive solution of the equation XJ0(X)–2J1(X) = 0
where J0 and J1 are the Bessel functions of order 0 and 1, respectively.7

P A ec r L r P EA= + () ()()[]{ }σmax sec1 22 1 2

© 2001 by CRC Press LLC

15. Write a program SucceSub for implementing the successive substitution
method and apply it to Equation 5 for solving the angle γ for α changing
from 0° to 360° in equal increment of 15°.

16. Apply the program SucceSub to solve Problem 1.
17. Apply the program SucceSub to solve Problem 12.
18. Rise time is defined as the time required for the response X(t) to increase

its value from 0.1 to 0.9, referring to Equation 8 and Figure 1. For a
second-order system with a1 = 1, a2 = 0.2 sec–1, a3 = 1 sec–1, and a4 = 1.37
radians, use Equation 8 to calculate the rise time of the response X(t) by
applying the computer program FindRoot.

19. Write a m file for MATLAB and name it FindRoot.m and then apply it
for solving Problem 12.

20. Apply FindRoot.m for solving Problem 14.
21. Apply FindRoot.m for solving Problem 18.
22. Apply Mathematica to solve Problem 12.
23. Apply Mathematica to solve Problem 14.
24. Apply Mathematica to solve Problem 18.

NEWRAPHG

1. Shown below are two ellipses which have been drawn using the equations:

x y x y
28 24

1
9 5 32

1
2 2 2 2





 + 



 = ′



 + ′



 =

.
and

© 2001 by CRC Press LLC

where the coordinate axes x� and y� are the result of rotating the x and y
axes by a counterclockwise rotation of = 30°. The new coordinates can
be expressed in term of x and y coordinates as:

Use an appropriate pair of values for xP and yP as initial guesses for
iterative solution of the location of the point P which the two ellipses
intercept in the fourth quadrant by application of the program NewRaphG.

2. The circle described by the equation x2 + y2 = 22 and the sinusoidal curve
described by the equation y = sin2x intercepted at two places as shown
below. This drawing obtained using the MATLAB command
axis(‘square’) actually is having a square border when it is shown on
screen but distorted when it is printed because the printer has a different
aspect ratio. Apply the Newton-Raphson iterative method to find the
intercept of these two curves near (x,y) = (2,- 0.5).

′ = + ′ = − +x x y y x ycos sin sin cosθ θ θ θand

© 2001 by CRC Press LLC

3. Apply program NewRaphG for finding a root near X = 0.4 and Y = 0.6
from the equations SinXSinY + 5X–7Y = –0.77015 and e0.1X-X2Y + 3Y =
2.42627. The solutions should be accurate up to 5 significant digits.

4. If one searches near x = 2 and y = 3 for a root of the equations f(x,y) =
(x–1)y + 2x2(y–1)2–35 and g(x,y) = x3–2x2y + 3xy2 + y3–65 what should
be the adjustments of x and y based on the Newton-Raphson method?

5. Write a MATLAB m file and call it NewRaph2.m and then apply it to
solve Problems 1 to 4.

6. Apply Mathematica to solve Problems 1 to 4.

BAIRSTOW

1. Is x2–x + 1 a factor of 4x4–3x3 + 2x2–x + 5? If not, calculate the adjust-
ments for u and v which are equal to –1 and 1, respectively, based on the
Bairstow’s method.

2. Apply plot.m of MATLAB to obtain a plot of P(x) = x6 + x5–8x4 + 14x3

+ 13x2–111x + 90 = 0 vs. x for –4≤x≤3 as shown below.

© 2001 by CRC Press LLC

3. Find the roots of P(x) = x6 + x5–8x4 + 14x3 + 13x2–111x + 90 = 0 by
application of the program Bairstow. Are the real roots graphically ver-
ified in the plot shown in Problem 2?

4. Apply root.m of MATLAB to find the roots of P(x) = x6 + x5–8x4 + 14x3

+ 13x2 111x + 90 = 0.
5. Apply the program Bairstow to solve the characteristic equations derived

by the program CharacEq: (1) �3–15 �2–18� = 0, (2) �3–18�2 + 109�
–222 = 0, and (3) �3–12�2 + 47� –60 = 0.

6. Apply the program Bairstow to solve for the characteristic equations
derived for the program EigenODE.Stb:

7. Apply roots.m of MATLAB to find the roots of the polynomials given
in Problem 5 and then graphically verify the locations of these roots by
plotting the polynomial curves using plot.m.

8. Repeat Problem 7 except for those polynomials given in Problem 6.
9. Apply NSolve of Mathematica to solve Problems 2 to 6.

3.6 REFERENCES

1. M. Abramowitz and I. A. Stegun, editors, “Handbook of Mathematical Functions
with Formulas, Graphs, and Mathematical Tables,” Applied Mathematics Series 55,
National Bureau of Standards, Washington, DC, 1964.

2. Y. C. Pao, Elements of Computer-Aided Design and Manufacturing, CAD/CAM, John
Wiley & Sons, New York, 1984.

3. A. Higdon, E. H. Ohlsen, W. B. Stiles, J. A. Weese, and W. F. Riley, Mechanics of
Materials, John Wiley & Sons, New York, Fourth Edition, 1985.

4. J. F. Traub, Iterative Methods for Solution of Equation, Prentice-Hall, Englewood
Cliffs, NJ, 1964.

5. A. E. Taylor, Advanced Calculus, Ginn & Co., Boston, 1955.
6. W. H. Li, Fluid Mechanics in Water Resources Engineering, Allyn & Bacon, Boston,

1983.
7. C. R. Wylie, Jr., Advanced Engineering Mathematics, McGraw-Hill, New York, 1960.

λ λ

λ λ λ

λ λ λ λ

λ λ λ λ

2

3 2

4 3 2

5 4 3 2 7 8

36 243 0

96 2560 16384 0

200 13125 312500 1953125 0

360 46656 2612736 5 878656 10 3 62791 10 0

− + =

− − − =

− + − + =

− + − + − =

,

,

,

. .

and

x x

4

© 2001 by CRC Press LLC

Finite Differences,
Interpolation, and
Numerical Differentiation

4.1 INTRODUCTION

Linear interpolation is discussed in the preceding chapter as a method for finding a
particular root of a polynomial, or, transcendental equation when the upper and
lower bounds of the interval for search are provided. To continue the discussion of
the general topic of interpolations which not necessarily linear could be quadratic
(parabolic, cubic, quartic, and so on, we in this chapter present methods for this
general need of interpolation in engineering analyses by treating not only equations
but also a set of N tabulated data, (x

i

,y

i

) for i = 1–N.

Finite difference table

 will be
introduced and constructed for the equally-spaced data, that is x

2

–x

1

 = x

3

–x

2

 = … =
x

N

-x

N–1

. This table can be utilized as a

forward-difference

,

backward- difference

, or,

central-difference

 table depending on how its is applied for the interpolation use.
Taylor’s series and a

shifting operator

 are to be used in derivation of the
interpolation formulas in terms of the forward-difference, backward-difference, and
central-difference operators. A program

DiffTabl

 has been developed for printing
out a difference table of a set of equally-spaced data.

Differentiation operator

 will also be introduced for the derivation of the numer-
ical differentiation needs. When a set of equally-spaced data, (x

i

,y

i

) for i = 1–N, are
given, formulas in terms of the forward-difference, backward-difference, and central-
difference operators are derived for the need of calculating the value of dy/dx at a
listed x value or unlisted. If x is not equal to one of the x

i

, interpolation and
differentiation have to be done combinedly through a modification of the Taylor’s
series expansion.

For curve-fit by polynomials and for interpolation, applications of the versatile

Lagrangian interpolation formula

 are also discussed. A program called

LagrangI

is made available for this need.

QuickBASIC

,

FORTRAN

, and

MATLAB

 versions of the above-mentioned
programs are to be provided. Application of the

Mathematica

’s function

Interpo-
lating Polynomial

 in place of

LagrangI

 is demonstrated.
In solution of the problems governed by a system of ordinary differential equa-

tions with either some initial and/or boundary conditions specified, the finite differ-
ences will be applied. In Chapter 6, such method for finding the approximate answer
to the problem is discussed. Accuracy of such approximate solution will depend on
the increment of the independent variable, stepsize, adopted and on which approx-
imate method is employed.

© 2001 by CRC Press LLC

Because numerical differentiation is highly inaccurate, whenever possible
numerical integration should be preferred over numerical differentiation. In case that
one needs to find the velocity of a certain motion study and has the option of
collecting the displacement or acceleration data, then the acceleration data should
be taken not the displacement data. The reason is that one has the choice of applying
numerical differentiation to the displacement data or numerical integration to the
acceleration data to obtain the velocity results. The numerical integration which is
the topic of Chapter 5 has the smoothing effect and hence is more accurate! Graph-
ically, differentiation is of a

local

 evaluation of determining the slope at a selected
point on a curve which could be the result of fitting a number of data points discussed
in Chapter 3 while integration is of a global evaluation of finding the area under the
curve between two specified limits of the independent variable. For a set of three
given points fitted linearly by two linear segments and quadratically by a parabola,
the slope at the mid-point could have very different slope values while the areas
under the linear segments and under the parabola would not differ too significantly.
Hence, it is worthy of emphasizing that learning the computational methods is easier
when compared to making decision of which method is best to solve the problem
at hand.

4.2 PROGRAM DIFFTABL — APPLICATIONS
OF FINITE-DIFFERENCE TABLE

Program

DiffTabl

 has been developed for the need of constructing a table of finite
differences of a given set of N two-dimensional points, (x

i

,y

i

) for i = 1–N. The x
values are assumed to be equally spaced, i.e., , x

2

–x

1

 = x

3

–x

2

 = ••• = x

N

-x

N–1

 = h, h
being called the

increment

, or,

stepsize

. This so-called

difference table

 can be applied
for interpolation of the y value for a specified, unlisted x value inside the range of
x = x

1

 and x = x

N

 (extrapolation if outside the range), and differentiation. Table 1
shows a typical difference table.

The symbol

�

used in Table 1 is called Forward Difference Operator. If we refer
the numbers listed in the x and y columns as x

1

 to x

6

 and y

1

 to y

6

, respectively, the
first number listed under

�

y, 1.9495, is obtained from the calculation of y

2

–y

1

 and
is identified as

∆

y

1

. The last number listed in the

 �

y column, 5.3015, is equal to
y

6

–y

5

 and referred to as

 �

y

5

. Or, we may write the general formula as, for i = 1 to 5,

(1)

�

y

i

 is called the first forward difference of y at x

i

. The higher order forward
differences listed in Table 1 are obtained by extended application of Equation 1.
That is,

(2)

∆y y yi i i= −+1

∆ ∆ ∆ ∆2
1 1 2 12y y y y y y y yi i i i i i i i= −() = − = − ++ + + +

© 2001 by CRC Press LLC

(3)

and so on. We shall show later how the third through seven columns of Table 1 can
be interpreted differently when the backward and central difference operators are
introduced. First, we will demonstrate how Table 1 can be applied for interpolation
of the y value at an unlisted x value, say y(x = 1.24). To do that, the

shifting operator

,
E, needs to be introduced. The definition of E is such that:

(4)

That is, if E is operating on y

i

, the y value is shifted down to the next provided
y value. Interpolation is a problem of not shifting a full step but a fractional step.
For the need of finding y at x = 1.24, the x value falls between x

2

 = 1.2 and x

3

 =
1.3. Since the stepsize, h, is equal to 0.1, a full shift from y

2

 = 6.3760 would lead
to y

3

 which is equal to 8.9625. We expect the value of y(x = 1.24) to be between y

2

and y

3

. Instead of E

1

y

2

, the value of E

0.4

y

2

 is to be calculated by shifting only 40%.
To find the meaning of E

0.24

, or, more generally E

r

 for 0<r<1, we substitute
Equation 4 into Equation 1 to obtain:

(5,6)

TABLE 1
Difference Table (y = 1 to 2x + 3x

2

 to 4x

3

 + 5x

4

).

x y

�

y

�

2

y

�

3

y

�

4

y

�

5

y

1.1 4.4265
1.9495

1.2 6.3760 0.637
2.5865 0.126

1.3 8.9625 0.763 0.012
3.3495 0.138 0.000

1.4 12.3120 0.901 0.012
4.2505 0.150

1.5 16.5625 1.051
5.3015

1.6 21.8640

∆ ∆ ∆ ∆3 2
1

2
1

2

3 2 1 2 1

3 2 1

2 2

3 3

y y y y y

y y y y y y

y y y y

i i i i i

i i i i i i

i i i i

= −() = −

= − +() − − +()
= − + −

+ +

+ + + + +

+ + +

Ey yi i= +1

∆y y y Ey y E yi i i i i= − = − = −()+1 11

∆ ∆= − = +E or E1 1, ,

© 2001 by CRC Press LLC

By application of

binomial expansion

, we can then have:

(7)

where the binomial coefficients are defined as:

(8)

We can now use Equation 7 to obtain:

(9)

Equation 9 can be applied for linear interpolation if up to the

�

y

2

 terms are
adopted; for parabolic interpolation if up to the

�

2

y

2

 terms are adopted; and so on.
Since Table 1 has up to the fifth order forward differences available but the last
column contains a zero value, Equation 9 can therefore be effectively up to the
fourth-order forward-difference interpolation. The numerical results of y(x = 1.24)
using linear, parabolic, cubic, and fourth-order are 7.4106, 7.3190, 7.3279, and
7.3274, respectively. Since we know y = 1–2x + 3x

2

–4x

3

 + 5x

4

, the exact value of
y(x = 1.24) is equal to 7.3274.

An explanation for discrepancies in all of these four attempts of interpolations,
relative to the exact value, is provided in a homework exercise given in the Problems
set.

B

ACKWARD

-D

IFFERENCE

 O

PERATOR

Notice that the first numbers listed in columns three through seven in Table 1
are the five forward differences of y

1

, and that only four forward differences (the
second numbers in columns three through six) of y

2

 are available. Lesser and lesser
forward differences are available for later y’s until there is only

�

y

5

 for y

5

. That is
to say, to interpolate y(x) for an x value between x

5

 = 1.5 and x

6

 = 1.6, Equation 9
can only be used up to the

�

y

5

 term. To remedy this situation and to make most use
of the provided set of 6 (x,y) data, it is appropriate at this time to introduce the
backward-difference operator,

�

, which is defined as:

(10)

Er r
k
r

k

k= +() = ()
=

∞

∑1
0

∆ ∆

0 1
1 1

1 2
r

k
rand

r r r k

k
() = () =

−()… − −()[]
⋅

L

y x E y x E y y

y

y

=() = =() = = +()

= + + −()
⋅

+…





= + − + − +()

1 24 1 2 1

1 0 4
0 4 0 4 1

1 2

1 0 4 1 12 0 064 0 0416 0 022952

0 4 0 4
2

0 4
2

2
2

2 3 4 5
2

. .

.
. .

.

. . .∆

∆ ∆

∆ ∆ ∆ ∆ ∆

∇ = − −y y yi i i 1

© 2001 by CRC Press LLC

By combining Equations 1, 7, and 10, we notice that:

(11)

and

(12)

So,

(13,14)

Equation 12 is an important result because it indicates that the last numbers
listed in columns three through seven of Table 1 are the first through five backward
differences of y

6

. If we could derive an interpolation formula in terms of

�

, there
are up to fifth-order backward difference of y

6

 available. Toward that end, let us
consider the need of interpolating the value of y(x = 1.56). This y value can be
reached by shifting backward by 0.4 step from x = 1.6 since the stepsize for Table 1
is h = 0.1. By using Equation 14 and noticing Equations 7 and 8, we can have:

(15)

One can then apply Equation 15 to obtain the interpolated y(x = 1.56) values
using up to the fifth order backward differences. This is left as a homework exercise
given in the Problems set.

C

ENTRAL

-D

IFFERENCE

 O

PERATOR

For the interest of completeness and later application in numerical solution of
ordinary differential equations, we also introduce the

central difference operator

,

�

.
When it is operating on y

i

, the definition is:

(16)

The first-order central difference is seldom used and the second-order central
difference is frequently applied, which is:

(17)

∇ = − =+ +y y y yi i i i1 1 ∆

∇ = − = −()− +
−

+y y y E yi i i i1 1
1

11

∇ = − = − ∇− −1 11 1E or E, ,

y x E y x E y y

y

=() = =() = = − ∇()

= + −∇() + −()
⋅

−∇() +…





− −1 56 1 6 1

1 0 4
0 4 0 4 1

1 2

0 4 0 4
6

0 4
6

2
6

. .

.
. .

. . .

= − ∇ − ∇ − ∇ − ∇ − ∇()1 0 4 0 12 0 064 0 0416 0 022952 3 4 5
6. y

δy y x
h

y x
h

i i i= +



 − −



2 2

δ δ δ2

1 1

2 2
2

2

y y x
h

y x
h

y x h y x y x h

y y y

i i i i i i

i i i

= +











− −











= +() − () + −()

= − ++ −

© 2001 by CRC Press LLC

D

IFFERENTIATION

 O

PERATOR

Another important operator that needs to be introduced in connection with the
application of difference table is the

differentiation operator

, D, which is defined as:

(18)

As it is our intention to apply an available difference table for numerical differ-
entiation at one of the listed x values, or, at an unlisted x value, by using either the
forward or backward differences of y values. For example, we may want to find Dy
at x = 1.2, or, at x = 1.24. To derive an expression for D in terms of

�

, we recall
the Taylor’s series of a function y(x = a + h) near the neighborhood of x = a for a
small increment of h:

(19)

where y

(j)

 is the jth derivative with respect to x. Using the notation of differentiation
operator D and the shifting operator E, the above expression can be written as:

(20)

or,

(21)

In order to use the difference table for numerical differentiation, we substitute
Equation 6 into Equation 21 to obtain:

(22)

By substituting the logarithmic function in Equation 21 with an infinite series1

and applying the D operator for yi, the result is:

(23)

Hence, to find Dy(x = 1.2) by using the finite differences in Table 1, Equation
23 can be applied to obtain:

Dy x x
dy x

dx
Dyi x x ii

=() ≡ () ≡=

y a h y a
y a

h
y a

h
y a

j
h

j
j+() = () + ′() + ′′() +…+ () +…

()

1 2
2

! ! !

Ey a y a
hDy a h D y a h D y a

j

hD h D h D y a e y a

j j

j j hD

() = () + () + () +…+ () +…

= + + +…+ +…[] () = ()

1 2

1

2 2

2 2

! ! !

E e and D
h

nEhD= =
1

l

D
h

n= +()1
1l ∆

Dy
h

yi i= − + −…





1 1
2

1
3

2 3∆ ∆ ∆

© 2001 by CRC Press LLC

Notice that the above result is when up to the fourth-order forward differences
of y2 are all utilized. Linear, parabolic, and cubic numerical differentiations at x =
1.2 could also be calculated by taking only one, two, and three terms inside the
parentheses of the above expression. The respective results are 25.865, 22.05, and
22.51. Since y(x) = 1–2x + 3x2–4x3 + 5x4 and y�(x) = –2 + 6x–12x2 + 20x3, the exact
value of y(x = 1.2) = –2 + 7.2–17.28 + 34.56 = 22.48 indicates that the fourth-order
calculation is the best.

When Dyi is needed for xi near the end of x list, it is better to express D in terms
of the backward-difference operation �, which based on Equations 14 and 21 is:

(24)

The shifting operator E and differentiation operator D can be combined to derive
formulas for numerical differentiation of y(x) at x values unlisted in the difference
table either in terms of forward-difference operator or backward-difference. First,
let recall Equations 7 and 23 and apply them to find y�(x = xi + rh) in terms of the
forward-difference operator as follows:

(25)

Similarly, y�(xi-rh) can be expressed in terms of backward-differential operator, as:

(26)

Dy x2

1
0 1

2 5865 0 5 0 763
1
3

0 138
1
4

0 012 22 48= − + −



 =

.
.

Dy x
h

n E y
h

n y

h
y

h
y

i i i

i i

() = () = − ∇()[]
= − −∇ − ∇ − ∇ −…



 = ∇ + ∇ + ∇ + ∇ +…





−1 1
1

1 1
2

1
3

1
2 3 4

1

2 3
2 3 4

l l

′ +() = = +() +()

= − + −…





+ + −() +…





= + − + − + + − + −

y x rh
h

DE y
h

n y

h
r

r r
y

h
r r r r r r

i
r

i i

i

1 1
1 1

1
2 3

1
1

2

1 2 1
2

3 6 2
6

2 9 11 3
12

4

2 3
2

2
2

3
3 2

4

l ∆ ∆

∆ ∆ ∆ ∆ ∆

∆ ∆ ∆ ∆ ++…





yi

′ −() = = − − ∇()[] − ∇()

= ∇ + ∇ + ∇ +…





− ∇ + −() ∇ +…





= ∇ − − ∇ + − + ∇ − − + −

−y x rh
h

DE y
h

n y

h
r

r r
y

h
r r r r r r

i
r

i
r

i

i

1 1
1 1

1
2 3

1
1

2

1 2 1
2

3 6 2
6

2 9 11

2 3
2

2
2

3
3 2

l

33
12

4∇ +…





yi

© 2001 by CRC Press LLC

It should be particularly pointed out that in using Equation 26 for finding y�(x)
where xi–1<x<xi, r is to be calculated as (xi-x)/h and not as (x-xi–1)/h. For example,
in using Table 1, to calculate y�(x = 1.56) based on Equation 26 r should be equal
to (1.6–1.56)/0.1 = 0.4 and not equal to (1.56–1.5)/0.1 = 0.6, and i equal to 6 not 5
because in Table 1 x6 = 1.6 and x5 = 1.5.

Program DiffTabl has been prepared for interactive interpolation and differen-
tiation using a difference table such as Table 1. User can interactively specify the
data points and where the interpolation or differentiation is to be calculated and also
up to what order of finite differences should the computation be performed. Both
QuickBASIC and FORTRAN versions of the program are made available. Listings
are given below along with some sample applications. At present, the highest order
of finite difference allowed is the fourth.

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Application

FORTRAN VERSION

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Sample Application

Using the input data and difference table as for the QuickBASIC version, the
interactive application of the FORTRAN version gives a sample run as follows:

MATLAB APPLICATION

A file DiffTabl.m can be created and added to MATLAB m files for printing
out the difference table. This file may be written as:

© 2001 by CRC Press LLC

This m file then can be applied as illustrated by the following examples:

The statement format compact requests the results to be displayed without
unnecessary line spaces on screen.

It is appropriate at this time to demonstrate how some graphic capability of
MATLAB can be effectively utilized here in connection with the difference table.
First, the calculation of the first derivatives can be graphically interpreted as the
slope of the linear segments connecting the given points as shown in Figure 1 which
is obtained with the following interactively entered statements:

© 2001 by CRC Press LLC

The first, X = , statement creates an array having 6 elements whose values start
at 1.1 and ends at 1.6 and have a uniform increment of 0.1. In the plot statement,
the character — inside the first set of single quotation signs requests that the given
set of points specified by the coordinates arrays X and Y are to be connected by
solid lines while the character * inside the second set of single quotation signs is
for marking those points.

It also is appropriate at this time to introduce the bar graph feature of MATLAB
when we consider data set and difference table. Figure 2 is presented to show the
use of bar and num2str commands of MATLAB. The bar command plots a series
of vertical bars based on a set of coordinates arrays X and Y where X values must
be equally spaced. The num2str command converts a numerical value into a string,
it often facilitates the display of numerical values in conjunction with the text
command. The following interactively entered statements have enabled Figure 2 to
be displayed:

FIGURE 1. The calculation of the first derivatives can be graphically interpreted as the slope
of the linear segments connecting the given points.

© 2001 by CRC Press LLC

Notice that the first two arguments for text are where the text string should be
placed whereas the third argument converts the value of Y(I) to be printed as a string.
The for-end loop allows all Y values to be placed at proper heights.

MATHEMATICA APPLICATIONS

To produce a plot similar to Figure 3 in the program DiffTabl by application of
Mathematica, we may enter statements and obtain the following:

Input[1]: = X = Table[i,{i,1.1,1.6,0.1}; Y = Exp[X];

Input[2]: = g1 = Show[Graphics[Line[Table[{X[[i]],Y[[i]]},{i,1,6}]]]]

Input[3]: = g2 = Show[g1, Frame->True, AspectRatio->1,
FrameLabel->{“X-axis”,”Y-axis”}]

Input[4]: = g3 = Show[g2,Graphics[Table[Text[“X”,{X[[i]],Y[[i]]},
{i,1,16}]]

Input[5]: = Show[g3,Graphics[Text[“Linearly Connected”,{1.12,4.8},
{–1,0}],Text[“Data Points”,{1.12,4.6},{–1,0}]]]

FIGURE 2.

© 2001 by CRC Press LLC

Only the final plot is presented here. The intermediate plots designated as g1,
g2, and g3 can be recalled and displayed if necessary. The Line command in Input[3]
directs the specified pairs of coordinates to be linearly connected.

A bar graph can be drawn by application of Mathematica command Rectangle
and their respective values by the command Text. The following statements recreate
Figure 4 in the program DiffTabl.:

Input[1]: = X = {1,2,3,4,5}; Y = {2,4,7,11,24};

Input[2]: = g1 = Show[Graphics[Table[Rectangle[{X[[i]]–0.4,0},
X[[i]] + 0.4,Y[[i]]}],{i,1,5}]]]

Input[3]: = g2 = Show[g1,Graphics[Table[Text[Y[[i]],
{X[[i]]–0.1,Y[[i]] + 1}],{i,1,5}]]]

Input[4]: = g3 = Show[g2, Frame->True, AspectRatio->1]

Input[5]: = g4 = Show[g3,Graphics[Text[“Bar Graph of X–Y Data”,
{0.5,18},{–1,0}]]]

Input[6]: = Show[%,FrameLabel->{“X-axis”,”Y-axis”}]

FIGURE 3.

© 2001 by CRC Press LLC

 Notice that when no expression inside a pair of doubt quotes is provided for
the command Text, the value of the specified variable will be printed at the desired
location. This is demonstrated in Input[3].

Mathematica also has a function called BarChart in its Graphics package
which can be applied to plot Figure 5 as follows (again, some intermediate Output
responses are omitted):

FIGURE 4.

FIGURE 5.

© 2001 by CRC Press LLC

Input[1]: = Y = {2,4,7,11,24};

Input[2]: = <<Graphics`Graphics`

Input[3]: = g1 = BarChart[Y]

Input[4]: = g2 = Show[g1,Graphics[Table[Text[Y[[i]],
{i,Y[[i]] + 1}],{i,1,5}]]

 To print out a difference table of a given set of n y values, we can arrange the
y values and up to the n-1st order of their differences in a matrix form. The y values
are to be listed in the first column and their ith-order diferences are to be listed in
the i + 1st column for i = 1,2,…,n–1. The following Mathematica input and ouput
statements demonstrate the print out of a set of 6 y values:

Input[1]: = y = {1,3,7,12,44,78};

Input[2]: = n = Length[y]; yanddys = Table[x,{i,n},{j,n}];
MatrixForm[yanddys]

Output[2] =

x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x
x x x x x x

Input[3]: = Do[yanddys[[i,1]] = y[[i]]; MatrixForm[yanddys]

Output[3] =

1 x x x x x
3 x x x x x
7 x x x x x
12 x x x x x
44 x x x x x
78 x x x x x

Input[4]: = Do[Do[yanddys[[i,j]] = yanddys[[i + 1,j–1]]-yanddys[[i,j–1],
{i,n-j + 1}],{j,2,n}]; MatrixForm[yanddys]

Output[4] =

1 2 2 –1 27 –78
3 4 1 26 –51 x
7 5 27 –25 x x
12 32 2 x x x
44 34 x x x x
78 x x x x x

© 2001 by CRC Press LLC

Notice that in Input[2], the Mathematica functions Length has been applied
to determine the number of components in the array y, Table is used to initialize a
matrix of n by n with the character x, and MatrixForm allows the matrix, yanddys,
to be printed in a matrix form. Input[3] stores the y array into the first column of
the matrix yanddys by application of the Mathematica command Do. Such looping
is extended in Input[4] where the higher order differences are generated by using
an inner index i and an outer index j. The column number j of the matrix yanddys
is increased from 2 to n but the length of each column is continuously decreased to
n-j + 1. Such DoDo arrangement is made possible by keeping the y values and their
differences in a column-by-column form.

4.3 PROGRAM LAGRANGI — APPLICATIONS OF LAGRANGIAN
INTERPOLATION FORMULA

Program LagrangI is designed to curve-fit a given set of n points, (xi,fi) for i = 1,
2,…,n, by a polynomial of n-1st degree based on the Lagrangian Interpolation
Formula:

(1)

If only the value of the function f(x) at a specified value of x = xs is needed,
then Equation 1 can be applied to compute

(2)

In Equations 1 and 2, the symbol � is to represent a product of a specified
number of factors such as:

(3)

Equation 1 can be proven if we write the equation which fits the n given points
(xi,fi) for i = 1 to n by a combination of n functions L1 to n(x) as:

(4)

Notice that the ordinates f1 to n are utilized in Equation 4. We expect the functions
L1 to n(x) to behave in such a way that when x = xi only the fiLi(x) term in Equation
4 will contribute to f(x). That is to say when x = xi, Li(xi) should be equal to unity
and the other L(x) should be equal to zero. Mathematically, we write demand that:

f x f x x x xi

i

n

k i k

k
k i

n

() = −() −()[]














= =

≠

∑ ∏
1 1

f x f x x x xs i

i

n

k i k

k
k i

n

() = −() −()[]














= =

≠

∑ ∏
1

2

1

F F F Fk

k

n

n

=
∏ = …

1

1 2

f x f L x f L x f L xn n() = () + () +…+ ()1 1 2 2

© 2001 by CRC Press LLC

(5)

The second condition of Equation 5 suggests that x-xk are factors of Li(x) for
k = 1,2,…,n but not x-xi. Therefore, we may write:

(6)

The constant associated with Li(x), ci is to be determined by satisfying the first
condition of Equation 5. That is:

(7)

Consequently, the complete expression for Li(x) is:

(8)

And, when Equation 8 is substituted into Equation 4, we arrive at Equation 1.
A numerical example will clarify the application of Equation 2. Consider the

case of three given points (x1,f1) = (1,2), (x2,f2) = (1.5,2.5), (x3,f3) = (3,4), then n =
3. If we need to calculate f(x = 2), Equation 2 can be used to find the equation which
passes all three points. That is:

L x and L x for j ii i j i() = () = ≠1 0

L x c x x x x x x x x x xi i i i n() = −() −()… −() −()… −()− +1 2 1 1

c x xi i k

k
k i

n

= −()









=

≠

∏1
1

L x x x xi k i x

k
k i

n

k
() = −() ()[]−

=
≠

∏
1

f x
x x x x

x x x x
f

x x x x

x x x x
f

x x x x

x x x x
f

x x

() =
−() −()
−() −() +

−() −()
−() −()

+
−() −()
−() −()

= −() −()
−() −()

2 3

1 2 1 3
1

1 3

2 1 2 3
2

1 2

3 1 3 2
3

1 5 3
1 1 5 1 3

2
.
.

++ −() −()
−() −()

+ −() −()
−() −()

= − +() − − +() + − +()
= +

x x

x x

x x x x x x

x

1 3
1 5 1 1 5 3

2 5

1 1 5
3 1 3 1 5

4

2 4 5 4 5
10
3

4 3
4
3

2 5 1 5

1

2 2

. .
.

.
.

. . . .

© 2001 by CRC Press LLC

When x = 2, f(x = 2) = 3. Actually, the value of f(x = 2) can be specifically
calculated as:

QUICKBASIC VERSION

f x
x x x x

x x x x
f

x x x x

x x x x
f

x x x x

x x x x
f

=() =
−() −()
−() −() +

−() −()
−() −()

+
−() −()
−() −()

= −() −()
−() −(

2

2 1 5 2 3
1 1 5 1 3

2 3

1 2 1 3
1

1 3

2 1 2 3
2

1 2

3 1 3 2
3

.

.)) + −() −()
−() −()

+ −() −()
−() −()

= − + + =

2
2 1 2 3

1 5 1 1 5 3
2 5

2 1 2 1 5
3 1 3 1 5

4

1
10
3

2
3

3

. .
.

.
.

© 2001 by CRC Press LLC

Sample Application

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

MATLAB APPLICATION

A m file called LagrangI.m can be created and added to MATLAB m files for
interpolating a Y value for a giving X value based on a set of (X,Y) data point using
the Lagrangian formula. This file may be written as:

This m file can then be applied by specifying the data points, X vs. Y, as
illustrated by the following examples:

The graphic capability of MATLABcan also be utilized here to interpret
Lagrangian interpolation. In Figure 6, five given points marked with the character
* have been exactly fitted with a fourth-order polynomial which is plotted for 1≤X≤5
with a solid line. The interpolation at X = 4.56 using Lagrangian formula is illustrated
by the broken line and dotted line. The interactively entered MATLAB statements,
in addition to those already displayed above, are:

© 2001 by CRC Press LLC

FIGURE 6. Five given points marked with the character * have been exactly fitted with a
fourth-order polynomial which is plotted for 1≤X≤5 with a solid line. The interpolation at
X = 4.56 using Lagrangian formula is illustrated by the broken line and dotted line.

© 2001 by CRC Press LLC

Notice that plot.m automatically uses solid, broken, and dotted lines to plot the
four-order polynomial curve based on arrays XC and YC, and the vertical line based
on arrays XV, YV, and the horizontal line based on arrays XH, YH, respectively.
The details involved in exact curve-fit of the five given point by applying Least-
SqG.m already has been discussed in the program Gauss. The coefficients, {C}, of
the fourth-order polynomial determined by LeastSqG.m are arranged in descending
order. In order to apply polyval.m of MATLAB, the order of {C} has to be reversed
and stored in {Creverse} which is implemented above by the for and end loop.

MATHEMATICA APPLICATIONS

Derivation of the polynomial which passing through a set of given (x,y) points
based on the Lagrangian formula can be achieved by application of the Interpolating
Polynomial function of Mathematica. For example, a fourth-order polynomial can
be derived for a given set of 5 (x,y) data points as follows:

In[1]: = pofx = InterpolatingPolynomial [{{1,2},{2,4},{3,6},{4,8},{5,11}},x]

Out[1]: =

To interpolate the y value of using the derived polynomial at x equal to 4.56,
we replace all x’s appearing in the above expression (saved in pofx) with a value
of 4.56 by interactively entering

In[2]: = pofx/. x -> 4.56

Out[2]: = 9.45174

Linear and parabolic interpolations can also be implemented by selecting appro-
priate data points from the given set. For example, to interpolate the y value at x =
1.25 by linear interpolation, we enter:

In[3]: = p1 = InterpolatingPolynomial[{{1,2},{2,4}},x]

Out[3]: = 2 + 2 (–1 + x)

In[4]: = p1/. x -> 1.25

Out[4]: = 2.5

To parabolically interpolate the y value at x = 3.75 using the points (3,6), (4,8),
and (5,11), the interactive application of Mathematica goes as:

In[5]: = p2 = InterpolatingPolynomial[{{3,6},{4,8},{5,11}},x]

2 2
4 3 2

24
1+ + − +() − +() − +()





− +()x x x
x

© 2001 by CRC Press LLC

Out[5]: =

In[6]: = p2/. x -> 3.75 Out[6]: = 7.40625

4.4 PROBLEMS

DIFFTABL

1. Construct the difference table based on the following listed data and then
find the y value at x = 4.5 by using the backward-difference formula up
to the third-order difference.

2. Explain why interpolations using Equation 9 by the first through fourth
orders all fail to match the exact value of y(x = 1.24) = 7.3274 by making
4 plots for x values ranging from 1.2 to 1.3 with an increment of �x =
0.001. These 4 plots are to be generated with the 4 equations obtained
when the first 2, 3, 4, and 5 points are fitted by a first-, second-, third-,
and fourth-degree polynomials, respectively. Also, draw a x = 1.24, ver-
tical line crossing all 4 curves.

3. Find the first-, second-, third-, and fourth-order results of y(x = 1.56) by
use of Equation 15.

4. Write Er in terms of binomial coefficient and the backward-difference
operator �, similar to Equation 7.

5. Find the first-, second-, third-, and fourth-order results of y�(x = 1.24) by
use of Equation 24.

6. Find the first-, second-, third-, and fourth-order results of y(x = 1.56) by
use of Equation 25.

7. Given 6 (x,y) points (1,0.2), (2,0.4), (3,0.7), (4,1.5), (5,2.9), and (6,4.7),
parabolically interpolate y(x = 3.4) first by use of forward differences and
then by use of backward differences.

8. Modify either the QuickBASIC or FORTRAN version of the program
DiffTabl to include the fifth difference for the need of forward or back-
ward interpolation and numerical differentiation.

9. Given 5 (x,y) points (0,0), (1,1), (2,8), (3,27), and (4,64), construct a
complete difference table based on these data. Compute (1) y value at x =
1.25 using a forward, parabolic (second-order) interpolation, (2) y value
at x = 3.7 using a backward, cubic (third-order) interpolation, and (3)
dy/dx value at x = 0 using a forward, third-order approximation.

10. Based on Equation 21, derive the forward-difference formulas for D2yi

and D3yi.
11. Use the result of Problem 10 to compute D2y2 and D3y1 by adopting the

forward-difference terms in Table 1 as high as available.

x 1 2 3 4 5

y 2 4 7 12 20

6 2
4
2

3+ + − +



 − +()x

x

© 2001 by CRC Press LLC

12. Use the data in Table 1 to compute the first derivative of y at x = 1.155
by including terms up to the third-order forward difference.

13. Apply MATLAB for the points given in Problem 1 to print out the rows
of x, y, ∆y, �2y, �3y, and �4y.

14. Same as Problem 13 but the points in Problem 6.
15. Apply Mathematica and DO loops to print out a difference table similar

to that shown in Mathematica Application of Section 4.2 for the points
given in Problem 1.

16. Apply Mathematica and DO loops to print out a difference table similar
to that shown in Mathematica Application of Section 4.2 for the points
given in Problem 6.

17. Compute the binomial coefficient for r = 0.4 and k = 1,2,3,4,5 according
to Equation (8) in Section 4.2 using MATLAB.

18. Rework Problem 17 but using Mathematica.

LAGRANGI

1. Given five points (1,1), (2,3), (3,2), (4,5), and (5,4), use the last three
points and Lagrangian interpolation formula to compute y value at x = 6.

2. A set of 5 (x,y) points is given as (1,2), (2,4), (4,5), (5,2), (6,0), apply the
Lagrangian interpolation formulas to find the y for x = 3 by parabolic
interpolation using the middle three points. Check the answer by (a)
without fitting the three points by a parabolic equation, and (b) by deriving
the parabolic equation and then substituting x equal to 3 to find the y value.

3. Apply the Lagrangian formula to curve-fit the following listed data near
x = 5 by a cubic equation. Use the derived cubic equation to find the y
value at x = 4.5.

4. Use the data set given in Problem 3 to exactly curve-fit them by a quartic
equation y(x) = a1 + a2x + a3x2 + a4x3 + a5x4. Do this manually based on
the Lagrangian formula.

5. Write a program and call it ExactFit.Ln5 for computation of the coeffi-
cients a1–5 in the y(x) expression in Problem 4.

6. Generalize the need in Problem 4 by extending the exact fit of N given
(x,y) points by a polynomial y(x) = a1 + a2x + … + aixi–1 + … + aNxN–1

based on the Lagrangian formula. Call this program ExactFit.LnN.
7. Based on the Lagrangian formula, use the first four of the five points given

in Problem 1 to interpolate the y value at x = 2.5 and then the last four
of the five points also at x = 2.5.

8. Write a program and call it Expand.1 which will expand the set of five
points given in Problem 2 to a set of 21 points by using an increment of
x equal to 0.2 and linear interpolation based on the Lagrangian formula.
For any x value which is not equal to any of the x values of the five given

x 1 2 3 4 5

y 2 4 7 12 20

© 2001 by CRC Press LLC

points, this x value is to be tested to determine between which two points
it is located. These two given points are to be used in the interpolation
process by setting N equal to 2 in the program LagrangI. This procedure
is to be repeated for x values between 1 and 6 in computation of all new
y values.

9. As for Problem 8 except parabolic interpolation is to be implemented.
Call the new program Expand.2.

10. Extend the concept discussed in Problems 8 and 9 to develop a general
program Expand.M for using N given points and Mth-order Lagrangian
interpolation to obtain an expanded set.

11. Apply the function InterpolatingPolynomial of Mathematica to solve
Problems 1 and 2.

12. Check the result of Problem 4 by Mathematica.
13. Apply LagrangI.m to solve Problem 1 by MATLAB.
14. Apply LagrangI.m to solve Problem 2 by MATLAB.
15. Apply LagrangI.m to solve Problem 7 by MATLAB.

4.5 REFERENCE

1. R. C. Weast, Editor-in-Chief, CRC Standard Mathematical Tables, the Chemical
Rubber Co. (now CRC Press LLC), Cleveland, OH, 1964, p. 381.

5

© 2001 by CRC Press LLC

Numerical Integration
and Program Volume

5.1 INTRODUCTION

Sometimes, one cannot help wonder why

�

 appears so often in a wide range of
mathematical problems and why it has a value of approximately equal to 3.1416.
One may want to calculate this 16th letter in the Greek alphabet and would like to
obtain its value as accurate as 3.14159265358979 achieved by the expert.

1

 Geomet-
rically,

�

 represents the ratio of the circumference to the diameter of a circle. It is
commonly known that if the radius of a circle is r, the diameter is equal to 2r, the
circumference is equal to 2

�

r, and the area is equal to

�

r

2

. Hence, to calculate the
diameter we simply double the radius but to calculate the circumference and the
area of a circle is more involved. The transcendental number

�

 is the result of
calculating the circumference or area of a circle by numerical integration.

In this chapter, we discuss various methods that can be adopted for the need of
numerical integration. Before we elaborate on determining the value of

�

, let us
describe the problem of numerical integration in general.

Consider the common need of finding the area inside a closed contour C

1

 such
as the one shown in Figure 1A, or the area between the outside contour C

2

 and the
inside contour C

3

 shown in Figure 1B. The latter could be a practical problem of
determining the usable land size of a surveyed lot which include a pond. To evaluate
the area enclosed by the contour C

1

 approximately by application of digital computer,
the contour can be treated as two separate curves divided by two points situated at
its extreme left and right, denoted as P

L

 and P

R

, respectively. A rectangular coordinate
system can be chosen to adequately describe these two points with coordinates
(X

L

,Y

L

) and (X

R

,Y

R

). Here, for convenience, we shall always place the entire contour
C

1

 in the first quadrant of the X-Y plane. Such an arrangement makes possible to
have the coordinate (X,Y) values any point on C

1

 being greater than or equal to zero.
The area enclosed in the contour C

1

 can be estimated by subtracting the area A

B

between the bottom-branch curve P

L

P

B

P

R

 and the X-axis, from the area A

T

 between
the top-branch curve P

L

P

T

P

R

 and the X-axis. Approximated evaluation of the areas
A

B

 and A

T

 by application of digital computer proceeds first with selection of a finite
number of points P

i

 from P

L

 to P

R

. That is, to approximate a curve such as P

L

P

T

P

R

by a series of linear segments. Let N be the number of points selected on the curve
P

L

P

T

P

R

, then the coordinates of a typical point are (X

i

,Y

i

) for i ranges from 1 to N
and in particular (X

1

,Y

1

) = (X

L

,Y

L

) and (X

N

,Y

N

) = (X

R

,Y

R

). The area between a
typical linear segment P

i

P

i + 1

 and the X-axis is simply equal to:

(1)A Y Y X Xi i i i i= +() −()+ +1 1 2

© 2001 by CRC Press LLC

FIGURE 1A.

The common need of finding the area inside a closed contour C

1

.

FIGURE 1B.

The common need of finding the area between the outside contour C

2

 and the
inside contour C

3

.

© 2001 by CRC Press LLC

Notice that (Y

i

 + Y

i + 1

)/2 is the average height and (X

i + 1

–X

i

) is the width of the
shaded strip shown in Figure 2. Obviously, the total area A

T

 between the top branch
of contour C

1

, P

L

P

T

P

R

, and the X-axis is the sum of all strips under the N–1 linear
segments P

i

P

i + 1

 for i = 1,2,…,N. In other words, we may mathematically write:

(2)

To obtain the area A

B

 between the bottom branch of contour C

1

 and the X-axis,
we follow the same procedure as for the area A

T

 except that the first point is to be
assigned to P

R

 and the last point to P

L

. Suppose that there are M points selected
along P

R

P

B

P

L

, then the coordinates of these points are (X

i

,Y

i

) for i = 1,2,…,M and
in particular (X

1

,Y

1

) = (X

R

,Y

R

) and (X

M

,Y

M

) = (X

L

,Y

L

). Consequently, the area A

B

can be calculated, similar to Equation 2 as:

(3)

FIGURE 2.

(Y

i

 + Y

i + 1

)/2 is the average height and (X

i + 1

–X

i

) is the width of the shaded strip.

A A Y Y X XT i

i

N

i i

i

N

i i= = +() −()
=

−

+
=

−

+∑ ∑
1

1

1

1

1

1 2

A A Y Y X XB i

i

M

i i

i

M

i i= = +() −()
=

−

+
=

−

+∑ ∑
1

1

1

1

1

1 2

© 2001 by CRC Press LLC

Since the points are numbered in increasing order from P

R

 through P

B

 and P

L

,
it is then clear that X

i + 1

 is always less than X

i

. A

B

 thus carries a minus sign.
Based on the above discussion, the area enclosed by contour C

1

 can therefore
be calculated by

adding

 A

T

 and A

B

 if the numbering of the points selected on the
contour follows a

clockwise

 direction. Let the total number of points selected around
the contour C

1

 be denoted as K, then K = N + (M–2) because P

R

 and P

L

 are re-used
in consideration of the bottom branch. Hence, the area enclosed in C

1

 is:

(4)

where the Nth point has coordinates (X

N

,Y

N

) = (X

R

,Y

R

) and the first and last points
have coordinates (X

1

,Y

1

) = (X

K + 1

,Y

K + 1

) = (X

L

,Y

L

). And it should be evident that
in case of a cut-out, such as the contour C

2

 shown in Figure 1(B), the subtraction
of the area enclosed by the cut-out can be replaced by an addition of the value of
the area when it is calculated by using Equation 4 but the numbering of the points
on contour C

3

 is ordered in

counterclockwise

 sense.

5.2 PROGRAM NUINTGRA — NUMERICAL INTEGRATION BY
APPLICATION OF THE TRAPEZOIDAL AND SIMPSON RULES

Program

NuIntGra

 is designed for the need of performing numerical integration
by use of either trapezoidal rule or Simpson’s rule. These two rules will be explained
later. First, let us discuss why we need numerical integration.

Figure 3 shows a number of commonly encountered cross-sectional shapes in
engineering and scientific applications. The interactive computer program

NuIntGra

has an option of allowing keyboard input of the coordinates of the vertices of the
cross section and then carrying out the area computation of cross-sectional area
based on Equation 4.

The following gives some detailed printout of the results for the cross sections
shown in Figure 3. It is important to point out that the points on the contours describing
the cross-sectional shapes should be numbered as indicated in Figure 3, namely, clock-
wise around the outer boundary and counterclockwise around the inner boundary

.

A A A Y Y X XT B i i

i

K

i i= + = +() −()+
=

+∑ 1

1

1 2

© 2001 by CRC Press LLC

FIGURE 3.

Commonly used cross sections in engineering and scientific applications.

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

By use of a Function subprogram F(X) which defines the upper branch of a
circle of radius equal to 1 and having its center located at X = 1 as listed below,
program

NuIntGra

 also has been applied for calculating the value of

�

. The screen
display of this interactive run is also listed below after the Function F(X).

QuickBASIC Version FORTRAN Version

FUNCTION F(X) FUNCTION F(X)

F = SQR(1(X-1)^2) F = SQRT(1.-(X-1)**2)

END FUNCTION RETURN

END

© 2001 by CRC Press LLC

More discussion on the accuracy of

�

 will be given later after we have introduced
both the trapezoidal and Simpson’s rules which have already been incorporated in
the program NuIntgra.

T

RAPEZOIDAL

 R

ULE

Returning to Figure 2, we notice that if in approximating the curve by a series
of linear segments the points selected on the curve are

equally spaced

 in X, Equation
2 can be considerably simplified. In that case, we have:

(5)

and Equation 2 can be written as:

(6)

Or, in a different form for easy interpretation, it may also be written as:

(7)

All the in-between heights, Y

i

 for i ranging from 2 to N–1 that is the next to the
last, are appearing twice because they are shared by two adjacent strips whereas the
first and last heights, Y

1

 and Y

N

, only appear once in Equation 7.

�

X in Equation 7
is the common width of all strips used in summing the area.

Equation 7 is the well known

Trapezoidal Rule

 for numerical integration. In a
general case, it can be applied for approximate evaluation of an integral by the
formula:

∆X X X X X X XN N= − = − = … = − −2 1 3 2 1

A X Y YT i i

i

N

= +()+
=

−

∑∆ 1

1

1

2

A X Y Y YT i N

i

N

= + +










=

−

∑∆ 1

2

1

2 2

© 2001 by CRC Press LLC

(8)

where the increment in X,

 �

X, is simply:

(9)

when N points are selected on the interval of integration from X

L

 to X

R. It should
be understood that in Equation 8 fi is the value of the integrand function f(X)
calculated at X = Xi. That is:

(10)

where for i = 1,2,…,N

(11)

(12,13)

Program NuIntGra allows the user to define the integrand function f(X) by
specifying a supporting Subprogram FUNCTION F(X) and to interactively input
the integration limits, XL and XR, along with the total number of points, N, to
determine the value of an integral based on Equation 8. As an example, we illustrate
below the estimation of a semi-circular area specifying XL = 0, XR = 2, and N = 21
and defining the integrand function f(X) in FUNCTION F(X) with a statement

F = SQRT(1.-(X–1.)*(X–1.))

This statement describes that the center of the circle is located at (1,0) and radius
is equal to 1. When N is increased from 21 to 101 with an increment of 20, the
following table shows that the accuracy of trapezoidal rule is steadily increased when
the estimated value of the semi-circle is approaching the exact value of �/2.

SIMPSON’S RULE

The Trapezoidal Rule approximates the integrand function f(X) in Equation 8
by a series of connected straight-line segments as illustrated in Figure 2. These
straight-line segments can be expressed as linear functions of X. A straight line

N 21 41 61 81 101

Area 1.552 1.564 1.567 1.568 1.569

Error 1.21% 0.45% 0.26% 0.19% 0.13%

f X dX X f f f
X

X

i N

i

N

L

R

() = + +








∫ ∑

=

−

∆ 1

2

1

2

∆X X X NL R= −() −()1

f f Xi i≡ ()

X i X Xi L= −() +1 ∆

X X and X XL N R1 = =

© 2001 by CRC Press LLC

which passes through two points (Xi,Yi) and (Xi + 1,Yi + 1) may be described by the
equation:

(14)

where mi is the slope and bi is the intercept at the Y-axis of the ith straight line.
Upon substituting the coordinates (Xi,Yi) and (Xi + 1,Yi + 1) into Equation 14, we

obtain two equations

The slope mi can be easily solved by subtracting the first equation from the
second equation to be

(15)

Substituting mi into the Yi equation, we obtain the intercept to be:

(16)

For the convenience of further development as well as for ease in computer
programming, it is better to write the equation describing the straight line as:

(17)

That is to replace mi and bi in Equation 14 by a1 and a0, respectively. From
Equations 15 and 16, we therefore can have:

(18)

and

(19)

A logical extension of Equation 17 is to express Y as a second-order polynomial
of X, namely:

(20)

Y m X bi i= +

Y m X b and Y m X bi i i i i i i i= + = ++ + 1 1

m Y Y X Xi i i i i= −() −()+ +1 1

b Y Y Y X X Xi i i i i i i= − −() −()+ +1 1

Y a a X a Xi
i

i

= + =
=
∑0 1

0

1

a Y Y X Xi i i i0 1 1= −() −()+ +

a Y Y Y X X Xi i i i i i1 1 1= − −() −()+ +

Y a a X a X a Xi
i

i

= + + =
=
∑0 1 2

2

0

2

© 2001 by CRC Press LLC

It is a quadratic equation describing a parabola. If we select Equation 20 to
approximate a segment of f(X) for numerical evaluation of the integral in Equation
8, three points are required on the f(X) curve as illustrated in Figure 4 in order to
determine the three coefficients a0, a1, and a2. For simplicity in derivation, let the
three points be (0,Y1), (�X,Y2), and (2�X,Y3). Upon substitution into Equation 20,
we obtain:

(21)

(22)

and

(23)

As a0 is already determined in Equation 21, it can be eliminated from
Equations 22 and 23 to yield:

(24)

and

(25)

FIGURE 4. Three points are required on the f(X) in order to determine the three coefficients
a0, a1, and a2.

a Y0 1=

a X a X a Y0 1
2

2 2+ () + () =∆ ∆

a X a X a Y0 1
2

2 32 2+ () + () =∆ ∆

a X a Y Y X1 2 2 1+ () = −()∆ ∆

a X a Y Y X1 2 3 12 2+ () = −()∆ ∆

© 2001 by CRC Press LLC

The solutions of the above equations can be obtained by application of Cramer’s
Rule as:

(26)

and

(27)

Having derived a0, a1, and a2 in terms of the ordinates Y1, Y2, and Y3, and the
increment in X, �X, we are ready to substitute Equations 20, 21, 26, and 27 into
Equation 8 to compute the area A1ø3 in Figure 4 under the parabola. That is:

After simplification, it can be shown that the area1ø3 is related to the ordinates
Y1, Y2, and Y3, and the increment �X by the equation:

(28)

When the above-described procedure is applied for numerical integration by
approximating the curve of the integrand Y(X) as a series of connected parabolas,
we can expand Equation 28 to cover the limits of integration to obtain:

(29)

Notice that the limits of integration are treated by having M stations which must
be an odd integer, and the stepsize �X = (XU-XL)/(M–1). These stations are divided
into groups of three stations. Equation 28 has been successively employed for
evaluating the adjacent areas A1ø3, A3ø5, …, AM–2øM in order to arrive at Equation 29.
Equation 29 can also be written in the form of:

(30)

a Y Y X Y Y X Y Y Y X1 2 1 3 1 1 2 32 2 3 4 2= −() − −() = − + −()∆ ∆ ∆

a Y Y X a X Y Y Y X2 2 1 1 1 2 3
22 2= −() −[] = − +() ()∆ ∆ ∆

A a X dX
a

i
X Xi

i

X
i i i

i

1 3

0

2

0

2
1

0

2

0

2

1→
=

+

=

= =
+





∑∫ ∑

∆

∆

A
X

Y Y Y1 3 1 2 33
4→ = + +()∆

A A
X

Y Y Yi i

i
odd

M

i i i

i
odd

M

= = + +()→ +
=

−

+ +
=

()

−

∑ ∑2

1 3

2

1 2

1 3

2

3
4

,
()

,

∆

A
X

Y Y Y Yi

i
even

M

i M

i
odd

M

= + + +















=

()

−

=
()

−

∑ ∑∆
3

4 21

2 4

1

3 5

2

, ,

© 2001 by CRC Press LLC

which is the well-known Simpson’s rule. Program NuIntGra has the option of using
Simpson’s rule for numerical integration. It can be shown that when this program is
applied for the integration of the semi-circular area under the curve Y(X) = (1–X2).5,
the Simpson’s rule using different M stations will result in

Presented below are the program listings of NuIntGra in both QuickBASIC
and FORTRAN versions.

QUICKBASIC VERSION

M 21 41 61 81 101

Area 1.564 1.568 1.569 1.570 1.570

Error 0.45% 0.19% 0.13% 0.05% 0.05%

© 2001 by CRC Press LLC

FORTRAN VERSION

© 2001 by CRC Press LLC

MATLAB APPLICATION

MATLAB has a file quad.m which can perform Simpson’s Rule. To evaluate
the area of a semi-circle by application of Simpson’s Rule using quad.m, we first
prepare the integrand function as a m file as follows:

If this file integrnd.m is stored on a disk which has been inserted in the disk
drive A, quad.m is to be applied as follows:

>> Area = quad(‘A:integrnd’,0,2)

Notice that quad has three arguments. The first argument is the m file in which
the integrand function is defined whereas the second and third arguments specify
the limits of integration. Since the center of the semi-circle is located at x = 1, the
limits of integration are x = 0 and x = 2. The display resulted from the execution of
the above MATLAB statement is:

Notice that warning messages have been printed but the numerical result is not
affected.

© 2001 by CRC Press LLC

MATHEMATICA APPLICATION

Mathematica numerically integrate a function f(x) over the interval x = a to x =
b by use of the function NIntegrate. The following example demonstrates the com-
putation of one quarter of a circle having a radius equal to 2:

In[1]: = NIntegrate[Sqrt[4x^2], {x, 0, 2}]

Out[1] = 3.14159

5.3 PROGRAM VOLUME — NUMERICAL APPROXIMATION
OF DOUBLE INTEGRATION

Program Volume is designed for numerical calculation of double integration involv-
ing an integrand function of two variables. For convenience of graphical interpreta-
tion, the two variables x and y are usually chosen and the integrand function is
denoted as z(x,y). If the double integration is to be carried for the region xL≤x≤xU

and yL≤y≤yU, the value to be calculated is the volume bounded by the z surface, z =
0 plane, and the four bounding planes x = xL, x = xU, y = yL, and y = yU where the
sub-scripts L and U are used to indicate the lower and upper bounds, respectively.
The rectangular region xL≤x≤xU and yL≤y≤yU on the z = 0 plane is called the base
area. The volume is there-fore a column which rises above the base area and bounded
by the z(x,y) surface, assuming that z is always positive. Mathematically, the volume
can be expressed as:

(1)

If we are interested in finding the volume of sphere of radius equal to R, the
bounds can be selected as xL = yL = 0 and xU = yU = R, and let z = (R2x2y2).5. Equation
1 can then be applied to find the one-eighth of spherical volume. In fact, the result
can be obtained analytically for this z(x,y) function. We are here, however, interested
in a computational method for the case when the integrand function z(x,y) is too
complex to allow analytical solution.

The trapezoidal rule for single integration discussed in the program NuIntgra
can be extended to double integration by observing from Figure 1 that the total
volume V can be estimated as a sum of all columns erected within the space bounded
by the z surface and the base area. In Figure 5, the integrand functions used are:

(2)

and

(3)

V z x y d
x

x

y

y

L

U

L

U= ()∫∫ ,

z x y R x y for x y R, ,
.() = − −() + ≤2 2 2 0 5 2 2 2

z x y for x y R, , () = + >0 2 2 2

© 2001 by CRC Press LLC

Notice that Equation 3 is an added extension of Equation 2 because if we use
Equation 1 and the upper limits are xU = yU = R, a point outside of the boundary x2

+ y2 = R2 on the base area 0≤x≤R and 0≤y≤R is selected for evaluating z(x,y), the
right-hand side of Equation 2 is an imaginary number. Adding Equation 3 will
remedy this situation.

If we partition the base area into a gridwork by using uniform increments �x
and�y along the x- and y-directions, respectively. If there are M and N equally
spaced stations along the x- and y-direction, respectively, then the increments can
be calculated by the equations:

(4)

and

(5)

At a typical grid-point on the base area, (xi,yj), there are three neighboring points
(xi,yj + 1), (xi + 1, yj), and (xi + 1,yj + 1). The z values at these four points can be averaged
for calculation of the volume, Vij, of this column by the equation:

FIGURE 5. In this figure , the integrand functions used are Equations 2 and 3.

∆x x x M R MU L= −() −() = −()1 1

∆y y y N R NU L= −() −() = −()1 1

© 2001 by CRC Press LLC

(6)

where:

(7)

The total volume is then the sum of all Vi,j for i ranging from 1 to M and j
ranging from 1 to N. Or,

(8)

The two summations in Equation 8 are loosely stated. Actually, the heights
calculated at all MxN grid-points on the base area used in Equation 7 can be separated
into three groups: (1) those heights at the corners whose coordinates are (0,0), (0,R),
(R,0), and (R,R), are needed only once, (2) those heights on the edges of the base
area, excluding those at the corners, are needed twice because they are shared by
two adjacent columns, and (3) all heights at interior grid-points are needed four
times in Equation 8 because they are shared by four adjacent columns. That is to
say, in terms of the subscripts I and j the weighting coefficients, wi,j, for zi,j can be
summarized as follows:

wi,j = 1 for (i,j) = (1,1),(1,N),(M,1),(M,N),

= 4 for i = 2,3,…,M-1 and j = 2,3,…,N-1

= 2 for other i and j combinations

Subsequently, Equation 8 can be written as:

(9)

A more precise way to express V in terms zi,j is to introduce a weighting
coefficient vector for Trapezoidal rule, {wt}. Since we have averaged the four heights
of each contributing column, that is linearly connecting the four heights. That is,
the trapezoidal rule has been applied twice, one in x-direction and another in y-
direction. When M and N stations are employed in x- and y-directions, respectively.
we may therefore define two weighting coefficient vectors

V z z z z x yi j i j i j i j i j, , , , ,= + + +()+ + + +
1
4 1 1 1 1 ∆ ∆

z z x yi j i j, ,≡ ()

V x y dxdy

x y
z z z z

RR

i j i j i j i j

ji

= +()

= + + +()
∫∫

∑∑ + + + +

2 2 5

00

1 1 1 14

.

, , , ,

∆ ∆

V
x y

w zi j i j

j

N

i

M

=
==

∑∑∆ ∆
4

11

, ,

© 2001 by CRC Press LLC

(10)

and

(11)

It should be noted that the subscripts x and y are added to indicate their asso-
ciation with the x- and y-axes, respectively, and that the orders of these two vectors
are M and N, respectively, and that the beginning and ending components in both
vectors are equal to one and the other components are equal to two. Having defined
{wt}x and {wt}y, it is now easy to show that Equation 9 can be simply written as:

(12)

where [Z] is a matrix of order M by N having zi,j as its elements. Since {wt}x is a
vector of order M by one, its transpose is of order one by M and {wt}y is of order
N by one, the matrix multiplication of the three matrices can be carried out and the
result does agree with the requirement on wi,j spelled out in Equation 9.

Use of weighting coefficient vectors has the advantage of extending the numer-
ical evaluation of double integrals from trapezoidal rule to Simpson’s rule where
three adjacent heights are parabolically fitted (referring to program NuIntgra for
more details). To illustrate this point, let us first introduce a weighting coefficient
vector for Simpson’s rule as:

(13)

If we wish to integrate by application of Simpson’s rule in both x- and y-
directions and using M and N (both must be odd) stations, the formula for the volume
is simply:

(14)

If for some reason one wants to integrate using Simpson’s rule along x-direction
by adopting M (odd) stations, and using trapezoidal rule along y-direction by adopt-
ing N (no restriction whether odd or even) stations, then:

(15)

Let us present a numerical example to further clarify the above concept of
numerical volume integration. Consider the problem of estimating the volume

wt x

T{ } = …[]1 2 2 2 2 2

wt y

T{ } = …[]1 2 2 2 2 1

V
x

w Z w
y

t x

T

t y
= { } []{ }∆ ∆

2 2

ws

T{ } = … …[]1 4 2 4 1 repeat of 4 and 2

V
x

w Z w
y

s x

T

s y
= { } []{ }∆ ∆

3 3

V
x

w Z w
y

s x

T

t y
= { } []{ }∆ ∆

3 2

© 2001 by CRC Press LLC

between the surface z(x,y) = 2x + 3y2 + 4 and the plane z = 0 for 0≤x≤2 and 1≤y≤2
by application of trapezoidal rule along the x direction using an increment of 0.5,
and Simpson’s rule along y direction using also an increment of 0.5. The increments
of o.5 in both x- and y-directions make M = 5 and N = 3. First, we calculate the
elements of [Z] which is of order 5 by 3:

Next, the volume is calculated to be:

Program Volume has been developed for interactive specification of the inte-
grand function z(x,y), the integration limits xL, xU, yL, and yU, the method(s) of
integration (i.e., , trapezoidal or Simpson’s rule) and number of stations in both x-
and y-direction. The integrand function z(x,y) needs to be individually compiled.
Both QuickBASIC and FORTRAN versions are made available. Listings are pro-
vided below along with sample applications.

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

The FUNCTION Z(X,Y) listed above is for finding the volume under the surface
z(x,y) = (x2 + y2–4).5 over the region 0≤x≤2 and 0≤y≤2. The exact solution is
volume = 4.1889. For a sample run of the program Volume using trapezoidal rule
and 21 stations along both x- and y-directions, the screen display of interactive
communication through keyboard input and the calculated result is:

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Applications

The same calculation of one-eighth of a sphere of radius equal to 2 as in the
FORTRAN version is run but here using Simpson’s rule. The screen display is:

We have presented earlier the manual calculation of the double integration for
z(x,y) = 2x + 3y2 + 4, program Volume can be applied to have the results displayed
on the monitor screen as below. The answer is exactly the same as from manual
computation.

MATLAB APPLICATION

A Volume.m file can be created and added to MATLAB m files to calculate a
double integral when the integrand function is specified by another m file. For
integrating a function Z(X,Y) over the region X1≤X≤X2 and Y1≤Y≤Y2 by either
Trapezoidal or Simpson’s rules (designated as rule 1 or 2) and with NX and NY

stations along the X and Y directions, respectively, this file may be written as
followed:

© 2001 by CRC Press LLC

For each problem, the integrand function Z(X,Y) needs to be prepared as a m
file. In case that a hemisphere of radius 2 and centered at X = 0 and Y = 0, we may
write:

In case of Z(X,Y) = 2X + 3Y2 + 4, we may write a new file as:

Once the files Volume.m, FuncZ.m, and FuncZnew.m, the following MAT-
LAB executions can be achieved:

© 2001 by CRC Press LLC

Notice the first and second integrations of the hemisphere use Trapezoidal and
Simpson’s rule in both X and Y, respectively. Both use 21 stations in X and Y
directions. The third integration of Z = 2X + 3Y2 + 4 over the region 0≤X≤2 and
1≤Y≤2 is carried out using Trapezoidal rule along X direction with 5 stations and
Simpson’s rule along Y direction with 3 stations.

MATLAB has a mesh plot capability of generating three-dimensional hidden-
line surface. For example, when the function FuncZ is used to generate a hemispher-
ical surface of radius equal to 2 described by a square matrix [Z], a plot shown in
Figure 6 can be obtained by entering MATLAB commands as follows:

We observe from Figure 6 that the hidden-line feature is apparent but the hemi-
sphere appears like a semiellipsoid. This is due to the aspect ratios of the display
monitor and/or of the printer. mesh is the option of specifying different scale factors
for the X-, Y-, and Z-axes. To make the three-dimensional surface to appear as a
perfect hemisphere, user has to experiment with different scale factors for the three
axes. This is left as a homework problem. Also, mesh has option for displaying the
surface by viewing it from different angles, user is again urged to try generation of
different 3D hidden-line views.

MATHEMATICA APPLICATIONS

Mathematica has a three-dimensional plot function called Plot3d which can be
applied for drawing the hemispherical surface. Figure 7 is the result of entering the
statement:

© 2001 by CRC Press LLC

FIGURE 6.

FIGURE 7.

© 2001 by CRC Press LLC

Input]: = Sphere = Plot3D[If[4X^2Y^2>0, Sqrt[4X^2Y^2],0,
{X,–2,2},{Y,–2,2},PlotPoints->{60,60}]

The If command tests the first expression inside the brackets, it the condition
is true then the statement which follows is implemented and other the last statement
inside the bracket is implemented. In this case, the surface only rises over the base
circle of radius equal to 2. The PlotPoints command specifies how many gird points
along X- and Y-directions should be taken to plot the surface. The default number
of point is 15 in both directions. The greater the number of grid points, the smoother
the surface looks.

The same result can be obtained by first defining a surface function, say sf, and
then apply Plot3d for drawing the surface using sf as follows:

Input]: = sf[X_,Y_] = If[4X^2Y^2>0, Sqrt[4X^2Y^2], 0]

Input[2]: = Plot3D[sf[X,Y],{X,–2,2},{Y,–2,2},PlotPoints->{60,60}]

5.4 PROBLEMS

NUINTGRA

1. Having learned how to apply Trapezoidal Rule for numerical integration,
how would you find the area under the line y(x) = 1 + 2x and between
x = 1 and x = 2? Do it not by direct integration, but numerically. What
should be the stepsize for x in order to ensure an accurate result?

2. Having learned how to apply Simpson’s Rule for numerical integration,
how would you find the area under the parabolic curve y(x) = 1 + 2x +
3x2 and between x = 1 and x = 2? Do it not by direct integration but
numerically! What should be the stepsize for x in order to ensure an
accurate result?

3. If Trapezoidal Rule, instead of Simpson’s Rule, is applied for Problem 2,
find out how small should be the stepsize for x in order to achieve the
same result accurate to the fifth significant digit.

4. Could Simpson’s Rule be applied for Problem 1? Would the result be
different? If the result is the same, explain why.

5. Given five points (1,1), (2,3), (3,2), (4,5), and (5,4), use a stepsize of �x =
1 to compute �ydx by application of Simpson’s and Trapezoidal rules.

6. Use the trapezoidal and Simpson’s rules to find the area within the ellipse
described by the equation (x/a)2 + (y/b)2 = 1. Compare the numerical
results with the exact solution of �ab.

7. Implement the integration of the function f(x) = 3e–2xsinx over the interval
from x = 0 to x = 1 (in radian) by applying both the Trapezoidal and
Simpson’s rules and using an increment of �x = 0.25.

8. Find the exact solution of Problem 7 by referring to an integration formula
for f(x) from any calculus book. Decrease the increment of x (i.e., ,

© 2001 by CRC Press LLC

increase the number of points at which the integrand function is computed)
to try to achieve this analytical result using both Trapezoidal and Simp-
son’s Rules.

9. Apply the function Quad.m of MATLAB to solve Problem 1.
10. Apply the function Quad.m of MATLAB to solve Problem 2.
11. Apply the function Quad.m of MATLAB to solve Problem 6.
12. Apply the function Quad.m of MATLAB to solve Problem 7.
13. Apply MATLAB to spline curve-fit the five points given in Problem 5

and then integrate.
14. Apply the function NIntegrate of Mathematica to solve Problem 1.
15. Apply the function NIntegrate of Mathematica to solve Problem 2.
16. Apply the function NIntegrate of Mathematica to solve Problem 6.
17. Apply the function NIntegrate of Mathematica to solve Problem 7.
18. Problem 13 but apply Mathematica instead.

VOLUME

1. Apply trapezoidal rule for integration along the x direction and Simpson’s
rule along the y direction to calculate the volume under the surface z(x,y) =
3x + 2y2 + 1 over the rectangular region 0≤x≤2 and 0≤y≤4 using incre-
ments �x = �y = 1.

2. Rework Problem 1 except trapezoidal rule is applied for both x and y
directions.

3. Find by numerical integration of the ellipsoidal volume based on the
double integral ��3[1–(x/5)2–(y/4)2]1/2dxdy and for x values ranging from
2 to 4 and y values ranging from 1 to 2. Three stations (for using Simpson’s
rule) for the x integration and two stations (for using trapezoidal rule) for
the y integration are to be adopted.

4. Find the volume between the z = 0 plane and the spherical surface z(x,y) =
[4x2 – y2]1/2 for x and y both ranging from 0 to 2 by applying the Simpson’s
rule for both x and y integrations. Three stations are to be taken along the
x direction and five stations along the y direction for the specified numer-
ical integration.

5. Specify a FUNCTION Z(x,y) for program Volume so that the volume
enclosed by the ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 1 can be estimated by
numerical integration and compare to the exact solution of 4�abc/3.2

6. In Figure 8, the shape and dimensions of a pyramid are described by the
coordinates of the five points (Xi,Yi) for I = 1,2,…,5. For application of
numerical integration to determine its volume by either trapezoidal or
Simpson’s rule, we have to partition the projected plane P2P3P4P5 into a
gridwork. At each interception point of the gridwork, (X,Y), the height
Z(X,Y) needs to be calculated which requires knowing the equations
describing the planes P1P2P3, P1P3P4, P1P4P5and P1P5P2. The equation of
a plane can be written in the form of 2(X–a) + m(Y–b) + n(Z–c) = 1
where (a,b,c) is a point on the plane and (2,m,n) are the directional cosines

© 2001 by CRC Press LLC

of the unit normal vector of the plane.3 Apply the equation of plane and
assign proper values for the coordinates (Xi,Yi) describing the pyramid,
and then proceed to write a FUNCTION Z(X,Y) to determine its volume
by using program Volume.

7. Find the volume under the surface z = 3x2–4y + 15 over the base area of
0≤x≤2 and 1≤y≤2 by applying Simpson’s Rule along the x-direction using
an increment of �x = 1, and Trapezoidal Rule along the y-direction using
an increment of �y = 0.25.

8. How do you find the volume under the plane z = 2x–0.5y and above the
rectangular area bounded by x = 0, x = 1, y = 0, and y = 2 numerically
and not by actually integrating the z function? Explain which method and
stepsizes in x and y directions you will use, give the numerical result and
discuss how accurate it is.

9. Use the function FuncZnew which defines the equation Z = 2X + 3Y2 +
4 and plot the Z surface for 0≤X≤2 and 1≤Y≤2 by applying mesh of
MATLAB. Experiment with different increments of X and Y.

10. Modify the use of mesh by defining a vector {S} = [SX SY SZ} containing
the values of scaling factors for the three coordinate axes and then enter
mesh(Z,S) to try to improve the appearance of a hemisphere, better than
the one shown in Figure 2. Referring to Figure 2, the lowest point is the
original and the X-axis is directed to the right (width), Y-axis is directed
to the left (depth), and Z-axis is pointing upward (height). Since the
hemisphere has a radius equal to 2 and by actually measuring the width,
depth, and height to be in the approximate ratios of 2 7/8”: 2 7/16”: 2
3/4”. Based on these values, slowly adjust the values for SX, SY and SZ.

FIGURE 8. Problem 6.

© 2001 by CRC Press LLC

11. Figure 9 is obtained by using mesh to plot the surface Z = 1.5Re–2R and
R = (X2 + Y2)H for –15≤X,Y≤15 with increment of 1 in both X and Y
directions. Try to generate this surface by interactively entering MATLAB
commands. Apply the m file volume and modify the function FuncZnew
to accommodate this new integrand function to calculate the volume of
this surface above the 30x30 base area.

12. Apply Mathematica to solve Problem 6.
13. Apply Mathematica to solve Problem 7.
14. Apply Mathematica to solve Problem 9.
15. Apply Mathematica to solve Problem 11.

5.5 REFERENCES

1. M. Abramowitz and I. A. Stegum, editors, Handbook of Mathematical Functions with
Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied
Mathematics Series 55, Washington, DC, 1964.

2. R. C. Weast, Standard Mathematical Tables, the Chemical Rubber Co. (now CRC
Press LLC), Cleveland, OH, 13th edition, 1964.)

3. H. Flanders, R. R. Korfhage, and J. J. Price, A First Course in Calculus with Analytic
Geometry, Academic Press, New York, 1973.

FIGURE 9. Problem 11.

6

© 2001 by CRC Press LLC

Ordinary Differential
Equations — Initial and
Boundary Value Problems

6.1 INTRODUCTION

An example of historical interest in solving an unknown function which is governed
by an ordinary differential equation and an initial condition is the case of finding
y(x) from:

(1)

As we all know, y(x) = e

x

. In fact, the

exponential function

 e

x

 is defined by an
infinite series:

(2)

To prove that Equation 2 indeed is the solution for y satisfying Equation 1, here
we apply an iterative procedure of successive integration using a counter k. First,
we integrate both sides of Equation 1 with respect to x:

(3)

After substituting the initial condition of y(x = 0) = 1, we obtain:

(4)

So we are expected to find an unknown y(x) which is to be obtained by inte-
grating it? Numerically, we can do it by assuming a y(x) initially (k = 1) equal to
1, investigate how Equation 4 would help us to obtain the next (k = 2), guessed y(x),
and hope eventually the iterative process would lead us to a solution. The iterative
equation, therefore, is for k = 1,2,…

dy
dx

y and y x= =() = 0 1

e
x x x

i
x

i

i

= + + +… =
=

∝

∑1
1 2

1 2

0
! ! !

dy
dx

dx y dx
x x

0 0∫ ∫=

y x y dx
x

() = + ∫1
0

© 2001 by CRC Press LLC

(5)

The results are y

(1)

 = 1, y

(2)

 = 1 + x, y

(3)

 = 1 + x + (x

2

/2!), and eventually the
final answer is the infinite series given by Equation 2.

What really need to be discussed in this chapter is not to obtain an analytical
expression for y(x) by solving Equation 1 and rather to compute the numerical values
of y(x) when x is equally incremented. That is, for a selected x increment,

�

x (or,
stepsize h), to find y

i

�

y(x

i

) for i = 1,2,… until x reaches a terminating value of x

e

and x

i

 = (i–1)

�

x. A simplest method to find y

2

 is to approximate the derivative of
y(x) by using the forward difference at x

1

. That is, according to the notation used
in Chapter 4, we can have:

(6)

Or, y

2

 = (1 +

�

x)y

1

. In fact, this result can be extended to any x

i

 to obtain y

i + 1

 =
1 + (x)y

i

. For the general case when the right-hand side of Equation 1 is equal to a
prescribed function f(x), we arrive at the Euler’s formula y

i + 1

 = y

i

 + f(x

i

)

 �

x. Euler’s
formula is easy to apply but is inaccurate. For example, using a

�

x = 0.1 in solving
Equation 1 with the Euler’s formula, it leads to y

2

 = (1 + 0.1)y

1

 = 1.1, y

3

 = (1 +
0.1)y

2

 = 1.21 when the exact values are y

2

 = e

0.1

 = 1.1052 and y

3

 = e

0.2

 = 1.2214,
respectively. The computational errors accumulate very rapidly.

In this chapter, we shall introduce the most commonly adopted method of Runge-
Kutta for solution of the initial-value problems governed by ordinary differential
equation(s). For the

fourth-order Runge-Kutta method

, the error per each compu-
tational step is of order h

5

 where h is the stepsize. Converting the higher-order
ordinary differential equation(s) into the standardized form using the

state variables

will be illustrated and computer programs will be developed for numerical solution
of the problem.

Engineering problems which are governed by ordinary differential equations and
also some associated conditions at certain boundaries will be also be discussed.
Numerical methods of solution based on the Runge-Kutta procedure and the finite-
difference approximation will both be explained.

6.2 PROGRAM RUNGEKUT — APPLICATION
OF THE RUNGE-KUTTA METHOD
FOR SOLVING THE INITIAL-VALUE PROBLEMS

Program

RungeKut

 is designed for solving the initial-value problems governed by
ordinary differential equations using the fourth-order Runge-Kutta method. There
are numerous physical problems which are mathematically governed by a set of
ordinary differential equations (

ODE

) involving many unknown functions. These
unknown functions are all dependent of a variable t. Supplementing to this set of

y x y dxk k
x

+() ()() = + ∫1

0
1

dy
dx

y

x

y y

x
yx x= = = − =

1

1 2 1
1˙

∆
∆ ∆

© 2001 by CRC Press LLC

ordinary differential equations are the

initial conditions

 of the dependent functions
when t is equal to zero. For example, the often cited vibration

1

 problem shown in
Figure 1 requires the changes of the elevation x and velocity v to be calculated using
the equations:

(1)

and

(2)

where m is the mass, c is the damping coefficient, k is the spring constant, t is the
time, and f(t) is a disturbing force applied to the mass. When the physical para-
meters m, c, and k, and the history of the applied force f(t) are specified, the complete
histories of the mass’ elevation x and velocity v can be calculated analytically, or,
numerically if the initial elevation x(t = 0) and v(t = 0) are known. If m, c, and k
remain unchanged throughout the period of investigation and f(t) is a commonly
encountered function, Equation 1 can be solved analytically.

1

 Otherwise, a numerical
method has to be applied to obtain approximate solution of Equation 1.

Many numerical methods are available for solving such initial-value problems
governed by ordinary differential equations. Most of the numerical methods require
that the governing differential equation be rearranged into a standard form of:

FIGURE 1.

The often cited vibration problem shown requires the changes of the elevation
x and velocity v to be calculated.

m d x dt c dx dt kx f t2 2() + () + = ()

dx dt v=

© 2001 by CRC Press LLC

(3)

For example, the variables x and v in Equations 1 and 2 are to be renamed x

1

and x

2

, respectively. Equation 1 is to be rewritten as:

and then as:

and finally as:

Meanwhile. Equation 2 is rewritten as:

Or, more systematically the problem is described by the equations:

(4)

and having the initial conditions x

1

(t = 0) and x

2

(t = 0) prescribed.
Runge-Kutta method is a commonly used method for numerical solution of a

system of first-order ordinary differential equations expressed in the general form
of (3). It is to be introduced and illustrated with a number of practical applications.

R

UNGE

-K

UTTA

 M

ETHOD

 (F

OURTH

-O

RDER

)

Consider the problem of finding x and y values at t>0 when they are governed
by the equations:

(5)

dx dt F x x x t

dx dt F x x x t

dx dt F x x x t parameters

n

n

n n n

1 1 1 2

2 2 1 2

1 2

= …()
= …()

= …()

, , , , ;

, , , , ;

, , , , ;

parameters

 parameters

m dv dt cv kx f t() + + = ()

dv dt f t cv kx m= () − −[]

dx dt F x x t m c k2 2 1 2= (), , ; , ,

dx dt F x x t m c k1 1 1 2= (), , ; , ,

dx dt F x x t m c k x

dx dt F x x t m c k f t kx cx m

1 1 1 2 2

2 2 1 2 1 2

= () =

= () = () − −[]
, , ; , ,

, , ; , ,

dx dt x dy dt y() − + () − = −4 6 2

© 2001 by CRC Press LLC

and

(6)

when initially their values are x(t = 0) = 7 and y(t = 0) = –4. The analytical solutions
are obtainable

2

 and they are:

(7)

To solve the problem numerically, Equations 5 and 6 need to be decoupled and
expressed in the form of Equation 3. Cramer’s rule can be applied by treating dx/dt
and dy/dt as two unknowns and x and y as parameters, the converted standard form
after changing x to x

1

 and y to x

2

 is:

(8)

(9)

where:

(10)

and

(11)

Numerical solution of x

1

 and x

2

 for t>0 is to use a selected time increment

�

t
(often referred to as the stepsize h for the independent variable t). Denote t

0

 as the
initial instant t = 0 and t

j + 1

 as the instant after j increments of time, that is, t

j + 1

 =
(j + 1)h. If the values for x

1

 and x

2

 at t

j

, denoted as x

1,j

 and x

2,j

 respectively, are
already known, the fourth-order Runge-Kutta method is to use the following formu-
las to calculate x

1

 and x

2

 at t

j + 1

, denoted as x

1,j + 1

 and x

2,j + 1

:

(12)

for i = 1,2. The p’s in Equation 12 are the Runge-Kutta parameters to be calculated
using the functions F

1

 and F

2

 by adjusting the values of the variables x

1

 and x

2

 at
t

j

. The formulas for calculating these p’s are, for i = 1,2

(13)

2 3 2 0dx dt x dy dt y() + + () + =

x e and y et t= + = − −5 2 3 1

dx dt F x x t x1 1 1 2 1 0 7= () () =, , ; , constants

dx dt F x x t x2 2 1 2 2 0 4= () () = −, , ; , constants

F x x t x x1 1 2 1 26 13 20, , ;constants() = − + +

F x x t x x2 1 2 1 24 9 14, , ;constants() = − −

x x p p p pi j i j i i i i, , , , , ,+ = + + + +()1 1 2 3 42 2 6

p hF t x xi i j j j, , ,, ,1 1 2= ()

© 2001 by CRC Press LLC

(14)

(15)

(16)

Equations 12 to 16 are to be used to generate x

1

 and x

2

 values at t

j

 for j = 1,2,3,…
which can be tabulated as:

where t

e

 is the ending value of t at which the computation is to be terminated. The
first pair of values to be filled into the above table is for x

1

 and x

2

 at t = h (j = 1).
Based first on Equations 13 to 16 and then Equation 12, the actual computations for
h = 0.1 and at t

1

 go as follows:

p

1,1

 = hF

1

(t

0

,x

1,0

,x

2,0

)

= 0.1F

1

(0,7,–4) = 0.1(–6 + 91-80) = 0.5
p

2,1

 = hF

2

(t

0

,x

1,0

,x

2,0

)

= 0.1F

2

(0,7,–4) = 0.1(4-63 + 56) = –0.3
p

1,2

 = hF

1

(t

0

 + 0.05,x

1,0

 + 0.25,x

2,0

–

0.15) = 0.1F

1

(.05,7.25,–4.15)
= 0.1(–6 + 13x7.25-20x4.15) = 0.525

p

2,2

 = hF

2

(t

0

 + 0.05,x

1,0

 + 0.25,x

2,0

–

0.15) = 0.1F

2

(.05,7.25,–4.15)
= 0.1(4-9x7.25 + 14x4.15) = –0.315

p

1,3

 = hF

1

(t

0

 + 0.05,x

1,0

 + 0.2625,x

2,0

–

0.1575)
= .1F

1

(.05,7.2625,–4.1575)
= 0.1(–6 + 13x7.2625-20x4.1575) = .52625

p

2,3

 = hF

2

(t0 + 0.05,x1,0 + 0.2625,x2,0–0.1575)
= .1F2(.05,7.2625,–4.1575) = 0.1(4–9x7.2625 + 14x4.1575)
= –0.31575

p1,4 = hF1(t0 + 0.1,x1,0 + 0.52625,x2,0–0.31575)
= 0.1F1(0.1,7.52625,–4.31575)
= 0.1(–6 + 13x7.52625–20x4.31575) = 0.552625

p2,4 = hF2(t0 + 0.1,x1,0 + 0.52625,x2,0–0.31575)
= .1F2(.1,7.52625,–4.31575) = .1(4–9x7.52625 + 14x4.31575) = –0.331575

x1,1 = 7 + (0.5 + 2x0.525 + 2x0.52625 + 0.552625)/6
= 7 + (3.155125)/6 = 7.5258541 (17)

x2,1 = –4 + (–0.3–2x0.315–2x0.31575–0.331575)/6
= –4 + (–1.893075)/6 = –4.3155125 (18)

The exact solution calculated by using Equation 7 are:

x1,1 = 7.5258355 and x2,1 = –4.3155013 (19)

t 0 h 2h 3h . . . jh . . . te
x1 7 ? ? ? . . . x1,j . . . ?

x2 –4 ? ? ? . . . x2,j . . . ?

p hF t h x p x pi i j j j, , , , ,, ,2 1 1 1 2 2 12 2 2= + () + () + ()[]
p hF t h x p x pi i j j j, , , , ,, ,3 1 1 2 2 2 22 2 2= + () + () + ()[]

p hF t h x p x pi i j j j, , , , ,, ,4 1 1 3 2 2 3= + + +()

© 2001 by CRC Press LLC

The errors are 0.000247% and 0.000260% for x1 and x2, respectively. Per-step
error for the fourth-order Runge-Kutta method is difficult to estimate because the
method is derived by matching terms in Equation 12 with Taylor-series expansions
of x1 and x2 about ti through and including the h4 terms. But approximately, the per-
step error is of order h5. For better accuracy, the fifth-order Runge-Kutta method
should be applied. For general use, the classic fourth-order Runge-Kutta method is,
however, easier to develop a computer program which is to be discussed next.

SUBROUTINE RKN

A subroutine called RKN has been written for applying the fourth-order Runge-
Kutta method to solve the initial-value problems governed by a set of first-order
ordinary differential equations. It has been coded according to the procedure
described in the preceding section. That is, the equations must be in the form of
Equation 3 by having the first derivatives of the dependent variables (x1 through xN)
all on the left sides of the equations and the right sides be called F1 through FN.
These functions are to be defined in a Function subprogram F.

The FORTRAN version of Subroutine RKN is listed below. There are seven
arguments for this subroutine, the first four are input arguments where the last is an
output argument. The fifth argument P keeps the Runge-Kutta parameters generated
in this subroutine. The sixth argument XT is needed for adjusting the input argument
XIN. These two arguments, P and XT, are included for handling the general case
of N variables. Listing them as arguments makes possible to specify them as matrix
and vector of adjustable sizes.

FORTRAN VERSION

© 2001 by CRC Press LLC

QUICKBASIC VERSION

PROGRAM RUNGEKUT

Program RungeKut which calls the subroutine RKN is to be run interactively
by specifying the inputs through the keyboard. Displayed messages on screen instruct
user how to input the necessary data and describe the problem in proper sequence.
From the provided listing of the program RungeKut, user will find that the following
inputs and editing need to be executed in the sequence specified:

(1) Input the number of variables, N, involved.
(2) Define the N functions on the right sides of Equation 3, F1 through FN,

by editing the DEF statements starting from statement 161. Presently only
9 functions can be handled by the program RungeKut, but the user should
be able to expand the program to accommodate any N value which is
greater than 9 by renumbering the program and adding more DEF state-
ments.

(3) Type RUN 161 to run the program.
(4) Reenter the N value.
(5) Enter the beginning (not necessary equal to zero!) and ending values of

the independent variable, denoted as t0 and te (T0 and TEND in the
program RungeKut), respectively. It is over this range, the values of the
N dependent variables are to be calculated.

(6) Enter the stepsize, h (DT in the program RungeKut), with which the
independent variable is to be incremented.

(7) Enter the N initial values.

© 2001 by CRC Press LLC

QUICKBASIC VERSION

FORTRAN VERSION

© 2001 by CRC Press LLC

FUNCTION F

According to Equations 12 to 15, the Runge-Kutta parameters pi,j (matrix P in
the program RungeKut) are calculated using two FOR-NEXT loops — an I loop
covering N sets of variables and a J loop covering the four parameters in each set.
As an illustrative example, let us apply program RungeKut for the problem defined
by Equations 8 to 11. We create a supporting function program F as follows:

QuickBASIC Version

© 2001 by CRC Press LLC

FORTRAN Version

The computation can then commence by entering through keyboard the begin-
ning and ending values of t, t0 = 0 and te = 3, respectively, the stepsize h = 0.1, and
the initial values x1,0 = 7 and x2,0 = –4. The complete sequence of question-and-
answer steps in running the program RungeKut for the problem described by
Equations 8 to 11 is manifested by a copy of the screen display:

© 2001 by CRC Press LLC

SAMPLE APPLICATIONS OF THE PROGRAM RUNGEKUT

As a first example, consider the problem of a beam shown in Figure 2 which is
built into the wall so that it is not allowed to displace or rotate at the left end. For
consideration of the general case when the beam is loaded by (1) a uniformly
distributed load of 1 N/cm over the leftmost quarter-length, x between 0 and 10 cm,
(2) a linearly varying distributed load of 0 at x = 10 cm and 2 N/cm at x = 20 cm,
(3) a moment of 3 N-cm at x = 30 cm, and (4) a concentrated load of 4 N at the
free end of the beam, x = 40 cm. It is of concern to the structural engineers to know
how the beam will be deformed. The equation for finding the deflected curve of the
beam, usually denoted as y(x), is:3

(21)

where EI is the beam stiffness and M(x) is the variation of bending moment along
the beam. It can be shown that the moment distribution for the loading shown in
Figure 4 can be described by the equations:

(22)

EI d y dx M x2 2() = ()

M

x x for x cm

x x x for x cm

x for x cm

x for x cm

=

− + −
− + + −

− <
− <











1121 3 24 2 0 10

871 3 4 30 10 20

4 157 20 30

4 160 30 40

2

2 3

,

,

,

,

� �

� �

�

�

© 2001 by CRC Press LLC

To convert the problem into the form of Equation 3, we replace y, dy/dx, and x
by x1, x2, and t, respectively. Knowing Equation 21 and that the initial conditions
are y = 0 and dy/dx = 0 at x = 0, we can obtain from Equation 21 the following
system of first-order ordinary differential equations:

(23)

and

(24)

For Equation 24, the moment distribution has already been described by Equation
21 whereas the beam stiffness EI is to be set equal to 2x105 N/cm2 in numerical
calculation of the deflection of the beam using program RungeKut.

To apply program RungeKut for solving the deflection equation, y(x) which has
been renamed as x1(t), we need to define in the QuickBASIC program RungeKut
two functions:

DEF FNF1(X) = X(2)
DEF FNF2(X) = BM(X)/(2*10^5)

Notice that the bending moment M is represented by BM in QuickBASIC
programming. In view of Equation 21, F2 in Equation 24 has to be defined by
modifying the subprogram function, here we illustrate it with a FORTRAN version:

FIGURE 2. The problem of a beam, which is built into the wall so that it is not allowed to
displace or rotate at the left end.

dx dx F x x x x x x1 1 1 2 2 1 0 0= () = =() =, , ,

dx dx F x x x M EI x x2 2 1 2 2 0 0= () = =() =, , ,

© 2001 by CRC Press LLC

FUNCTION BM(X)
IF ((X.LE.0.).AND.(X.LT.10.)) BM = –1121./3 + 24*X-X**2/2
IF ((X.GE.10.).AND.(X.LT.20.)) BM = –871./3 + 4*T +
T**2T**3/30
IF ((X.GE.20.).AND.(X.LT.30.)) BM = 4*X–157
IF ((X.GE.30.).AND.(X.LT.40.)) BM = 4*X–160
RETURN
END

In fact, each problem will require such arrangement because these function
statements and subprogram function describe the particular features of the problem
being analyzed. The computed deflection at the free end of the beam, y(x = 40 cm),
by application of the program RungeKut using different stepsizes, and the errors
in % of the analytical solution (= –0.68917) are tabulated below:

This problem can also be arranged into a set of four first-order ordinary differ-
ential equations and can be solved by using the expressions for the distributed loads
directly. This approach saves the reader from deriving the expressions for the bending
moment. Readers interested in such an approach should solve Problem 4.

A NONLINEAR OSCILLATION PROBLEM SOLVED BY RUNGEKUT

The numerical solution using the Runge-Kutta method can be further demon-
strated by solving a nonlinear problem of two connected masses m1 and m2 as shown
in Figure 3. A cable of constant length passing frictionless rings is used. Initially,
both masses are held at rest at positions shown. When they are released, their
instantaneous positions can be denoted as y(t) and z(t), respectively. The instanta-
neous angle and the length of the inclined portion of the cable can be expressed in
term of y as:

(25,26)

If we denote the cable tension as T, then the Newton’s second law applied to
the two masses leads to m1g–2Tsinθ = m1d2y/dt2 and T-m2g = m2d2z/dt2. By elimi-
nating T, we obtain:

Stepsize h, cm y at x = 40 cm, Error, %

5 –0.79961 16.0
2 –0.73499 6.65
1 –0.71236 3.36
.5 –0.70083 1.69
.25 –0.69501 .847
.1 –0.69151 .340
.05 –0.69033 .168

θ = +()[] = +() +[]−tan
.

1 2 2
0 5

y h b and L y h b

© 2001 by CRC Press LLC

(27)

The displacements y and z are restricted by the condition that the cable length
must remain unchanged. That is z = 2{[(y + h)2 + b2]1/2[h2 + b2]1/2}. This relationship
can be differentiated with respect to t to obtain another equation relating d2y/dt2 and
d2z/dt2 which is:

(28)

Equation 28 can be substituted into Equation 27 to obtain:

(29)

By letting x1 = y, x2 = dy/dt, x3 = z, and x4 = dz/dt, then according to Equation
3 we have F1 = x2, F2 to be constructed using the right-hand side of Equation 29,
F3 = x4, and F4 to be constructed using the right-side of Equation 28. It can be shown
that the final form of the system of four first-order differential equations are:

(30)

FIGURE 3. The numerical solution using the Runge-Kutta method can be further demon-
strated by solving a nonlinear problem of two connected masses m1 and m2.

d y
dt

m

m
d z
dt

g
m

m

2

2
2

1

2

2
2

1

2
1

2+ = −






sin sinθ θ

d z
dt L

y h
dLdy
dtdt L

dy
dt

y h
d y
dt

2

2 2

2 2

2

2 2= − +() + 



 + +()









d y
dt L y h L

gL
m

m
gL y h

dLdy
dtdt

L
dy
dt

2

2
2 2

1

2
2

2

2
2 2=

+ +() − − +() + 


























sinθ

dx

dt
x

dx

dt

gL r r v

L r

dx

dt
x and

dx

dt
v

L

dx

dt

m m1
2

2
2 2

2

3
4

4
2

2

1 2 4

1 4

2
2

= =
−() +

+()

= = − +

,
sin sin

sin
,

, sin

θ θ
θ

θ

© 2001 by CRC Press LLC

where:

(31,32)

A numerical case where b = 3.6 m, h = .15 m, m2/m1 = 0.8, and initial conditions
y = z = dy/dt = dz/dt = 0 has been investigated and the results for -y, z, -dy/dt, and
dz/dt have been plotted in Figure 4 for 0≤t≤12 seconds. The reason that negative
values of y and dy/dt are used is that the mass m1 is moving downward as positive.
It can be observed from Figure 4 that y varies between 0 and 3.0704 m, and z varies
between 0 and 3.8358 m. The oscillation has a period approximately equal to
2x6.6831 = 13.3662 seconds, so the frequency is about 0.47 rad/sec. The masses
reach their maximum speeds, �dy/dt�max = 1.4811 and �dz/dt�max = 1.8336 in m/sec,
when y = .5ymax = 1.5352 and z = .5zmax = 1.9179 m, respectively. Details for the
oscillation for the studied period are listed below:

FIGURE 4. A numerical case where b = 3.6 m, h = .15 m, m2/m1 = 0.8, and initial conditions
y = z = dy/dt = dz/dt = 0 has been investigated and the results for -y, z, -dy/dt, and dz/dt have
been plotted for 0≤t≤12 seconds.

r
m

m
and v x

dL
dt

xm = = −





2

1

2
2 2 sinθ

© 2001 by CRC Press LLC

MATLAB APPLICATION

MATLAB has a file called ode45.m which implement the fourth- and fifth-
order Runge-Kutta integration. Here, we demonstrate how the sample problem used
in the FORTRAN and QuickBASIC versions can also be solved by use of the m
file. The forcing functions given in Equations 10 and 11 are first prepared as follows:

© 2001 by CRC Press LLC

If this file FunF.m is stored on a disk which has been inserted in disk drive A,
ode45.m is to be applied with appropriate initial conditions and a time interval of
investigation as follows:

>> T0 = 0; Tend = 3; X0 = [7;–4]; [T,X] = ode45(‘A:Funf’,T0,Tend,X0); plot(T,X)

Notice that ode45 has four arguments. The first argument is the m file in which
the forcing functions are defined. The second and third argument the initial and final
values of time, respectively. The fourth argument is a vector containing the initial
values of the dependent variables. The resulting display, after rearranging T and X
side-by-side for saving space instead of one after the other, is:

The plots of X(1) and X(2) vs. T using the solid and broken lines, respectively,
are shown in Figure 5.

As another example, MATLAB is applied to obtain the displacement and veloc-
ity histories of a vibration system, Figure 1. First, a m file FunMCK.m is created
to describe this system as:

Notice that the first and second variables X(1) and X(2) are displacement (x)
and velocity (v = dx/dt), respectively, and the mass (m), damping constant (c), and
spring constant (k) are taken as 2 N-sec2/cm, 3 N-sec/cm, and 4 N/cm, respectively.
For a system which is initially at rest and disturbed by a constant force of F(t) = 1

© 2001 by CRC Press LLC

N, the MATLAB solution for 0≤t≤25 seconds shown in Figure 6 is obtained by
entering the commands:

>> T0 = 0; Tend = 25; X0 = [0;0]; X = [0;0]; [T,X] = ode45(‘a:FunMCK’,T0,Tend,X0)

We can observe from Figure 6 that the mass has a overshoot (referring to Figure 2
in the program NewRaphG) of about 0.28 cm at approximately t = 2.5 seconds and
finally settles to a static deflection of 0.25 cm, and that the maximum ascending
velocity is about 0.18 cm/sec.

As another example of dynamic analysis in the field of fluid mechanics, Figure 8
shows the flow of a fluid between two connected tanks. The valve settings control
the amount of flows, qi for i = 1,2,3. The levels of the tanks h1 and h2 change in
time depending on these settings and also on the supply rates Q1 and Q2 and the
discharge rate q3. Expressing the valve settings in terms of the resistances Ri for i =
1,2,3, the conservation of masses requires that the flow rates be computed with the
formulas:

(33,34)

FIGURE 5. The plots of X(1) and X(2) vs. T using the solid and broken lines, respectively.

A
dh

dt
Q

R
h h and A

dh

dt
Q

R
h h1

1
1

1
1 3 2

2
2

2
2 3

1 1= − −() = − −()

© 2001 by CRC Press LLC

where A’s are the cross-sectional areas of the tanks, and h3 is the pressure head at
the junction indicated in Figure 7 and is related to the discharge rate q3 by the
equation:

(35)

Or, h3 can be written in terms of R’s and h1 and h2 as:

(36)

By eliminating h3 terms from Equations 33 and 34, we obtain two differential
equations in h1 and h2 to be:

FIGURE 6. For a system initially at rest and disturbed by a constant force of F(t) = 1 N,
the MATLAB solution for 0≤t≤25 seconds shown here is obtained by entering the commands
shown below.

q q q h R h h R h h R3 1 2 3 3 1 3 1 2 3 2= + = = −() + −()

h R R h R h R R R R R R3 3 2 1 1 2 1 2 1 3 2 3= +() + +()

© 2001 by CRC Press LLC

(37,38)

where:

(39,40)

and

(41)

By assigning values for the parameters involved in the above problem, Runge-
Kutta method can again be applied effectively for computing the fluid levels in both
tanks.4

MATHEMATICA APPLICATIONS

Mathematica solves a set of ordinary differential equations based on the Runge-
Kutta method by a function called NDSolve. The following run illustrates its inter-
active application using the same example in the MATLAB presentation of Figure 7:

In[1]: = Id = (NDSolve[{X1’[t] = = X2[t], X2’[t] = = .5*(1–3*X2[t]–4*X1[t]),
X1[0] = = 0, X2[0] = = 0},

{X1,X2}, {t,0,25}])

FIGURE 7. The flow of a fluid between two connected tanks.

A
dh

dt
Q a h a h and A

dh

dt
Q a h a h1

1
1 1 1 3 2 2

2
2 2 2 3 1= − + = − +

a R R and a R R1 2 3 2 1 3= +() = +()∆ ∆

∆ = + +R R R R R R1 2 2 3 3 1

© 2001 by CRC Press LLC

Out[1] = {{X1 -> InterpolatingFunction[{0., 25.}, <>],
X2 -> InterpolatingFunction[{0., 25.}, <>]}}

In[1] shows that NDSolve has three arguments: the first argument defines the
two ordinary differential equations and the initial conditions, the second argument
lists the dependent variables, and the third argument specifies the independent
variable and the range of investigation. Id is a name selected for easy later reference
of the results generated. Out[1] indicates that interpolation functions have been
generated for X1 and X2 for t in the range from 0 to 25. To print the values of X1
and X2, Id can be referred to interpolate the needs as follows:

In[2]: = (Do[Print["t =", tv," X1 =", X1[tv]/. Id, " X2 =", X2[tv]/. Id],
{tv, 0, 25, 1}])

Out[2] = t = 0 X1 = {0.} X2 = {0.}

t = 1 X1 = {0.13827} X2 = {0.183528}

t = 2 X1 = {0.267432} X2 = {0.0629972}

t = 3 X1 = {0.280915} X2 = {–0.0193286}

t = 4 X1 = {0.256722} X2 = {–0.0206924}

t = 5 X1 = {0.245409} X2 = {–0.00278874}

t = 6 X1 = {0.246925} X2 = {0.00365961}

t = 7 X1 = {0.249969} X2 = {0.00187841}

t = 8 X1 = {0.250675} X2 = {–0.000172054}

t = 9 X1 = {0.250238} X2 = {–0.000477574}

t = 10 X1 = {0.249931} X2 = {–0.000125015}

t = 11 X1 = {0.249923} X2 = {0.0000639464}

t = 12 X1 = {0.24999} X2 = {0.0000489215}

t = 13 X1 = {0.250014} X2 = {4.83211 10–7}

t = 14 X1 = {0.250006} X2 = {–0.0000104109}

t = 15 X1 = {0.249999} X2 = {–3.5685 10–6}

t = 16 X1 = {0.249998} X2 = {1.38473 10–6}

t = 17 X1 = {0.25} X2 = {1.35708 10–6}

t = 18 X1 = {0.25} X2 = {1.39173 10–7}

t = 19 X1 = {0.25} X2 = {–4.40766 10–7}

t = 20 X1 = {0.25} X2 = {–4.61875 10–7}

t = 21 X1 = {0.25} X2 = {–1.93084 10–8}

t = 22 X1 = {0.25} X2 = {2.47763 10–8}

t = 23 X1 = {0.25} X2 = {9.81364 10–8}

t = 24 X1 = {0.25} X2 = {6.7364 10–8}

t = 25 X1 = {0.25} X2 = {3.57288 10–8}

© 2001 by CRC Press LLC

These results are in agreement with the plotted curves shown in the MATLAB
application. In[2] shows that the replacement operator/. is employed in X1[tv]/.Id
which requires all t appearing in the resulting interpolating function for X1(t) created
in the Id statement to be substituted by the value of tv. The looping DO statement
instructs that the tv values be changed from a minimum of 0 and a maximum of 25
using an increment of 1. To have a closer look of the overshoot region, In[2] can
be modified to yield

In[3]: = (Do[Print[“t = “,tv,” X1 = “,X1[tv]/. Id,” X2 = “,X2[tv]/. Id],
{tv, 2, 3, 0.1}])

Out[3] = t = 2 X1 = {0.267432} X2 = {0.0629972}

t = 2.1 X1 = {0.273097} X2 = {0.0504262}

t = 2.2 X1 = {0.277544} X2 = {0.0386711}

t = 2.3 X1 = {0.280862} X2 = {0.0278364}

t = 2.4 X1 = {0.283145} X2 = {0.0179948}

t = 2.5 X1 = {0.284496} X2 = {0.00919032}

t = 2.6 X1 = {0.285019} X2 = {0.00144176}

t = 2.7 X1 = {0.284819} X2 = {–0.00525428}

t = 2.8 X1 = {0.284002} X2 = {–0.0109202}

t = 2.9 X1 = {0.282669} X2 = {–0.0155945}

t = 3. X1 = {0.280915} X2 = {–0.0193286}

This detailed study using a time increment of 0.1 reaffirms that the overshoot
occurs at t = 2.6 and X1 has a maximum value equal to 0.28502.

6.3 PROGRAM ODEBVPRK — APPLICATION OF RUNGE-KUTTA
METHOD FOR SOLVING BOUNDARY-VALUE PROBLEMS

The program OdeBvpRK is designed for numerically solving the linear boundary-
value problems governed by the ordinary differential equation by superposition of
two solutions obtained by application of the Runge-Kutta fourth-order method. To
explain the procedure involved, consider the problem of a loaded beam shown in
Figure 8. Mathematically, the deflection y(x) satisfies the well-known flexural equa-
tion.5

(1)

where M is the internal moment distribution, E is the Young’s modulus and I is the
moment of inertia of the cross section of the beam. For the general case, M, E and
I can be function of x. The boundary conditions of this problem are:

d y
dx

M
EI

2

2 =

© 2001 by CRC Press LLC

(2)

where L is the length of the beam. The problem is to determine the resulting
deflection y(x). Knowing y, the moment and shearing force, V, distributions can
subsequently be determined based on Equation 1 and V = dM/dx. The final objective
is to calculate the stress distributions in the loaded beam using the M and V results.

The Runge-Kutta method for solving an initial problem can be applied here if
in additional to the initial condition given in (2), y(x = 0) = 0, we also know the
slope, �, at x = 0. But, we can always make a guess and hope that by making better
and better guesses the trial process will eventually lead to one which satisfies the
other boundary condition, namely y(x = L) = 0 given in Equation 3. In fact, if the
problem is linear, all we need to do is making two guesses and linearly combine
these two trial solutions to obtain the solution y(x).

Let us first convert the governing differential Equation 1 into two first-order
equations as:

(3,4)

To apply the fourth-order Runge-Kutta method, we have to first decide on a
stepsize h, for example h = L/N we then plan to calculate the deflections at N + 1
locations, x + jh for j = 1,2,…N since j = 0 is the initial location. If we assume a
value for �0, say A, the Runge-Kutta process will be able to generate the following
table

FIGURE 8. The problem of a loaded beam.

x 0 h 2h … jh … Nh

x 1=y (1) 0 y1(1) y2(1) … yj(1) … yN(1) (5)
x 2=θ (1) A θ1(1) θ2(1) … θj(1) … θN(1)

y x and y x L=() = =() =0 0 0

dx

dx
x x x y x

dx

dx
M
EI

x x x

1
2 1

2
2 0

0 0 0

0 0

= =() = =() =

= =() = =() =









,

, θ θ

© 2001 by CRC Press LLC

If yN
(1) = 0, then the value A selected for �(x = 0) is correct and the y and �

values listed in Equation 5 are the results for the selected stepsize. If yN
(1) is not

equal to zero, then the value incorrectly selected, we have to make a second try by
letting �(x = 0) = B to obtain a second table by application of the Runge-Kutta
method. Let the second table be denoted as:

Again, if yN
(2)= 0, then the value B selected for θ(x = 0) is correct and the y and

θ values listed in Equation 6 are the results for the selected stepsize. Otherwise, if
the problem is linear, the solutions can be obtained by linearly combining the two
trial results as, for j = 1,2,…,N:

(7,8)

where the weighting coefficients and are to be determined by solving the equations:

(9,10)

Equation 10 is derived from the boundary condition y(x = Nh = L) = 0 and based
on Equation 7. Equation 9 needs more explanation because it cannot be derived if
y(x = 0) = 0. Let us assume that for the general case, y(x = 0) = �. Then Equation
7 gives �� + �� = � which leads to Equation 9. Using Cramer’s rule, we can easily
obtain:

(11,12)

and

(13)

NUMERICAL EXAMPLES

Let us consider the problem of a loaded beam as shown in Figure 8. The
crosssection of the beam has a width of 1 cm and a height of 2 cm which results in
a moment of inertia I = 2/3 cm4. The reactions at the left and right supports can be
computed to be 5/3 N and 25/3 N, respectively. Based on these data, it can be shown
that the equations for the internal bending moments are:

(14)

x 0 h 2h … jh … Nh

x 1=y (2) 0 y1(2) y2(2) … yj(2) … yN(2) (6)
x 2=θ (2) B θ1(2) θ2(2) … θj(2) … θN(2)

Y y y andj j j j j j= + = +() () () ()α β θ αθ βθ1 2 1 2

α β α β+ = + =() ()1 01 2 and y yN N

α β= = −() ()y D and y DN N
2 1

D y yN N= − ()(2 1

M x

x for x cm

x x for x cm
() =

≤ ≤

− + − < ≤









5 3 0 20

200
65
3

1
2

20 302

,

,

© 2001 by CRC Press LLC

If the beam has a Young’s modulus of elasticity E = 2x107 N/cm2, we may decide
on a stepsize of h = 1 cm and proceed to prepare a computer program using the
fourth-order Runge-Kutta method to generate two trial solutions and then linearly
combining to arrive at the desired distributions of the deflected shape y(x) and slope
(x). The FORTRAN version of this program called OdeBvpRK to be presented
later has produced the following display on screen:

© 2001 by CRC Press LLC

FORTRAN VERSION

© 2001 by CRC Press LLC

The Subprogram FUNCTION F which defines the initial-value problem is coded
in accordance with Equation 14. The two trial initial slopes are selected as equal to
0.1 and 0.2. The trial results are kept in the three-dimensional variable XT, in which
the deflection y(k)(j) for the kth try at station x = xj = jh is stored in XT(1,j,k) whereas
the slope there is stored in XT(2,j,k) for j = 1,2,…,30 and k = 1,2. Such a three-
subscripts arrangement facilitates the calling of the subroutine RKN because
XT(1,KS,NTRY) is transmitted as XIN(1) and automatically the next value
XT(2,KS, NTRY) as XIN(2), and the computed results XOUT(1) and XOUT(2) are
to be stored as XT(1,KS + 1,NTRY) and XT(2,KS + 1,NTRY), respectively. Notice
that there are only two dependent variables, NV = 2.

After the weighting coefficients � (ALPHA in the program) and � (BETA) have
been calculated, the final distributions of the deflection and slope are saved in first
and second rows of the two-dimensional variable X, respectively. It should be
emphatically noted that the solutions obtained is only good for the selected stepsize
h = 1 cm. Whether it is accurate or not remains to be tested by using finer stepsizes
and by repeated application of the Runge-Kutta methods.

It can be shown that the maximum deflection of the loaded beam is equal to
–2.019 cm and is obtained when the stepsize is continuously halved and two con-
secutively calculated values is different less than 0.0001 cm in magnitude. The
needed modification of the above listed program to include this change in the stepsize
and testing of the difference in the maximum deflection is left as homework for the
reader.

© 2001 by CRC Press LLC

QUICKBASIC VERSION

MATLAB APPLICATIONS

In the program RungeKut, MATLAB is used for solving initial value problems
by application of its m function ode45 based on the fourth- and fifth-order Runge-
Kutta method. Here, this function can be employed twice to solve a boundary-value
problem governed by linear ordinary differential equations. To demonstrate the
procedure, the sample problem discussed in FORTRAN and QuickBASIC versions
of the program OdeBvpRK, with the aid of function BVPF.m listed in the subdi-
rectory <mFiles>, can be solved by interactive MATLAB operations as follows:

© 2001 by CRC Press LLC

Notice that format compact enables the display to use fewer spacings; YT1 and
YT2 keep the two trial solutions, and ode45 automatically determines the best
stepsize which if used directly will result in a coarse plot as shown in Figure 9. The
plot showing solid-line curve for the deflection and broken-line curve for the slope
can, however, be refined by linear interpolation of the data (X,Yanswer) and expand-
ing X and the two columns of Yanswer into new data arrays of XSpline, YSpline,
and YPSpline, respectively. Toward that end, the m function spline in MATLAB is
to be applied as follows:

© 2001 by CRC Press LLC

The result of plotting the spline curves is shown in Figure 10.

MATHEMATICA APPLICATIONS

The Runge-Kutta method, particularly the most popular fourth-order method,
can be applied for solution of boundary-value problem governed by ordinary differ-
ential equation(s). Here, only the application of this method is elaborated; readers
are therefore referred to program RungeKut to review the method itself and the
development of related programs and subprograms. The boundary-value problem is
to be solved by continuously guessing the initial condition(s) which are not provided
until all boundary conditions are satisfied if the problem is nonlinear. When the
problem is linear, then only a finite number of guesses are necessary. A system of
two first-order ordinary differential equations which governed the loaded elastic
beam problem previously solved in the MATLAB application is here adapted to
demonstrate the application of the Runge-Kutta method.

FIGURE 9.

© 2001 by CRC Press LLC

In[1]: = EI = 4.*10^7/3; F[X_] = If[X>20,
(–200 + 65*X/3X^2/2)/EI, 5*X/3/EI]

In[2]: = Id1 = (NDSolve[{Y	[X] = = YP[X], YP'[X] = = F[X], Y[0] = = 0,
YP[0] = = 0.1}, {Y,YP}, {X, 0, 30}])

In[3]: = Y30Trial1 = Y[30]/. Id1

Out[3] = {3.00052}

EI value and F(X) are defined in In[1]. In[2] specifies the two first-order ordinary
differential equations involving the deflection Y and slope YP, describes the correct
initial condition Y(X = 0) = 0, gives a guessed slope Y	(X = 0) = 0.1, and decides
on the limit of investigation from X = 0 to X = 30. In[3] interpolates the ending Y
value by using the data obtained in Id1. A second trial is then to follow as:

In[4]: = Id2 = (NDSolve[{Y	[X] == YP[X], YP'[X] = = F[X],
Y[0] == 0, YP[0] == 0.2},
{Y,YP}, {X, 0, 30}])

FIGURE 10. The result of plotting the spline curves.

© 2001 by CRC Press LLC

In[5]: = Y30Trial2 = Y[30]/. Id2

Out[5] = {6.00052}

Linear combination of the two trial solutions is now possible by calculating a
correct Y	(X = 0) which should be equal to the value given in Out[8].

In[6]: = d = Y30Trial2Y30Trial1; a = Y30Trial2/d; b = -Y30Trial1/d;

In[7]: = Print[“Alpha = “,a,” Beta = “,b]

Out[7] = Alpha = {2.00017} Beta = {–1.00017}

In[8]: = YP0 = 0.1*a + 0.2*b

Out[8] = {–0.0000174888}

Finally, the actual deflection and slope can be obtained by providing the correct
set of initial conditions and again applying the Runge-Kutta method.

In[9]: = Id = (NDSolve[{Y	[X] = = YP[X], YP'[X] = = F[X],
Y[0] = = 0, YP[0] = = –0.0000174888},

{Y,YP}, {X,0,30}])

In[10]: = (Do[Print[“X = “, Xv, “ Y = “, Y[Xv]/.Id, “ DY/DX = “,
YP[Xv]/.Id], {Xv,0,30}])

Out[10] =

X = 0 Y = {0.} DY/DX = {–0.0000174888}

X = 1 Y = {–0.0000174645} DY/DX = {–0.0000174262}

X = 2 Y = {–0.0000348041} DY/DX = {–0.0000172387}

X = 3 Y = {–0.0000518936} DY/DX = {–0.0000169262}

X = 4 Y = {–0.0000686077} DY/DX = {–0.0000164887}

X = 5 Y = {–0.0000848222} DY/DX = {–0.0000159262}

X = 6 Y = {–0.000100412} DY/DX = {–0.0000152387}

X = 7 Y = {–0.000115251} DY/DX = {–0.0000144262}

X = 8 Y = {–0.000129215} DY/DX = {–0.0000134887}

X = 9 Y = {–0.00014218} DY/DX = {–0.0000124262}

X = 10 Y = {–0.000154019} DY/DX = {–0.0000112387}

X = 11 Y = {–0.000164608} DY/DX = {–0.00000992619}

X = 12 Y = {–0.000173788} DY/DX = {–0.00000848869}

X = 13 Y = {–0.000181454} DY/DX = {–0.00000692619}

X = 14 Y = {–0.000187493} DY/DX = {–0.00000523869}

© 2001 by CRC Press LLC

X = 15 Y = {–0.000191786} DY/DX = {–0.00000342619}

X = 16 Y = {–0.00019422} DY/DX = {–0.00000148869}

X = 17 Y = {–0.00019468} DY/DX = {0.000000573812}

X = 18 Y = {–0.000193037} DY/DX = {0.00000276006}

X = 19 Y = {–0.000189163} DY/DX = {0.00000506839}

X = 20 Y = {–0.000182912} DY/DX = {0.0000074989}

X = 21 Y = {–0.000174247} DY/DX = {0.0000100026}

X = 22 Y = {–0.00016319} DY/DX = {0.0000125002}

X = 23 Y = {–0.00014959} DY/DX = {0.0000149974}

X = 24 Y = {–0.000133573} DY/DX = {0.0000174176}

X = 25 Y = {–0.00011547} DY/DX = {0.0000196352}

X = 26 Y = {–0.0000951574} DY/DX = {0.0000216325}

X = 27 Y = {–0.0000725124} DY/DX = {0.0000233628}

X = 28 Y = {–0.0000483635} DY/DX = {0.0000246913}

X = 29 Y = {–0.0000233292} DY/DX = {0.0000255217}

X = 30 Y = {0.0000023099} DY/DX = {0.0000258107}

6.4 PROGRAM ODEBVPFD — APPLICATION
OF FINITE DIFFERENCE METHOD
FOR SOLVING BOUNDARY-VALUE PROBLEMS

The program OdeBvpFD is designed for numerically solving boundary-value
problems governed by the ordinary differential equation which are to be replaced
finite-difference equations. To illustrate the procedure involved, let us consider the
problem of an annular membrane which is tightened by a uniform tension T and
rigidly mounted along its inner and outer boundaries, R = Ri and R = Ro, respectively.
As shown in Figure 11, it is then inflated by application of a uniform pressure p. The
deformation of the membrane, Z(R), when its magnitude is small enough not to
affect the tension T, can be determined by solving the ordinary differential equation6

Z(R) satisfies Equation 1 is for Ri<R<Ro and the boundary conditions.

(1)

(2)

If the finite-difference approximation is to be applied for solving Equation 1,
we will be seeking not for the expression Z(R) but for the numerical values at a
selected stations of R in the interval Ri<R<Ro, say N. Let these stations be designated
as Rk for k = 1 to N and the lateral displacements of the membrane as Zk�Z(Rk).
Using the first-order and second-order central differences (see the program DiffTabl),

d Z
dR R

dZ
dR

p
T

2

2

1+ = −

Z R and Z Ri o() = () =0 0

© 2001 by CRC Press LLC

the first and second derivatives of Z(R) appearing in Equation 1 at Rk can be
approximated as, respectively:

(3)

and

(4)

where �R is the increment in R and is related to the decided number of station N
by the equation:

(5)

FIGURE 11. An annular membrane tightened by a uniform tension T and rigidly mounted
along its inner and outer boundaries, R = Ri and R = Ro, respectively, and then inflated by
application of a uniform pressure p.

dZ
dR

at R
Z Z

Rk
k k � + −−1 1

2∆

d Z
dR

at R
Z Z Z

Rk
k k k

2

2
1 1

2

2
 � − +− +

()∆

∆R R R No i= −() +()1

© 2001 by CRC Press LLC

Substituting Equations 3 and 4 into Equation 1, we obtain for R = Rk that:

Multiplying both sides by (�R)2 and collecting terms, we can have for k =
1,2,…,N:

(6)

The two boundaries are Zo�Z(R = Ri) and ZN + 1�Z(R = Ro), at which Z = 0.
The above equation thus lead to the matrix equation:

(7)
where:

(8)

(9)

and if the elements for the coefficient matrix [C] are denoted as ck,j, based on
Equation 6 they are to be calculated using the formulas:

(10)

and

(11)

After having calculated [C] and {R}, Equation 7 can be solved by calling the
subroutine GAUSS for {Z}. This solution is only for the selected value of N. N
should be continuously increased to test if the maximum Z value would be affected.

The program OdeBvpFD has been developed in both QuickBASIC and FOR-
TRAN versions based on the above described procedure for solving the boundary
problems governed by ordinary differential equations. It is designed for the general
case where the coefficient matrix [C] and the right-hand side vector {R} of the
matrix equation derived from the finite-difference approximation, [C]{Z} = {R}, are

Z Z Z

R R

Z Z

R
p
T

k k k

k

k k− + + −− +
()

− − = −1 1
2

1 12 1
2∆ ∆

1
2

2 1
21 1

2

+








 − + −









 = − ()

− +
∆ ∆ ∆R
R

Z Z
R

R
Z

p R
Tk

k k
k

k

C Z R[]{ } = { }

Z Z Z ZN

T{ } = …[]1 2

R p R TT{ } = − () …[]∆ 2 1 1 1

c Nk k, , , ,= − = …2 1 2for k

c R R N

c R R N

c

k k k

k k k

k j

,

,

,

, , , ,

, , , ,

,

−

+

= − () = …

= + () = … −

=

1

1

1 2 2 3

1 2 1 2 1

0

∆

∆

for k

for k

elsewhere

R k Rk = ∆

© 2001 by CRC Press LLC

to be defined by the user. In addition, the user needs to specify the number of station,
N, the stepsize, �R, and the location of the left boundary, Ri. Here, Z and R are
referred as the dependent and independent variables, respectively using the mem-
brane problem only for the convenience of explanation; user could have other
notations as dependent and independent variables.

As a second example, we consider the simply supported beam of length 3L
which has a solid section at its middle portion and hollow sections at both end
portions as shown in Figure 12. It is of interest to know how the beam will deflect
under its own weight. This is the case of a beam subjected to uniformly distributed
loads. For simplicity, let us assume that the distributed loads to be wm and we, in
N/cm2, for the middle and end portions, respectively. To determine the deflection
y(x) for 0<x<3L, we need the following relevant equations which are available in a
standard textbook on mechanics of materials7:

(12–15)

where �, M, and V are the slope, bending moment, and shearing force, respectively.
E is the Young’s modulus and I is the moment of inertia of the beam. The distributed
load w is considered as positive when it is applied upward in the direction of the
positive y-axis and the moment is considered as positive if it causes the beam to
bend concave up. The shearing forces are considered as positive if they are related
to M according to Equation 14.

By successive substitutions, Equations 12–15 can yield an equation which relates
the deflection y directly to the distributed load w as:

(16)

FIGURE 12. As a second example, we consider the simply supported beam of length 3L which
has a solid section at its middle portion and hollow sections at both end portions as shown

dy
dx

d
dx

d y
dx

M
EI

dM
dx

V
dV
dx

w= = = = =θ θ
, , ,

2

2

d
dx

EI
d y
dx

w
2

2

2

2







=

© 2001 by CRC Press LLC

This is a fourth-order ordinary differential equation and needs fourth supple-
mentary initial, boundary, or mixed conditions in order to completely solve for the
deflection y(x). For the simply supported beam subjected to its own weight, the four
boundary conditions are:

(17)

If EI is not a function of x, the central-difference approximation for Equation
16 at x = xk is:

(18)

If N in-between stations are selected for determination of the deflections there,
then the two boundaries are at k = 0 and k = N + 1. In view of the subscripts k–2
and k + 2 in Equation 18, k can thus only take the values 2 through N–1. For solving
y1 through yN, we hence need two more equations which are the two moment
conditions in Equation 17. At x0 = 0, the second-order, forward-difference formula
can be applied to give

Since y = 0 at the left support x = x0 = 0, the above equation yields

(19)

Similarly, at the right support x = xN + 1 = 3L, the second-order, backward-
difference formula can be applied to give

Since y = 0 at the right support x = xN + 1 = 3L, the above equation yields

(20)

Meanwhile, the boundary condition y = 0 at the left support x = x0 = 0 can be
substituted into Equation 18 for k = 2 to obtain:

(21)

y and M EI
d y
dx

at x and x L= = = = =0 0 0
2

2

d y
dx

at x
y y y y y

x
w
EI

at xk
k k k k k

k

4

4
2 1 1 2

4

4 6 4
 � − − + +− + − +

()
=

∆

M EI
d y
dx

at x
y y y

x
EI at x=

− +
()

=
2

2 0
2 1 0

2 0

2
0 �

∆

− + =2 01 2y y

M EI
d y
dx

at x
y y y

x
EIat xN

N n N
N=

− +
()

=+
+ −

+

2

2 1
1 1

2 1

2
0 �

∆

y yN N− − =1 2 0

− + − + = ()4 6 41 2 3 4
4

2y y y y x
w
EI

at x∆

© 2001 by CRC Press LLC

Similarly, the boundary condition y = 0 at the right support x = xN + 1 = 3L can
be substituted into Equation 18 for k = N–1 to obtain:

(22)

Equation 18 now should have the modified form of, for k = 3,4,…,N–2:

(23)

In matrix form, Equations 19–23 can be written as [C]{Y} = {R} where {Y} =
[y1 y2 • • • yN]T and the elements of the coefficient matrix [C] denoted as ci,j are to
be calculated using the formulas:

(24)

For the right-side vector {R} in the matrix equation [C]{Y} = {R}, its elements
denoted as ri are to be calculated using the formula:

(25)

where w(xi) means the distributed load at x = xi. Consider the beam shown in
Figure 12 with dead loads wm and we. That is:

(26)

Notice that the average value of wm and we at the junctions of hollow and solid
portions of the beam. Expressions for the EI product can be given similar to those
for w. In a sample application of the QuickBASIC version of the program OdeB-
vpFD, we will give two subprogram functions which are prepared for the beam
problem shown in Figure 12 based on Equations 25 and 26.

An alternative approach for solving the simply supported beam by finite-differ-
ence approximation of Equation 13 and using the two boundary conditions y = 0 at

y y y y x
w
EI

at xN N N N N− − − −− + − = ()3 2 1
4

14 6 4 ∆

y y y y y x
w
EI

at xk k k k k k− − + +− + − + = ()2 1 1 2
44 6 4 ∆

c c c c

c for i N

c c for i N

c c for i N

c

N N N N

i i

i i i i

i i i i

i j

1 1 1 2 1

1 1

2 2

2 1

6 2 3 1

4 2 3 1

1 3 4 2

0

, , , ,

,

, ,

, ,

,

,

, , , ,

, , , ,

, , , ,

= = − = =
= = … −

= = − = … −
= = = … −

=

−

− +

− +

elsewhere

r r and r x
w
EI

at x for i NN i i1
40 2 3 1= = = () = … − , , ,∆

w x w for x L and L x L

w x w for L x L

w x w w for x L and x L

i e i i

i m i

i m e i i

() = ≤ < < ≤

() = < <

() = +() = =

′

′

0 2 3

2

2 2

© 2001 by CRC Press LLC

x = 0 and x = 3L is given as a homework problem. This approach requires the
moment equation M(x) be derived prior to the solution of the matrix equation
[C]{Y} = {R}.

FORTRAN VERSION

Sample Application

Consider the membrane problem shown in Figure 1. Let the inner radius Ri be
equal to 3 in, the stepsize or radial increment �R be equal to 9.5 in, and the number
of stations N between the two boundaries be selected as equal to 11 (that is, the
other boundary is at R = Ri + (N + 1) �R = 3 + 12x0.5 = Ro = 9 in.) If the tension
T is equal to 100 lbs/in and the pressure p is equal to 5 lbs/in2, a function subprogram
RI can then be accordingly prepared as listed in the program OdeBvpFD. An
interactive run of this program has resulted in a display on screen as follows:

© 2001 by CRC Press LLC

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Applications

Consider the same membrane problem as for the sample application using the
FORTRAN version of the program OdeBvpFD. The QuickBASIC version has a
COMMON SHARED statement allowing N to be shared in the subprograms. Also,
this version has been expanded to solving up to 119 stations. It gives an interactive
run as follows:

The simply supported beam under its own weight is considered as a second
example. For wm = we = –2 and a uniform EI value equal to 1 (that is when the beam
has a uniform cross section without the hollow end portions), L = 100, �x = 30,
and N = 9 stations between the supports, the subprograms CIJ and RI are prepared
according to Equations 24 to 26 as follows:

© 2001 by CRC Press LLC

It should be noted that the arguments X and DX for FUNCTION CIJ are not
actually involved in any of the statements therein. They are kept so that the statements
in the program OdeBvpFD involving CIJ can remain as general as possible to
accommodate other problems which may need these arguments as linkages. The
interactive application of the above two FUNCTION subprograms is demonstrated
below.

The analytical solution of this beam problem can be easily obtained. From any
textbook on mechanics of materials (see footnote *), the maximum deflection for a
beam of length 3L and subjected to a uniformly distributed load w is ymax =
5w(3L)4/384EI. Since w = –2, L = 100, and EI = 1 are used in the above illustrative
run, ymax is equal to 5x(–2)x(300)4/384 = 2.109x108. The computed result of y at x7

(for N = 9, the 5th station is the mid-length of the beam) by the program OdeBvpFD
is equal to –1.21500x108 which has an error about 42%. A homework problem is
given for readers to exercise different N and �x values, which will show that for N
equal to 19, 29, 59, 99, and 119, the respective ymax values are –1.63285x108,
–1.78535x108, — 1.93665x108, –1.92011x108, and –1.83x108. Notice that the accu-
racy continue to improve until the roundoff errors begin to affect the solution when
N becomes large, for such cases the double precision should be used in solving the
matrix equation [C]{Y} = {R} by the Gaussian elimination method.

MATLAB APPLICATIONS

The two sample problems discussed in FORTRAN and QuickBASIC version
of the program OdeBvpFD can be executed interactively by MATLAB with the
commands entered from keyboard as follows:

Membrane Problem

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Beam Deflection Problem

© 2001 by CRC Press LLC

MATHEMATICA APPLICATIONS

For solving the membrane problem, Mathematica can be applied as follows:

In[1]: = Ns = 11; DX = 0.5; c = Table[0,{Ns},{Ns}];
R = Table[–5*DX^2/100,{Ns}];
Print[“R = “,R]

Out[1] = R = {–0.0125, –0.0125, –0.0125, –0.0125, –0.0125, –0.0125,
–0.0125, –0.0125, –0.0125, –0.0125, –0.0125}

In[2]: = (Do[Do[x = 3 + i*DX; If[i = = j, c[[i,j]] = –2;,
If[i = = j–1, c[[i,j]] = 1DX/2/x;,

If[i = = j + 1, c[[i,j]] = 1 + DX/2/x;, Continue]]],
{i,Ns}], {j,Ns}]); Print[“Matrix c = “,c]

Out[2] = Matrix c = {{–2, 0.928571, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1.0625,–2, 0.9375, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1.05556, –2, 0.944444, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1.05, –2, 0.95, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1.04545, –2, 0.954545, 0, 0, 0, 0, 0},
{0, 0, 0, 0, 1.04167, –2, 0.958333, 0, 0, 0, 0},
{0, 0, 0, 0, 0, 1.03846, –2, 0.961538, 0, 0, 0},
{0, 0, 0, 0, 0, 0, 1.03571, –2, 0.964286, 0, 0},
{0, 0, 0, 0, 0, 0, 0, 1.03333, –2, 0.966667, 0},
{0, 0, 0, 0, 0, 0, 0, 0, 1.03125, –2, 0.96875},
{0, 0, 0, 0, 0, 0, 0, 0, 0, 1.02941, –2}}

In[3]: = V = Inverse[c].R

Out[3] = {0.0533741, 0.101498, 0.142705, 0.175525, 0.198641, 0.210864,
0.211107, 0.198368, 0.171723, 0.13031, 0.0733212}

These results are in agreement with those obtained by the MATLAB application.
The loaded beam problem also can be treated in a similar manner as follows:

In[1]: = c = Table[0,{9},{9}]; c[[1,1]] = –2; c[[1,2]] = 1; c[[9,9]] = –2;
c[[9,8]] = 1;

In[2]: = (Do[Do[If[i = = j,c[[i,j]] = 6;, If[(j = = i–1)||(j = = i + 1), c[[i,j]] = –4;,
If[(j = = i + 2)||(j = = i–2), c[[i,j]] = 1;, Continue]]],
{i,2,8}],{j,9}]); Print[“Matrix c = “,c]

Out[2] = Matrix c = {{–2, 1, 0, 0, 0, 0, 0, 0, 0}, {–4, 6, –4, 1, 0, 0, 0, 0, 0},
{1, –4, 6, –4, 1, 0, 0, 0, 0}, {0, 1, –4, 6, –4, 1, 0, 0, 0},
{0, 0, 1, –4, 6, –4, 1, 0, 0}, {0, 0, 0, 1, –4, 6, –4, 1, 0},

© 2001 by CRC Press LLC

{0, 0, 0, 0, 1, –4, 6, –4, 1}, {0, 0, 0, 0, 0, 1, –4, 6, –4},
{0, 0, 0, 0, 0, 0, 0, 1, –2}}

In[3]: = R = Table[0,{9}]; WE = –2; WM = –2; EIE = 1; EIM = 1; L = 100;
DX = 30;

In[4]: = (Do[X = i*DX; If[X<L, R[[i]] = DX^4*WE/EIE;,
If[X = = L, R[[i]] = DX^4*(WE + WM)/(EIE + EIM);,
If[X>L, If[X<2*L, R[[i]] = DX^4*WM/EIM;,

If[X = = 2*L, R[[i]] = DX^4*(WE + WM)/(EIE + EIM);,
IF[X>2*L, R[[i]] = DX^4*WE/EIE;,

Continue]]]]]],
{i,2,8}]); Print[“R = “,R]

Out[4] = R = {0, –1620000, –1620000, –1620000, –1620000, –1620000,
–1620000, –1620000, 0}

In[5]: = V = Inverse[c].R

Out[5] = {–34020000, –68040000, –96390000, –115020000, –121500000,
–115020000, –96390000, –68040000, –34020000}

Again, the results are in agreement with those obtained by the MATLAB
application.

6.5 PROBLEMS

RUNGEKUT

1. The differential equation of motion of a spring-and-mass system is d2x/dt2

+ ω2x = 0 where ω2 = k/m, m is the mass and k is the spring constant. If
the weight is 5 lb., g = 32.2 ft/sec2, k = 1.5 lb/in, and initially the dis-
placement x = 2 in. and velocity dx/dt = 0, use the 4th-order Runge-Kutta
method and a step-size of 0.05 sec. to manually calculate the values of x
and dx/dt at t = 0.05 sec. Note that the given second-order ordinary
differential equations should first be converted into two first-order differ-
ential equations.

2. Initially, the two functions x(t) and y(t) have values 1 and –1, respectively.
That is x(t = 0) = 1 and y(t = 0) = –1. For t>0, they satisfy the differential
equations dx/dt = 5x–2y + 2t and dy/dt = x2–0.25sin2t. Use Runge-Kutta
classic fourth-order method and a time increment of 0.01 second to cal-
culate x(t = 0.01) and y(t = 0.01).

3. In the following two equations, the terms dx/dt and dy/dt both appear.

2dx/dt –3x + 5dy/dt –7y = .5t + 1

–3dx/dt -x – 4dy/dt + 9y = .2e –3t

© 2001 by CRC Press LLC

Separate them by treating them as unknowns and solve them by simple
substitution or Cramer’s rule. The resulting equations can be expressed
in the forms of dx/dt = F1(t,x,y) and dy/dt = F2(t,x,y). Carry out by manual
computation using Runge-Kutta method to obtain the x and y values when
t = 0.1 if the time increment is 0.1 and the initial conditions are x(t = 0) =
1 and y(t = 0) = –2.

4. The distributed loads on the beam shown in Figure 3 can be described as
w = –1 N/cm, for 0<x<10 cm; w = 2.2x N/cm, for 10<x<20 cm; w = 0,
for 20<x<40 cm. Meanwhile, the bending moment applied at x = 30 cm
can be described as Ma = 0, for 0<x<30 cm and Ma = –3 N-cm, for
30<x<40 cm. By introducing new variables t, and x1 through x4 so that
t = x, x1 = y, x2 = dy/dx, x3 = d2y/dx2, and x4 = d3y/dx3, the problem of
finding the deflection y(x) of the beam can be formulated (see the refer-
ence cited in footnote) as:

dx1/dt = F1(t,x1,x2,x3,x4) = x2, x1(t = 0) = 0

dx2/dt = F2(t,x1,x2,x3,x4) = (x3 + Ma)/EI, x2(t = 0) = 0

dx3/dt = F3(t,x1,x2,x3,x4) = x4, x3(t = 0) = –1121/3

dx4/dt = F4(t,x1,x2,x3,x4) = w, x4(t = 0) = 24

with Ma and w being the applied bending moment and distributed loads,
respectively. The initial conditions specified above are all at the left end
of the beam which is built into the wall and for the deflection (x1), slope
(x2), bending moment (x3), and shearing force (x4), respectively. Apply
the program RungeKut by using EI = 2x105 N/cm2 and various stepsizes
to tabulate the results and errors similar to that given in the text.

5. Apply the fourth-order Runge-Kutta method to find the values of x1 and
x2 at the time t = 0.2 second using a time increment of 0.1 second based
on the following governing equations:

At t = 0.1 second, x1 = –1 and x2 = 1.
6. Use different stepsizes to calculate y values at x = 0.1, 0.2, and 0.3 by

application of the program RungeKut for the initial-value problem
dy/dx = x2–y, y(x = 0) = 1. The analytical solution is y = 2–2x + x2e-x, by
which the exact solutions can be easily computed to be y(0.1) = 0.90516,
y(0.2) = 0.82127, and y(0.3) = 0.74918. Determine the stepsize which will
lead to a Runge-Kutta numerical solutions of y(0.1), y(0.2), and y(0.3)
accurate to five decimal figures.

7. For the loaded beam shown in Figure 13, the deflection y(x) is to be
determined by solving Equation 21. Let the stiffness EI be equal to 2x107

N-cm2 and it can be shown that the bending moment M can be described
by the equations:

dx

dt
x x t and

dx

dt
x x x e t1

1 2
2

1 1 24 5 7 2 3 6= − + − = − + + −

© 2001 by CRC Press LLC

M = -x2 + 180x–9600 for 0<x<40 cm
and

M = 100x–8000 for 40<x<80 cm

Apply the program RungeKut to find y at x = 80 cm by using stepsizes
h = 4, 2, 1, 0.5, 0.25, and 0.1 and calculate the error by comparing with
the expected value of y(x = 80) = –0.928 cm.

8. Convert the following two differential equations into three first-order
differential equations in the forms of dxi/dt = Fi(t;x1,x2,x3;constants) for
i = 1,2,3 so that the subroutine RKN can be readily applied:

9. Write a subprogram FUNCTION F(X,T,I,N) which includes the statements

COMMON R1,R2,R3,R4

for transmitting the values of R1, R2, R3, and R4 from the main program.
These four variables are r1, r2, r3, and r4, respectively, appearing in the
equations:

FIGURE 13. Question 7.

d u
dt

du
dt

dv
dt

u v t

dv
dt

du
dt

uv e t

2

2

4

2 3 4 5 0 6 7 0

0 1 20 300 0

+ + + − − =

− + − =−

. sin

.

dA
dt

r A

dB
dt

r A r B

dC
dt

r B r C

= −

= −

= −

1

1 2

2 3

This FUNCTION is to be used by the subroutine RKN in application of
the fourth-order Runge-Kutta method.

10. The functions x(t) and y(t) satisfy the differential equations d2x/dt2 +
3dx/dt + 5dy/dt–7e–9t + 9sin2t = 0 and 2dx/dt–4dy/dt + 6x–8y + 10t–12 =
0. Convert the above two equations into the standard form dxi/dt = fi(t;
x1,x2,x3;constants) for i = 1,2,3 where x1 = x, x2 = y, and x3 = dx/dt. Give
the expressions for f1, f2, and f3 in terms of t, x1, x2, and x3 so that the
Runge-Kutta method can be applied.

11. Apply the fourth-order Runge-Kutta method to find the values of y and
z at x = 0.35 if at x = 0.3, y = 1 and z = 2 respectively and they satisfy
thedifferential equations dy/dx = xy + z and dz/dx = yz + x. Use a stepsize
of x = 0.5 and show all details of how the Runge-Kutta parameters are
calculated.

12. The deflection y of the load beam shown below satisfies the ordinary
differential equation EI(d2y/dx2) = M where the Young’s modulus E =
2x108 N/m2, moment of inertia I = 4.5x10–8 m4 and the internal bending
moment, in N-m, has been derived in terms of x as M(x) = 200x–30 for
0≤x≤.1 m and M(x) = 100x–20 for .1≤x≤.2 m. (1) Using an increment of
�x = 0.01 m, standardize the above problem into a system of two first-
order ordinary differential equations dxi/dx = fi(x;x1,x2;constants) for i =
1,2 where x1 = y and x2 = dy/dx (slope). (2) Write a FUNCTION F(…)
needed in SUBROUTINE RKN which we have discussed in class for
using the fourth-order Runge-Kutta method, based on the result of Step
(1) and also the M(x) equations. (3) Calculate the eight RungeKutta
parameters and then the value of y and dy/dx at x = 0.01 m.

13. Convert the following differential equation into a set of two first-order
differential equations so that the fourth-order Runge-Kutta method can
be applied: d2x/dt2 + 4dx/dt + 3x = 4e-t. If at t = 0, x = 0 and dx/dt = 2,
use a time increment oft = 0.1, compute the x and dx/dt values at �t =
0.1 based on the fourth-order Runge-Kutta method.

14. The forced swaying motion of a three-story building can be simulated as
a system of three lumped masses mi connected by springs with stiffnesses
ki and subjected to forces fi(t) for i = 1,2,3 as shown in Figure 14. Here,
the dampingcharacteristics are not considered but could be incorporated.
Derive the governing differential equations for the and then convert them
into a system of 6 first-order differential equations so that the programs
RungeKut and ode45 can be applied to find the histories of displace-
ments, xi(t), and velocities vi(t) = dxi(t)/dt. Solve a numerical case of mi =
2i N-sec2/cm, ki = 3i N/cm, and fi(t) = (2i–3)sin(2i–1)t N, xi(t = 0) = 0
and vi(t = 0) = 0 for 0<t≤20 seconds. Plot all displacement and velocity
histories.

dD
dt

r C r D

dE
dt

r D

= −

=

3 4

4

© 2001 by CRC Press LLC

15. Instead of f(t) = 1 in obtaining the system’s response of the mechanical
vibration problem using the MATLAB file FunMCK.m shown in
Figure 5, resolve the problem for the case of f(t) = 5sin(0.5t–0.3) by
changing FunMCK.m and plot the resulting displacement and velocity.

16. Implement the Runge-Kutta solution of Equation 30 by defining a sub-
program function TwoMs in FORTRAN, QuickBASIC, or, MATLAB
to obtain the result shown in Figure 5 for the case of b = 3.6 m, h = 1.5
m, m2/m1 = 0.8, and initial conditions y = z = dy/dt = dz/dt = 0. And
calculate the histories of the cable tension T(t) and angle (t).

17. For the nonlinear oscillation problem of two connected masses shown in
Figures 4 and 5, we observe that the oscillation goes on continuously. The
motion can be damped by adding a viscous device vertically connected
to the mass whose displacement is denoted as z(t). This could be a
frictional wall, on which the mass slides vertically. Usually, the retarding
force of such a damping device, Fr, could be assumed to be linearly
proportional to the velocity of the motion, dz/dt. That is, Fr = cdz/dt where
c is constant. Figure 15 is a result of the oscillation when a damping
device having c = 1 N-sec/m and m1 = 1 N-sec2/m is added to that system.
We notice that amplitudes of y(t) and z(t) shown in Figure 5 are steadily
decreased. Develop this modified program in FORTRAN, QuickBASIC,
or,MATLAB to generate Figure 15.

18. Use Mathematica’s function NDSolve to solve Problem 7.

FIGURE 14. Problem 14.

© 2001 by CRC Press LLC

19. Apply Mathematica to solve Problem 17 for a time increment �t = 0.2
sec and until t = 12 seconds.

20. Apply Mathematica for solving Problem. 14.

ODEBVPRK

1. The function y(x) satisfies the boundary conditions y(x = 0) = 2 and y(x =
3) = 4 and the differential equation 5d2y/dx2–3dy/dx + y = 13x–15 for
0<x<3. Apply the fourth-order Runge-Kutta method to find the y values
at x = 1 and x = 2 based on an increment of x equal to 1.

2. The function y(x) has the boundary values of y(x = 0) = 1 and y(x = 3) = 5
and for x between 0 and 3, y(x) satisfies the ordinary differential equation:

Apply the fourth-order Runge-Kutta method to find the y values at x = 1
and x = 2 based on a stepsize of �x = 1.

3. For a membrane (Figure 16) under uniform tension T and fastened at the
inner radius Ri and outer radius Ro, the axisymmetric deformation z
resulted by the acting uniform pressure p can be shown to satisfy the
differential equation:7

FIGURE 15. Problem 17.

d y
dx

dy
dx

y x
2

2 3 2 2 1− + = +

© 2001 by CRC Press LLC

for Ri<r<Ro. The boundary conditions are z(Ri) = 0 and z(Ro) = 0. Modify
the program OdeBvpRK to solve this problem.

4. A cable hung at its two ends as shown in Figure 17 by its own weight
will have a catenary shape described by the equation:

FIGURE 16. Problem 3.

FIGURE 17. Problem 4.

d z
dr r

dz
dr

p
T

2

2

1+ = −

© 2001 by CRC Press LLC

(a)

where w is the weight per unit length and Tx is the horizontal, x-component
of the tension of the cable. Equation (a) is for the case when both w and
Tx are constant throughout the cable. In fact, Equation a is the solution
of the differential equation:9

(b)

where s is a variable along the length of the cable. To solve this problem
by applying the Runge-Kutta method, we introduce the slope variable,
 = θ dy/dx and convert Equation (b) to form the system of first-order
differential equations dy/dx = f1(x) and d/dx = f2(x) where f1(x) = and
f2(x) = w[1 + θ2]1/2/Tx. Let w = 0.12 KN/m, xA = yA = 0, xB = 200 m, and
yB = 50 m and let the initial conditions be y = = 0 at x = xA = 0, iterate
Tx value until yB is within 99.9% of 50 m.

5. Actually, the value of Tx in Problem 4 can be obtained by solving the
transcendental equation (a) for y = yB = 50, x = xB = 200, and w = 0.12.
Select a method in the program FindRoot to find this value.

6. How could Problem 4 be solved if xA = –100 m and yA = 25 m by
application of the Runge-Kutta method (w remains equl to 0.12 KN/m)?

7. Apply MATLAB to solve Problem 2.
8. Apply MATLAB to solve Problem 4 by using an increment of �x = 2 m.
9. Apply Mathematica to solve Problem 2.

10. Apply Mathematica to solve Problem 4 using an incremwnt of �x = 2 m.

ODEBVPFD

1. The deflection y(x) of the beam shown in Figure 2 can be solved from
using the moment equation, Equation 13 instead of Equation 16, but the
moment M needs to be expressed in terms of x. A similar matrix equation
[C]{Y} = {R} should be derived using only two boundary conditions y =
0 at x = 0 and x = 3L instead of the four boundary conditions specified
in (17). Using the second-order, central-difference formula for d2y/dx2,
derive the formulas for calculations of the elements of [C] and {R}.

2. Based on the results of Problem 1, proceed to prepare the subprogram
functions CIJ and RI and solve for {Y}. Using the data presented in the
sample application of the QuickBASIC version of program OdeBvpFD,
compute {Y} and compare the two approaches.

3. Following the illustrative example, run the QuickBASIC version of pro-
gram OdeBvoFD for the beam problem shown in Figure 2 but for N equal
to 19, 29, 59, 99, and 119.

y
T

w
wx
T

x

x

= −








cosh 1

d y
d x

w
T

ds
dx

w
T

dy
dxx x

2

2

2 1 2

1= = + 















© 2001 by CRC Press LLC

4. Roundoff errors in the Gaussian elimination steps begin to affect the
accuracy of the computed values of the deflection for Problem 3 when
N = 119. Change the program OdeBvpFD into double precision arith-
metics and rerun the case N = 119 and compare the computed ymax to that
of analytical solution.

5. Make necessary changes in the FORTRAN version of program OdeB-
vpFD to solve Problems 3 and 4.

6. For the second sample problem (deflection of beam, Figure 2), change
the distributed loads to wm = 2 and we = 1, and the rigidities to EIm = 1
and EIe = 0.5 to recalculate the maximum deflection ymax.

7. Show that for the beam deflection problem shown in Figure 2 when
Equation 13 is approximated by use of second-order, central difference
and by incorporating the boundary conditions y = 0 at x = 0 and x = 3L,
it will lead to the solution of the matrix equation [C]{Y} = {R} where
the elements of [C] and {R} denoted as ci,j and ri, respectively can be
calculated by the formulas:

(a)

and

(b)

where N is the number of stations between the two supports and �x is
the stepsize equal to 3L/(N + 1).

8. For Figure 2, if the uniformly distributed loads for the middle and ending
portions are designated as wm and we, respectively, derive the expressions
for the internal bending moments in the three portions of the beam, 0≤x≤L,
L≤x≤2L, and 2L≤x≤3L.

9. Prepare subprogram FUNCTIONS CIJ and RI for Problem 8 and find the
deflection vector {Y} by use of either FORTRAN or QuickBASIC
version of the program OdeBvpFD. Select appropriate values for the
number of stations N so that the results obtained by this second-order
approach can be compared to those by the fourth-order approach.

10. Use the central finite-difference method and an increment of �x = 1 to
find the y values at x = 1 and x = 2 when y is governed by the equation
d2y/dx2 + 3dy/dx – y = 2x – 3 and satisfies the boundary conditions y =
0 at x = 0 and x = 3.

11. Use the central finite-difference method and an increment of �x = 1 to
find the y values at x = 1 and x = 2 when y is governed by the equation
d2y/dx2 + 3y = x–1 and satisfies the boundary conditions y = 0 at x = 0
and x = 3.

c for i N

c c for i N

c

i i

i i i i

i j

,

, ,

,

, , , ,

, , , ,

,

= − = …

= = = … −

=

+ +

2 1 2

1 1 2 1

0

1 1

elsewhere

r x
M
EI

at xi i= ()∆ 2

© 2001 by CRC Press LLC

12. It is known that u = 0 at r = 2 and r = 5 and that for 2<r<5 u satisfies the
equation d2u/dr2 – rdu/dr = –3, use central differences to approximate both
the first and second derivatives of u and an increment of r equal to 1 and
then derive two equations relating the u values at r = 3 and r = 4 and solve
them.

13. Apply MATLAB to solve Problem 3.
14. Apply MATLAB to solve the cable problem #4 listed under OdeBvpRK

and using an increment of �x = 1 m.
15. Apply MATLAB to solve Problem 10 by using an increment of �x = 0.05.
16. Repeat Problem 13 except by application of Mathematica.
17. Repeat Problem 14 except by application of Mathematica.
18. Repeat Problem 15 except by application of Mathematica.

6.6 REFERENCES

1. C. R. Wylie, Jr., Advanced Engineering Mathematics, McGraw-Hill, New York, 1960,
Chapter 6.

2. J. Water, “Methods of Numerical Integration Applied to System Having Trivial
Function Evaluation,” ACM Communication, Vol. 9, 1966, p. 293.

3. A. Higdon et al., Mechanics of Materials, John Wiley & Sons, New York, 1985,
Chapter 7.

4. Y. C. Pao, Elements of Computed-Aided Design and Manufacturing, CAD/CAM, John
Wiley & Sons, New York, 1984.

5. A. Higdon, E. H. Ohlsen, W. B. Stiles, J. A. Weese, and W. F. Riley, Mechanics of
Materials, 4th Edition, John Wiley & Sons, New York, 1985.

6. W. Jaunzemis, Continuum Mechanics, MacMillan, New York, 1967, p. 365.
7. S. Timoshenko and D. H. Young, Elements of Strength of Materials, 5th Edition, Van

Nostrand Reinhold Co., New York, 1968.
8. W. Jaunzemis, Continuum Mechanics, MacMillan, New York, 1967, p. 365.
9. J. L. Meriam and L. G. Kraige, Engineering Mechanics, Volume One: Statics, Third

Edition, John Wiley & Sons, Inc., New York, 1992.

7

© 2001 by CRC Press LLC

Eigenvalue and
Eigenvector Problems

7.1 INTRODUCTION

There is a class of physical problems which lead to a governing ordinary differential
equation containing an unknown parameter. As an example, consider the buckling
of a slender rod subjected to an axial load P shown in Figure 1. The deflected shape
y(x) is governed by the equation:

1

(1)

where EI is the rigidity and M is the internal bending moment (in this case equal
to -Py) of the rod at the section x. If the rod is supported at both ends such that the
boundary conditions are:

(2)

The unknown parameter appearing in Equation 1 is P which is the load axially
applied causing the rod to buckle. The problem is then to find P and the corresponding
buckled shape y(x). If the value of EI is a constant for all x, this problem can be
solved analytically. The buckling load can be shown to be P =

�

2

EI/L

2

. For the
general case when EI is the function of x, numerical method has to be applied to
obtain approximate solutions.

In this chapter, we will apply the finite-difference approximation to solve Equa-
tion 1. As will be presented in Section 7.2, the resulting matrix equation involving
the buckled shape evaluated at N selected stations between the end supports of the
rod will be of the standard form:

(3)

FIGURE 1.

The buckling of a slender rod subjected to an axial load P.

d y
dx

M
EI

Py
EI

2

2 = = −

y x y x L=() = =() =0 0

A I Y or A Y Y[] − [](){ } = { } []{ } = { }λ λ0 , ,

© 2001 by CRC Press LLC

where the matrix [A] will depend on the distances between the stations, {Y} contains
the buckled amount of the rod at the stations, and

�

is related to the unknown
buckling load P. Equation 3 can be interpreted as knowing a matrix [A] and trying
to find a proper vector {Y} when it is multiplied by [A], a scaled {Y} will result.
This becomes the well-known eigenvector and eigenvalue problem because eigen
means proper.

�

 and {Y} in Equation 3 are called the eigenvalue and eigenvector
of [A], respectively. If N is the order of the matrix [A], there are N sets of eigenvalues
and eigenvectors. In Section 7.3, how a polynomial from which all eigenvalues of
a given matrix can be found as roots will be discussed.

As another example of eigenvalue and eigenvector problem, consider the

vibra-
tion

 of three masses connected by three springs shown in Figure 2. If any one of
these three masses is subjected to some disturbance such as the case when the mass
m

3

 is pulled down by a certain distance and then released, the whole system will
then be vibrating! One will be interested in knowing at what frequency will they be
oscillating up and down. To formulate the analysis, let us denote the displacements
of the masses as x

i

(t) for i = 1 to 3 which are functions of time t. If the elastic
constants of the three springs are denoted as k

i

 for i = 1,2,3, it can be shown

2

 by
application of the Newton’s laws of motion that the governing differential equations
for the displacements are:

(4)

FIGURE 2.

Another example of eigenvalue and eigenvector problem — the

vibration

 of
three masses connected by three springs.

m
d x

dt
k k x k x1

2
1

2 1 2 1 2 2 0+ +() − =

© 2001 by CRC Press LLC

(5)

(6)

If we assume that the masses are vibrating sinusoidally with a common frequency

�

 but with different amplitudes C

i

, their displacements can then be expressed as:

(7)

Substituting Equation 7 into Equations 4 to 6, we obtain:

and

In matrix form, the above equations can be written as:

(8)

Since the amplitudes C

1–3

 and sin

ω

t cannot be equal to zero which would have
led to no motion at all, this leaves the only choice of requiring that the coefficient
matrix be singular. In other words, its determinant must be equal to zero. The
resulting equation is a cubic polynomial and enables us to solve for three roots which
are the squared values of the frequencies (

�

2

) of the vibrating system. For each
frequency, we next need to know the associated amplitudes of the vibration. Equation
8 can be arranged into the standard form, Equation 3 by letting {Y} = [C

1

 C

2

 C

3

]

T

 and:

(9,10)

This example shows that the governing ordinary differential Equations 4 to 6
may not involve with an unknown parameter as in the buckling problem, but once

m
d x

dt
k x k k x k x2

2
2

2 2 1 2 3 2 3 3 0− + +() − =

m
d x

dt
k x k x3

2
3

2 3 2 3 3 0− + =

x t C t for ii i() = =sin , ,ω 1 2 3

k k m C k c t

k A k k m A k A t

1 2 1
2

1 2 2

2 1 2 3 2
2

2 3 3

0

0

+ −() −[] =

− + + −() −[] =

ω ω

ω ω

sin

sin

− + −()[] =k c k m C t2 2 3 3
2

3 0ω ωsin

k k m k

k k k m k

k k m

C

C

C

t
1 2 1

2
2

2 2 3 2
2

3

3 3 3
2

1

2

3

0

0

0

0

0

+ − −
− + − −

− −

































=
















ω
ω

ω
ωsin

λ ω= [] =
+() −

− +() −
− −

















2
1 2 1 2 1

2 2 2 3 2 3 2

3 3 3 3

0

0

, A

k k m k m

k m k k m k m

k m k m

© 2001 by CRC Press LLC

the common frequency

ω

 is introduced for the

free vibration

 it becomes a standard
eigenvalue and eigenvector problem described by the matrix [A].

Hence, the question becomes how to find the eigenvalues and their associated
eigenvector of a prescribed matrix. The methods of solution are to be discussed in
Sections 7.3 and 7.4 where the programs

CharacEq

 and

EigenVec

 are introduced.
In Section 7.5, an iterative method for finding the eigenvector when an eigenvalue
of a matrix is provided and program

EigenvIt

 also will be presented. Prior to these
discussions, in the next section we will first concern with how the matrices connected
with the buckling and vibration problems are to be derived and demonstrate in
advance how the programs

CharacEq

,

Bairstow

,

EigenVec

, and

EigenvIt

 are to
be employed for obtaining the eigenvalues and eigenvectors of these matrices.

7.2 PROGRAMS EigenODE.Stb AND EigenODE.Vib —
FOR SOLVING STABILITY AND VIBRATION PROBLEMS

In order to obtain numerical solution of the buckling load and shape of the rod
shown in Figure 1 in Section 7.1, the central-difference method introduced in
Chapter 4 can be applied to approximate the second derivative term appearing in
Equation 1 there. At a typical location along the rod, say x = x

j

, Equation 1 can be
approximated as:

(1)

where (EI)

j

 is the rigidity of the rod at x

j

 and y

j

 ≡

y(x = x

j

) etc. This approach requires
that the rod be investigated at N stations between the two supports which are labeled
as x

0

 and x

N + 1

. These stations are equally spaced so that the increment of x (stepsize
h) is simply h =

�

x = L/(N + 1). As a result of such arrangement, the boundary
conditions previously defined in Equation 2 now become:

(2)

By writing out the equation for the first and last in-between stations, i.e., j = 1
and j = N, based on Equation 1 and the boundary conditions (2), the two simplified
equations are, respectively:

(3)

and

(4)

d y
dx

y y y

h

Py

EI
j j j j

j

2

2
1 1

2

2
=̇

− +
= − ()

− +

y yN0 1 0= =+

− + ()








 + =2 0

2

1
1 2

h P
EI

y y

y
h P
EI

yN
N

N− + − + ()








 =1

2

2 0

© 2001 by CRC Press LLC

Also Equation 1 can be rearranged into the form, for j = 2,3,…,N–1

(5)

where (EI)

j

 is the rigidity of the beam at the jth station. By multiplying the jth
equation by –(EI)

j

/h

2

 for j = 1,2,…,N, Equations 3 to 5 can be further simplified into
the standard matrix form [A–

�

I]{Y} = {0} where {0} is a null vector of order N,

�

 = P, {Y} = [y

1

 y

2

 … y

N

]

T

, and [A] = [a

ij

] which for i,j = 1,2,…,N the elements
are to be calculated with the formulas:

(6)

As a simple numerical example, consider the case of EI = 1, L = 1, and N = 2.
We are seeking only the solution of displacements, y

1

 and y

2

 at two in-between
points since the stepsize h = L/(N + 1) = 1/3. [A] is of order 2 by 2 and having
elements a

11

 = a

22

 = 18 and a

12

 = a

21

 = –9 according to Equation 7. The eigenvalues
of [A

λ

I] can be easily obtained to be

λ

1

 = 9 and

λ

2

 = 27. The exact solution P =

π

2

EI/L

2

 in this case is P =

λ

 =

π

2

 = 9.87, which indicates that

λ

1

 is off about 10%
from the exact value. If N is increased to 3, h = 0.25 and the eigenvalues are

λ

1

 =
9.4,

λ

2

 = 32, and

λ

3

 = 54.6. The error in estimating the first buckling load is reduced
to 100x(9.87–9.4)/9.87 = 4.76%.

P

ROGRAM

 E

IGEN

ODE.S

TB

Buckling problem belongs to a general class of

stability

 problems, for which a
program called EigenODE.Stb is developed to demonstrate how different increments
or different number of stations can be adopted to continue improving the solution
of eigenvalues and eigenvectors with the aid of programs EigenVec, EigenvIt and
Bairstow. The following shows the interactive application of this program.

FORTRAN V

ERSION

y
h P
EI

y yj
j

j j− ++ − + ()












+ =1

2

12 0

a

EI h for i j

EI h for i j or i jij

i

i=

() =

−() = − = +











2

1 1

0

2

2

,

,

, elsewhere

© 2001 by CRC Press LLC

Sample Applications

When program

EigenODE.Stb

 is run for the buckling problem, the screen will
show the coefficient [C] in the standard eigenvalue problem of the form [A–

�

I]{Y} =
{0} where the values of the buckled shape y(x) computed in 2, 3, 4, and 5 stations
between the supported ends of the rod are stored in the vector {Y} and

�

is equal
to the buckling load P. The resulting display is:

© 2001 by CRC Press LLC

To find the eigenvalues of the above listed matrices, program

CharactEq

 can
be applied by interactively specifying the elements in these matrices to obtain the
respective characteristic equations as

λ

2

 – 36

λ

 + 243 = 0,

λ

3

 – 96

λ

2

 – 2560

λ

 – 16384 = 0,

λ

4

 – 200

λ

3

 + 13125

λ

2

 – 312500

λ

 + 1953125 = 0, and

λ

5

 – 360

λ

4

 + 46656

3

 – 2612736

λ

2

 + 5.878656x10

7

λ

 – 3.62791x10

8

 = 0

The eigenvalues for these equations can be found by application of the program

Bairstow

. The sets of eigenvalues for the first three equations are (9 and 27), (9.3726,
32, and 54.627), and (9.5492, 34.549, 65.451, and 90.451). The smallest eigenvalue
in magnitude found for the fourth equation is 9.64569. It indicates that if the rod is
partitioned into finer and finer increments, the numerical solution continue to
improve in predicting the first buckling load from 9, 9.3726, 9.5492, to 9.64569 and
converging to the exact value of P =

�

 =

�

2

 = 9.8696. For further improvement, the
derivation of the characteristic equations of order 6 and higher is given as a home-
work problem for the reader to practice application of the programs EigenODE.Stb,
CharacEq, and Bairstow.

P

ROGRAM

 E

IGEN

ODE.V

IB

For a better understanding of the vibration problem also introduced in
Section 7.1, let us assign values for the spring constants and masses to be k

1

 = k

2

 =
k

3

 = 10 lb/ft and m

1

 = m

2

 = m

3

 = 1 lb-sec

2

/ft. The matrix [A] becomes:

Indeed, [A] is singular. The determinant of [A–

λ

I] gives the characteristic equa-
tion

�

3

–50

�

2

 + 600

�–1000 = 0. The roots can be obtained by application of the

A[] =
−

− −
−

















20 10 0

10 20 10

0 10 10

© 2001 by CRC Press LLC

program Bairstow to be � = �2 = 1.98, 15.5, and 32.5. For � = 1.98 the frequency
� is equal to 1.407 radians/second, the amplitude ratios are C2/C1 = 1.80 and C3/C1 =
2.25. The program EigenVib has been developed for generation of the matrix [A]
when the values of the masses, m’s, and the spring constants, k’s, are provided.

FORTRAN VERSION

Sample Application

To demonstrate application of the program EigenODE.Vib, the numerical exam-
ple for the vibration of three masses shown in Figure 1 in Section 7.1 is run to
generate the matrix [A] and then the program CharacEq is used to obtain a char-
acteristic equation �3 – 50�2 – 600� — 1000 = 0. The program Bairstow enables its
roots to be found as equal to 1.9806, 15.550, and 37.470.

It is also of interest to show an application of the programs MatxInvD and
EigenvIt (to be introduced in Section 7.5) for inverting the matrix [C] and then

© 2001 by CRC Press LLC

iteratively finding the smallest eigenvalue in magnitude (which is related to the
lowest natural frequency of the vibration). The resulting display from using these
two programs is:

The smallest eigenvalue in magnitude of the matrix [A] is therefore equal to
1/0.50489, or, 1.9806 same as obtained by application of the programs CharacEq
and Bairstow.

MATLAB APPLICATIONS

A file EigenvIt.m for MATLAB has been developed and is listed and discussed
in the program EigenvIt. This function is in the form of [EigenVec,Lambda] =
EigenvIt(A,N,V0,NT,Tol). It accepts a matrix [A] of order N, an initial guessed
eigenvector V0, and tries to find the eigenvector Eigenvec and eigenvalue Lambda
iteratively until the sum of the absolute values of the differences of the components

© 2001 by CRC Press LLC

of two consecutive guessed eigenvectors is less than the specified tolerance Tol. The
number of iterations is limited by the user to be no more than NT times. The reader
should refer to the program EigenvIt for more details, here provide a simple example
of using EigenvIt.m:

The display indicates that for the specified matrix [A] of order equal to 3, the
largest eigenvalue in magnitude is equal to 5.0000 and its associated eigenvector is
[0.7071 0 0.7071]T after 8 iterative steps. The iteration is terminated when the sum
of the absolute values of the differences of the corresponding components of the
guessed eigenvectors obtained during the seventh and eighth iterations is less than
the specified tolerance 0.0001.

To find the smallest eigenvalue and its associated eigenvector by iteration,
EigenvIt.m also can be applied effectively. Let us use the example in Sample
Applications:

Notice that inv.m of MATLAB has been applied to find the inverse of [A] and
using it for EigenvIt.m to find the eigenvalue and eigenvector by iteration.

© 2001 by CRC Press LLC

MATHEMATICA APPLICATIONS

For the buckling problem, Mathematica can be applied as follows:

In[1]: = Ns = 5; EI = 1.; L = 1.; H = L/(Ns + 1);

In[2]: = (Print[“Number of Station = “, Ns, “ EI = “, EI, “ Length = “, L,
“Delta L = “, H)

Out[2]: =

Number of Station = 5 EI = 1. Length = 1. Delta L = 0.166667

In[3]: = (Do[Do[If[i == j, M[[i,j]] = 2.*EI/H^2,
If[i == (j + 1)||i = = (j–1), M[[i,j]] = EI/H^2, 0]],

{i,Ns}],{j,Ns}]); MatrixForm[M]

Out[3]//MatrixForm: =

72. 36. 0. 0. 0.
36. 72. 36. 0. 0.
0. 36. 72. 36. 0.
0. 0. 36. 72. 36.
0. 0. 0. 36. 72.

In the next section, we will show how the characteristic equation for the above
derived matrix [M] can be determined by application of Mathematica and subse-
quently how the eigenvalues and eigenvectors are to be obtained.

7.3 PROGRAM CHARACEQ — DERIVATION OF CHARACTERISTIC
EQUATION OF A SPECIFIED SQUARE MATRIX

The program CharacEq is designed to generate the coefficients of the characteristic
equation of an interactively specified square matrix by use of the Feddeev-Leverrier
method. Such a characteristic equation is needed in the stability, vibration, and other
so-called eigenvalue problems.3 Readers interested in these problems should also
refer to the discussions on the programs EigenODE and EigenVec. The former
discusses how the square matrix is to be generated by finite-difference approximation
of ordinary differential equation. The latter program delineates how the eigenvectors
are to be found by a modified Gaussian elimination method for each eigenvalue and
how the eigenvalues are to be solved from the characteristic equation by the program
Bairstow. Here for derivation of the characteristic equation, let us denote the specified
square matrix be [A] and its elements be ai,j for i,j = 1,2,…,n with n being the order of
[A]. The Feddeev-Leverrier method first express the characteristic equation of [A] as:

(1)−() − − −…− −() =− −
−1 01

1
2

2
1

n n n n
n np p p pλ λ λ λ

© 2001 by CRC Press LLC

where the coefficients p1 through pn are to be determined by the following recursive
formulas:

(2)

and

(3,4)

Equation 4 is to be applied for j = 2,3,…,n. Trace, appearing in Equation 2, of
a square matrix is the sum of the diagonal elements. A specific, numerical example
will help further explain the details involved in applying the formulas presented
above. Consider a square matrix:

(5)

Then, [B]1 = [A] and p1 = Trace([B]1) = 0–1+7 = 6. The other p’s and [B]’s are
to be calculated according to Equations 2 and 4, and finally the characteristic equa-
tion is to be expressed according to Equation 1 as:

and finally, the characteristic equation is:

p
k

B for k nk k= [] = …1
1 2 Trace of , , ,

B A and B A B p Ik k k[] = [] [] = [] [] − []()− −1 1 1

A[] = − −
−

















0 2 3

10 1 2

2 4 7

B A B I

p B

[] = [] [] − []() = − −
−

















−
− −
−

















=
− −

− −
− −

















= []() = − − +() =

2 1

2 2

6

0 2 3

10 1 2

2 4 7

6 2 3

10 7 2

2 4 1

26 2 7

66 5 30

42 4 9

2 26 5 9 2

 Trace −−11

B A B I

p B

[] = [] [] + []() = − −
−

















− −
−

− −

















=
















= []() = + +() =

3 2

3 3

11

0 2 3

10 1 2

2 4 7

15 2 7

66 6 30

42 4 20

6 0 0

0 6 0

0 0 6

3 6 6 6 3 6

 Trace

−() − − −() = − + − + =1 6 11 6 03 3
1

2
2 3

3 2λ λ λ λ λ λp p p

© 2001 by CRC Press LLC

Both QuickBASIC and FORTRAN version of the program CharacEq have
been made available for derivation of the characteristic equation based on the
Feddeev-Leverrier method. The program listings are presented below along with
some sample applications.

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Application

The display screen will show the following questions-and-answers and the com-
puted results when the matrix [A] given in (5) is interactively entered as the matrix,
for which its characteristic equation is to be obtained:

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

© 2001 by CRC Press LLC

MATLAB APPLICATION

MATLAB has a file called poly.m which can be applied to obtain the charac-
teristic equation of a specified square matrix. The following is an example of how
to specify a square matrix of order 3, how poly.m is to be called, and the resulting
display:

For the FORTRAN sample problem, we can have:

Here, we can apply plot.m and polyval of MATLAB to graphically explore the
roots of this obtained polynomial P(x) = x3–9x2 + 26x–24 = 0 by interactive entering:

>> x = [1:0.05:5]; y = polyval(p,x); plot(x,y), hold

>> XL = [1 5]; YL = [0 0]; plot(XL,YL)

The resulting curve is shown in Figure 3. Notice that the added horizontal line
intercepts the polynomial curve, it helps indicate where the real roots are. To actually
calculate the values of all roots, real or complex, the roots.m of MATLAB can be
applied as follows:

© 2001 by CRC Press LLC

These results complement well with those presented in Figure 3.

MATHEMATICA APPLICATIONS

For finding the characteristic equation of a given matrix, Mathematica’s func-
tion Det which derives the determinant of a specified matrix can be employed. To
do so, the matrix should be entered first and then Det is to be called next.

Input[1]: =

m = {{0,2,3), {–10,–1,2}, {–2,4,7}}

FIGURE 3.

© 2001 by CRC Press LLC

Output[1] =

m = {{0,2,3), {–10,–1,2}, {–2,4,7}}

Notice that the elements in each row are separated by comma and enclosed by
a pair of braces, and rows are separated also by comma. Next, we derive the
characteristic equation of the matrix m.

Input[2]: =

Det[m — x IdentityMatrix[3]]

Output[2] =

6 – 11 X + 6 X2 — X3

Input[3]: =

m = {{1,2,3), {–10,0,2}, {–2,4,8}}

Output[3] =

m = {{1,2,3), {–10,0,2}, {–2,4,8}}

Input[4]: =

Det[m — x IdentityMatrix[3]]

Output[4] =

24 – 26 X + 9 X2 – X3

We may proceed to solve the characteristic roots as follows:

Input[5]: =

NSolve[24–26x + 9x^2x^3 = = 0,x]

Output[5] =

{{x -> 2.}, {x -> –3.}, {x -> 4.}}

Again, the polynomial can be plotted with:

Input[6]: =

Plot[x^3–9x^2 + 26x–24, {x,1,5},

Frame->True}, AspectRatio->1]

© 2001 by CRC Press LLC

Output[6] =

Notice that the graph intercepts the x axis at x = 2, x = 3, and x = 4.

7.4 PROGRAM EIGENVEC — SOLVING EIGENVECTOR
BY GAUSSIAN ELIMINATION METHOD

The program EigenVec is designed to solve for the associated eigenvector {V} when
an eigenvalue of a given square matrix [A] is specified. Eigenvalue and eigenvector
problems are discussed in the programs CharacEq and EigenODE. Here, we
describe how the Gaussian Elimination method can be modified for finding the
eigenvector {V}. Since the eigenvector {V} satisfies the matrix equation:

(1)

where [I] is the identity matrix of same order as [A]. Equation 1 is called homoge-
neous since the right-hand side is a null vector. This equation has nontrivial solution
only if the determinant of the coefficient matrix [A]–�[I] is equal to zero. In other
words, the linear algebraic equations represented by Equation 1 are not all indepen-
dent. The number of equations which are dependent on the other equations, is equal
to the multiplicity of the specified �. For example, if the matrix [A] is of order N
and if the multiplicity of � is M which means M characteristic roots are equal to �,
then there are M equations in Equation 1 are dependent on the other N-M equations.

A I V[] − [](){ } = { }λ 0

© 2001 by CRC Press LLC

When Gaussian Elimination method is applied for solving {V} from Equation
1, the normalization of the last equation cannot be carried out if � has a multiplicity
equal to 1 even with the pivoting provision in the program. This is because one of
the N equation is dependent on the other N–1 equations. But, it suggests that we
may assign the last component of {V} to be equal to an arbitrary constant c and
express the other components of {V} in terms of c. This concept can be extended
to the case when λ has a multiplicity of M. Since only N-M equations of (1) are
independent, there are M independent solutions of {V}. To obtain the first solution,
we assign the last component of {V} a value c1 and the other last M–1 components
of {V} equal to zero and then proceed to express the first N-M components of {V}
in terms of c1. To obtain the second solution, we assign the next to the last component
of {V} a value c2 and the other last M–1 components of {V} equal to zero and
express the first N-M components of {V} in terms of c2, and so on. The M solution
of {V} can thus be expressed in terms of ci for i = 1,2,…,M.

The program EigenVec is developed from modifying the program Gauss by
following the above-explained procedure. This program requires the user to inter-
actively specify the order N of [A], the elements of [A], a specified value of � and
its multiplicity M. The results produced by the program EigenVec are the M set of
eigenvectors {V}. Both FORTRAN and QuickBASIC versions of this programs are
listed below along with sample applications.

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Application

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

© 2001 by CRC Press LLC

MATLAB APPLICATIONS

MATLAB has a file called eig.m which can be applied for finding the eigen-
values and normalized vectors of a specified square matrix. To do so, we first
interactively specify the elements of a matrix [A} and then ask for the eigenvalues
Lambda and normalized eigenvectors EigenVec by entering (such as for the sample
problem in the FORTRAN and QuickBASIC versions)

>> A = [3,0,2;0,5,0;2,03]; [EigenVec,Lambda] = eig(A)

It results in a display on the screen:

Notice that the eigenvalues are listed in the diagonal of the matrix Lambda and
the corresponding normalized eigenvectors are listed in the matrix EigenVec as
columns. To list the eigenvalues in a vector Lambda, we could enter:

>> [Lambda] = eig(A)

The resulting display is:

Lambda =

5

1

5

MATHEMATICA APPLICATIONS

Mathematica has functions Eigenvalues and Eigenvectors which can be
applied to find the eigenvalues and eigenvectors, respectively, for a specified matrix
as illustrated by the following example:

© 2001 by CRC Press LLC

In[1]: = a = {{3,0,2},{0,5,0},{2,0,3}}; MatrixForm[a]

Out[1]//MatrixForm: =

3 0 2
0 5 0
2 0 3

In[2]: = Eigenvalues[a]

Out[2]: =

{1, 5, 5}

In[3]: = Eigenvectors[a]

Out[3]: =

{–1, 0, 1}, {1, 0, 1}, {0, 1, 0}}

Notice that the computed eigenvectors are not normalized.
As another example, consider the matrix M generated in the program EigenODE

for the buckling problem when the number of stations is equal to 5. To obtain the
eigenvalues, the interactive application of Mathematica goes as:

In[4]: = Eigenvalues[M]

Out[4]: =

{134.354, 108., 72., 36., 9.64617}

Notice that the smallest eigenvalue is equal to 9.64617 which predicts the lowest
buckling load. Since the exact solution is 9.8696, this further indicates that by
continuously increasing the number of stations the smallest eigenvalue in magnitude
will eventually converge to the expected value.

PRINCIPAL STRESSES AND PLANES

As another example of solving the eigenvalues and eigenvectors, consider the
problem of determining the principal stresses at a point within a two-dimensional
body which is subjected to in-plane loadings. If the normal stresses (�x and σy) and
shear stresses (�xy = �yx), Figure 5, at that point are known, it is a common practice
to graphically determine the principal stresses and principal planes, on which the
principal stresses act by use of Mohr’s circle.4 But, here we demonstrate how the
principal stresses and principal planes can be solved as the eigenvalues and eigen-
vectors, respectively, of a matrix [A] constructed using the values of �x, �y, and �xy

as follows:

© 2001 by CRC Press LLC

(2)

For the three-dimensional cases, the normal stresses �x, �y, and �z, and shear
stresses �xy, �yz, and �zx (�yx = �xy, �zy = �yz, and �xz = �zx) are involved, Figure 6.
Again, the Mohr’s circle method can be applied to graphically solve for the principal
stresses and the principal planes, on which they act.6 But, as an extension of Equation
2, these principal stresses and principal planes can be determined as the eigenvalues
and eigenvectors, respectively, of a matrix constructed using the values of the normal
and shear stresses as follows:

(3)

Presented below are MATLAB solutions of two problems: (a) a two-dimensional
case of �x = 50, �y = –30, and �xy = �yx = –20, and (b) a three-dimensional case of
�x = 25, �y = 36, �z = 49, �xy = �yx = –12, �yz = �zy = 8, and �zx = �xz = –9, all in N/cm2.

FIGURE 5. If the normal stresses (�x and σy) and shear stresses (�xy = �yx), are known, it
is a common practice to graphically determine the principal stresses and principal planes, on
which the principal stresses act by use of Mohr’s circle.

A
x xy

yx y
[] =











σ τ
τ σ

A
x xy xz

yx y yz

zx zy z

[] =
















σ τ τ
τ σ τ
τ τ σ

© 2001 by CRC Press LLC

Notice that for Problem (a), the result indicates that maximum principal stress
equal to 54.7214 N/cm2 is on a plane having an outward normal vector whose
directional cosines are equal to –0.9732 and 0.2298. That is to say this principal
plane has an outward normal vector making an angle of �max = 166.7° (cos�max =
–0.9732 and cos[90°–�max] = 0.2298) measured counterclockwise from the x-axis.
The minimum principal stress is found to be equal to –34.7217 N/cm2 which is on
a plane having an outward normal vector whose directional cosines are equal to
–0.2298 and –0.9732, or at an angle equal to �min = –103.3° (cos�min = 0.2298 and

FIGURE 6. For the three-dimensional cases, the normal stresses �x, �y, and �z, and shear
stresses �xy, �yz, and �zx (�yx = �xy, �zy = �yz, and �xz = �zx) are involved.

© 2001 by CRC Press LLC

cos[90°– �min] = –0.9732). The two principal planes are perpendicular to each other.
This can also be proven by taking the dot product of the two normalized eigenvectors:
(–0.9732i + 0.2298j)•(–0.2298i- 0.9732j) = 0.

Similar observation can be made from the results for Problem (b). The principal
stresses are equal to 16.9085, 34.6906, and 58.4009 N/cm2 and they on the planes
having outward normal vectors n1 = 0.8632i + 0.4921j + 0.1192k, n2 = 0.3277i –
0.7218j + 0.6096k, and n3 = –0.3860i + 0.4867j + 0.7837k, respectively. It is easy
to prove that these principal planes are indeed orthogonal by showing that n1•n2 =
n2•n3 = n1•n3 = 0.

QUADRATIC FORMS AND CANONICAL TRANSFORMATION

Another interesting application of the procedure involved in solving eigenvalues
and eigenvectors of a square matrix is the canonical transformation of quadratic
forms6 for Consider a surface described by the equation:

(4)

The left-hand side is called a quadratic form in x, y, and z. The surface is an
ellipsoid but it is difficult to make out what are the values of its major and minor
axes, for which a transformation of the coordinate system is necessary for changing
the quadratic form into a canonical one. By canonical form, it means that only the
squared terms should remain. To find what transformation is needed, we first write
Equation 4 in matrix form as:

(5)

where:

(6,7)

It can be shown6 that if we find the eigenvalues and eigenvectors of [A] which
in fact are already available in the answer to the previously discussed Problem (b),
the coordinate system x-y-z can be transformed into another set of x	-y	-z	 system
by using the so-called normalized modal matrix, [Q], formed with the normalized
eigenvectors as its columns. That is:

(8)

25 36 49 24 18 16 1002 2 2x y z xy xz yz+ + − − + =

V A VT{ } []{ } = 100

V

x

y

z

and A{ } =
















[] =
− −

−
−

















25 12 9

12 36 8

9 8 49

′{ } =
′
′
′

















=
−

−
































= []{ }V

x

y

z

x

y

z

Q V

. . .

. . .

. . .

8623 3277 3860

4921 7218 4867

1192 6096 7837

© 2001 by CRC Press LLC

Since [Q] has the property of [Q]–1 = [Q]T, the quadratic form can then be written
as {V}T[A]{V} = ([Q]–1{V	})T[A]([Q]–1{V	}) = {V	}T[Q][A][Q]T{V	} =
{V	}[D]{V	} where [D] is a diagonal matrix having the eigenvalues of [A] (16.9085,
34.6906, and 58.4009) along its diagonal. Hence, the resulting canonical form for
the surface defined by Equation 4 can now be expressed as:

(9)

z	-axis and minor axes equal to 10/(16.9085)_ and 10/(34.6906)_ along x- and y-
axes, respectively. According to Equation 8, the orientations of the x	-, y	-, and z	-
axes can be determined by using the rows of [Q]. For example, a unit vector I' along
x	-axis is equal to 0.9623i + 0.3277j–0.3860k where i, j, and k are unit vectors along
x-, y-, and z-axes, respectively. That means, the angles between x	-axis and x-, y-,
and z-axes by be obtained easily as:

and

Similarly, we can find �y	x = cos–1(.4921) = 60.52°, �y	y = cos–1(-.7218) = 136.2°,
and �y	z = cos–1(.4867) = 60.88°, and �z	x = cos–1(.1192) = 83.15°, �z	y =
cos–1(.6096) = 52.44°, and �z	z = cos–1(.7837) = 38.40°.

To verify the above assertions, MATLAB is again applied to obtain:

16 9085 34 6906 58 4009 102 2 2 2. . .′ + ′ + ′ =x y z

θ θ′
−

′
−= () = = () =x x

o
x y

ocos . . , cos . .1 18623 30 42 3277 70 87

θ ′
−= −() =x z

ocos . .1 3860 112 7

© 2001 by CRC Press LLC

The arc-cosine function acos of MATLAB is employed above and pi (=
3.14159) also has been used for converting the results in radians into degrees.

7.5 PROGRAM EIGENVIT — ITERATIVE SOLUTION
OF THE EIGENVALUE AND EIGENVECTOR

The program EigenvIt is designed to iteratively solve for the largest eigenvalue in
magnitude �max and its associated eigenvector {V} of a given square matrix [A].
Eigenvalue and eigenvector problems are discussed in the programs CharacEq,
EigenODE, and EigenVec. Since the eigenvector {V} satisfies the matrix equation:

(1)

which indicates that if we make a successful guess of {V} then when it is multiplied
by the matrix [A] the product should be a scaled version of {V} and the scaling
vector is the eigenvalue. Of course, it is not easy to guess correctly what this vector
{V} is. But, we may devise a successive guessing scheme and hope for eventual
convergence toward the needed solution. In order to make the procedure better
organized, let us use normalized vectors, that is, to require all guessed eigenvectors
to have a length equal to unity.

The iterative scheme may be written as, for k = 0,1,2,…

(2)

where k is the iteration counter and {V(0)} is the initial guess of the eigenvector for
[A]. The iteration is to be terminated when the differences in every components
(denoted in lower case of V) of {V(k + 1)} and {V(k)} are sufficiently small. Or,
mathematically

(3)

for i = 1,2,…,N and N being the order of [A].
 in Equation 3 is a predetermined
tolerance of accuracy. As can be mathematically proven.7 this iterative process leads
to the largest eigenvalue in magnitude, �max, and its associated eigenvectors. If it is
the smallest eigenvalue in magnitude, �min, and its associated eigenvector {V} that
are necessary to be found, the iterative procedure can also be applied but instead of

A V V[]{ } = { }λ

A V Vk k k[]{ } = { }() () +()λ 1

v vi
k

i
k(+ ()− <1 ε

© 2001 by CRC Press LLC

[A] its inverse [A]–1 should be utilized. The iteration should use the equation, for
k = 0,1,2,…

(4)

When �max is found, the required smallest eigenvalue in magnitude is to be
computed as:

(5)

The program EigenvIt has been developed following the concept explained
above. Both QuickBASIC and FORTRAN versions are made available and listed
below along with sample applications.

QUICKBASIC VERSION

A V Vk k k[] { } = { }− () () +()1 1α

λ αmin max= 1

© 2001 by CRC Press LLC

Sample Application

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Application

MATLAB APPLICATION

A EigenvIt.m file can be created and added to MATLAB m files for iterative
solution of the eigenvalue largest in magnitude and its associated normalized eigen-
vector of a given square matrix. It may be written as follows:

© 2001 by CRC Press LLC

The arguments of EigenvIt are explained in the comment statements which in
MATLAB start with a character %. As illustrations of how this function can be
applied, two examples are given below.

Notice that the first attempt allows 10 iterations but the answer has been obtained
after 8 trials whereas the second attempt allowing only two trials fails to converge
and V is printed as a blank vector.

In fact, the iteration can be carried out without a M file. To resolve the above
problem, MATLAB commands can be repeatedly entered by interactive operations
as follows:

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

Notice that the command format compact makes the printout lines to be closely
spaced. The iteration converges after 7 trials. This interactive method of continuous
iteration for finding the largest eigenvalue and its associated eigenvector is easy to
follow, but the repeated entering of the statement “>> Ntry = Ntry + 1…V =
V/Lambda” in the interactive execution is a cumbersome task. To circumvent this
situation, one may enter:

>> A = [2,0,3;0,5,0;3,0,2]; V = [1;0;0]; format compact

>> for Ntry = 1:100, Ntry, V = A*V; Lambda = sqrt(V’*V), V = V/Lambda, pause, end

The pause command enables each iterated result to be viewed. To continue the
trials, simply press any key. The total number of trials is arbitrarily limited at 100;
the actual need is 7 trials as indicated by the above printed results. Viewer can
terminate the iteration by pressing the <Ctrl> and <Break> keys simultaneously after
satisfactorily seeing the 7th, converged results of Lambda = 5 and V = [0.7071; 0;
0.7071] being displayed on screen.

To iteratively find the smallest eigenvector and its associated, normalized eigen-
vector of [A] according to Equations 4 and 5, we apply the iterative method to [A]–1

by entering

>> Ainv = inv(A); V = [1;0;0];

>> for Ntry = 1:100, Ntry, V = Ainv*V; Lambda = 1/sqrt(V’*V), V = V*Lambda, pause, end

© 2001 by CRC Press LLC

The resulting display is:

For saving space, the last four iterations are listed in the column on the right.
The components of the last two iterated normalized eigenvectors are numerically
equal but differ in sign, it suggests that the eigenvalue is actually equal to –1.0000
instead of 1.0000.

MATHEMATICA APPLICATIONS

The While command of Mathematica can be effectively applied here for iter-
ation of eigenvalue and eigenvector. It has two arguments, the first is a testing
expression when the condition is true the statement(s) specified in the second argu-
ment should then be implemented. When the condition is false, the While statement

© 2001 by CRC Press LLC

should be terminated. To obtain the largest eigenvalue in magnitude, we proceed
directly with a given matrix as follows:

Input[1]: = A = {{2,0,3},{0,5,0},{3,0,2}}; V = {1,0,0}; I = 0;

Input[2]: = While[i<8, I = I + 1; VN = A.V; Lambda = Sqrt[VN.VN];
Print["Iteration # ",I," ","Lambda = ",N[Lambda],

" {V} =",V = N[VN/Lambda]]]

Output[2]: =
Iteration # 1 Lambda = 3.60555 {V} = {0.5547, 0, 0.83205}
Iteration # 2 Lambda = 4.90682 {V} = {0.734803, 0, 0.67828}
Iteration # 3 Lambda = 4.99616 {V} = {0.701427, 0, 0.712741}
Iteration # 4 Lambda = 4.99985 {V} = {0.708237, 0, 0.709575}
Iteration # 5 Lambda = 4.99999 {V} = {0.70688, 0, 0.707333}
Iteration # 6 Lambda = 5. {V} = {0.707152, 0, 0.707062}
Iteration # 7 Lambda = 5. {V} = {0.707098, 0, 0.707016}
Iteration # 8 Lambda = 5. {V} = {0.707109, 0, 0.707105}

Notice that the testing condition is whether the running iteration counter I is
less than 8 or not. This setup enables up to eight iterations to be conducted. The
function N in Input[2] requests the value of the variable inside the brackets to be
given in numerical form. For example, when the value of Lambda is displayed as
sqrt[4], it will be displayed as 2.00000 if the input is N[Lambda]. VA·VB is the dot
product of VA and VB. In Input[2] some sample printouts of the character strings
specified inside a pair of parentheses are also demonstrated.

For iterating the smallest eigenvalue in magnitude, we work on the inverse of
this given matrix as follows:

Input[3]: = Ainv = Inverse[A]; V = {1,0,0}; I = 0;

Input[4]: = While[i<8, I = I + 1; VN = Ainv.V; Lambda = Sqrt[VN.VN];
Print["Iteration # ",I," ","Lambda = ",N[Lambda],

" {V} = ",V = N[VN/Lambda]]]

Output[4]: =

Iteration # 1 Lambda = 0.72111 {V} = {–0.5547, 0, 0.83205}
Iteration # 2 Lambda = 0.981365 {V} = {0.734803, 0, –0.67828}
Iteration # 3 Lambda = 0.999233 {V} = {–0.701427, 0, 0.712741}
Iteration # 4 Lambda = 0.999969 {V} = {0.708237, –0, 0.709575}
Iteration # 5 Lambda = 0.999999 {V} = {–0.70688, 0, 0.707333}
Iteration # 6 Lambda = 1. {V} = {0.707152, 0, –0.707062}
Iteration # 7 Lambda = 1. {V} = {–0.707098, 0, 0.707016}
Iteration # 8 Lambda = 1. {V} = {0.707109, 0, –0.707105}

© 2001 by CRC Press LLC

Inverse is a Mathematica function which inverts a specified matrix. The above
printout of eight iterations shows that {V} continues to change its sign. This is an
indication that the eigenvalue carries a minus sign.

7.6 PROBLEMS

PROGRAMS EIGENODE.STB AND EIGENODE.VIB

1. Apply the program EigenODE.Stb for the cases N = 6, 7, and 8 to obtain
the coefficient matrix [C] in the standard eigenvalue problem of ([C]-
λ[I]){Y} = {0}.

2. Apply the program CharacEq to obtain the characteristic equations of
order 6, 7, and 8 for the matrices [C] derived in Problem 1.

3. Apply the program Bairstow to find the roots for the characteristic equa-
tionsderived in Problem 2. If necessary, change this program to allow
interactive input of the u and v values for the guessing quadratic factor
�2 + u � + v. This enhancement will be helpful if the iteration fails to
converge.

4. The program EigenODE.Vib has been arranged for solving the general
problem of having N masses, m1–mN, in series connected by N + 1 springs
with stiffnesses k1–kN + 1. Apply it for the case when the three masses
shown in Figure 1 are connected by four springs with the fourth spring
attached to the ground. Use m1 = m2 = m3 = 1 and k1 = k2 = k3 = k4 = 10.

5. Apply the program CharacEq to find the characteristic equation for the
vibration problem described in Problem 4.

6. Apply the program MatxInvD to invert the matrix obtained in Problem
4 and then apply the program EigenvIt to iteratively determine its smallest
eigenvalue in magnitude and associated eigenvector.

7. Extend the vibrating system described in Problem 4 to four masses and
five springs and then implement the application of the programs Matx-
InvD and EigenvIt as described in Problems 5 and 6, respectively.

8. Apply the programs CharacEq, Bairstow, and EigenVec to find the
characteristic equation, eigenvalues, and associated eigenvectors for the
matrix derived in Problem 4, respectively.

9. Same as Problem 8 except for a four masses and five springs system.
10. An approximate analysis of a three-story building is described in Problem

7 in the program EigenvIt. Derive the governing differential equations for
the swaymotions xi for i = 1,2,3 and then show that the stiffness matrix
[K] and mass matrix [M] are indeed as those given there.

CHARACEQ

1. Apply Feddeev-Leverrier method to find the characteristic equation of the
matrix:

© 2001 by CRC Press LLC

2. Apply Feddeev-Leverrier method to find the characteristic equation of the
matrix:

3. Apply Feddeev-Leverrier method to find the characteristic equation of the
matrix:

4. Apply the program CharacEq for solving Problems 1 to 3.
5. Apply Feddeev-Leverrier method to find the characteristic equation of the

matrix:

6. Apply poly.m of MATLAB to Problems 1 to 3 and 5.
7. Find the roots of the polynomials found in Problem 6 by application of

roots.m of MATLAB.
8. Apply plot.m of MATLAB for the polynomials obtained in Problem 6.
9. Apply the function det of Mathematica to derive the characteristic equa-

tion for the matrix given in Problem 1.
10. Apply the function det of Mathematica to derive the characteristic equa-

tion for the matrix given in Problem 2.
11. Apply the function det of Mathematica to derive the characteristic equa-

tion for the matrix given in Problem 3.
12. Apply the function det of Mathematica to derive the characteristic equa-

tion for the matrix given in Problem 5.

1 2 3

4 5 6

7 8 9

















5 0 1

10 6 0

2 0 7

−
−

















2 2 3

10 1 2

2 4 9

−
−

















5 0 1

2 6 0

0 3 7

















© 2001 by CRC Press LLC

EIGENVEC

1. Run the QuickBASIC version of the program EigenVec for the sample
case used in the FORTRAN version.

2. Apply the program EigenVec to find the eigenvector corresponding to the
eigenvalue equal to 4.41421 for the matrix:

3. Apply the program CharacEq to find the characteristic equation for
matrix:

and then apply the program Bairstow to find the eigenvalues. Finally,
apply the program EigenVec to find the eigenvectors.

4. Apply the program CharacEq to find the characteristic equation for the
matrix:

and then apply the program Bairstow to find the eigenvalues. Finally,
apply the program EigenVec to find the eigenvectors.

5. Apply the program CharacEq to find the characteristic equation for the
matrix:

and then apply the program Bairstow to find the eigenvalues. Finally,
apply the program EigenVec to find the eigenvectors.

6. The eigenvalues for the following matrix have been found to be equal to
9.3726, 32 and 54.627:

2 0 3

0 3 0

1 0 4

















1 2 3

4 5 6

7 8 10

















5 0 1

10 6 0

2 0 7

−
−

















2 2 3

10 1 2

2 4 9

−
−

















© 2001 by CRC Press LLC

Find the associated eigenvector by applying the program EigenVec.
7. The eigenvalues of the following matrix have been found to be equal to

9.5492, 34.549, 64.451, and 90.451:

Find the associated eigenvector by applying the program EigenVec.
8. Find the eigenvalue and associated eigenvector of the matrix:

9. Swaying motion of a three-story building is described in Problem 7 in the
program EigenvIt. Use the data there to form the matrix [A] which is
equal to [K]–1 [M].
Apply the programs CharacEq and Bairstow to find all three eigenvalues
and then apply the program EigenVec to find the associated eigenvectors.

10. Apply the function eig.m of MATLAB to find all eigenvalues of the
matrices given in Problems 2 to 8.

11. Apply the functions eigenvalues and eigenvectors of Mathematica to
find all eigenvalues of the matrices given in Problems 2 to 8.

EIGENVIT

1. Using an initial, guessed eigenvector {V} = [1 0 0]T, perform four iterative
steps to find the largest eigenvalue in magnitude and its associated nor-
malized vector of the matrix:

32 16 0

16 32 16

0 16 32

















50 25 0 0

25 50 25 0

0 25 50 25

0 0 25 50



















76 36 0 0 0

36 72 36 0 0

0 36 72 36 0

0 0 36 72 36

0 0 0 36 72























A[] = −
−

















2 2 3

10 1 2

2 4 9

© 2001 by CRC Press LLC

2. Using an initial, guessed eigenvector {V} = [1 0 0]T, perform four iterative
steps to find the largest eigenvalue in magnitude and its associated nor-
malized vector of the matrix:

3. Apply the program EigenvIt to find the largest eigenvalue in magnitude
and its associated normalized eigenvector of the matrix:

Next, apply the program MatxInvD to find the inverse of [A] which is
to be entered as input for program EigenvIt to iterate the smallest eigen-
value in magnitude and its associated normalized eigenvector for [A].
Compare the results with the analytical solution of �smallest = 2 and �largest = 6.

4. Apply the program MatxInvD to find the inverse of the matrix [A] given
in Problem 1 and then apply the program EigenvIt to find the smallest
eigenvalue in magnitude and its associated normalized eigenvector of [A].
For checking the values of �smallest obtained here and �largest obtained in
Problem 1, derive the characteristic equation of [A] by use of the program
CharacEq and solve it by application of the program Bairstow.

5. Same as Problem 4 but for the matrix [A] given in Problem 2.
6. Apply poly.m, roots.m, polyval.m, plot.m, and xlabel and ylabel to

obtain a plot of the characteristic equation of the matrix [A] given in
Problem 1, shown in Figure 7, to know the approximate locations of the
characteristic roots.

7. For a 3-floor building as sketched in the left side of Figure 8, an approx-
imate calculation of its natural frequencies can be attempted by using a
lumped approach which represents each floor with a mass and the stiff-
nesses of the supporting columns by a spring as shown in the right side
of Figure 8. If the swaying motion of the floors are expressed as xi =
Xisin�t for i = 1,2,3 where � is the natural frequency and Xi are the
amplitudes, it can be shown that � and {X} = [X1 X2 X3]T satisfy the
matrix equation [K]{X} = �2[M]{X}, in which the mass matrix [M] and
stiffness matrix [K] are formed by the masses and spring constants as
follows:

A[] =
















2 0 1

0 3 0

1 0 4

A[] = 





5 3

1 3

M

m

m

m

and K

k k

k k k k

k k k

[] =
















[] =
−

− + −
− +

















1

2

3

1 2

2 1 2 3

3 2 3

0 0

0 0

0 0

0

0

© 2001 by CRC Press LLC

FIGURE 7. Problem 6.

FIGURE 8. Problem 7.

© 2001 by CRC Press LLC

To find the lowest natural frequency �min, the program EigenvIt can be
applied to obtain the �max from the matrix equation [A]{X} = �{X} where
the matrix [A] is equal to [K]–1[M] and = �2. �min is equal to 1/�max.
Determine the numeric value of �min for the case when m1 = 8x105, m2 =
9x105, and m3 = 1x106 all in N-sec2/m, and k1 = 3x108, k2 = 4x108, and
k3 = 5x108 all in N/m.

8. Referring to Figure 2 in the program EigenVec, iteratively determine the
maximum and minimum principal stresses and their associated principal
planes at a point where the two-dimensional normal and shear stresses
are �x = 50, �y = –30, and �xy = �yx = –20 all in N/cm2. Compare the results
with those obtained in the program EigenVec.

9. Same as Problem 8, except for a three-dimensional case of �x = 25, σy = 36,
�z = 49, �xy = �yx = –12, �yz = �zy = 8, and �zx = �xz = –9, all in N/cm2.

10. Apply MATLAB to invert the matrix [A] given in Problem 1 and then
apply EigenvIt.m to iterate the eigenvalue which is the smallest in mag-
nitude and also the associated eigenvector.

11. Same as Problem 10 but for the matrix [A] given in Problem 2.
12. Apply Mathematica to solve Problems 10 and 11.

7.7 REFERENCES

1. W. F. Riley and L. Zachary, Introduction to Mechanics of Materials, Wiley & Sons,
Inc., New York, 1989.

2. K. N. Tong, Theory of Mechanical Vibration, Wiley & Sons, Inc., New York, 1960.
3. Y. C. Pao, “A General Program for Computer Plotting of Mohr’s Circle,” Computers

and Structures, V. 2, 1972, pp. 625–635. This paper discusses various sources of how
eigenvalue problems are formed and also methods of analytical, computational, and
graphical solutions.

4. Y. C. Pao, “A General Program for Computer Plotting of Mohr’s Circle,” (for two-
dimensional cases), Computers and Structures, V. 2, 1972, pp. 625–635.

5. F. B. Seely and J. O. Smith, Advanced Mechanics of Materials, Second Edition, John
Wiley, New York, 1957, pp. 59–64.

6. F. B. Hilebrand, Methods of Applied Mathematics, Prentice-Hall, Englewood Cliffs,
NJ, 1960.

7. S. Perlis, Theory of Matrices, Addison-Wesley Publishing Company, Reading, MA,
1952.

8

© 2001 by CRC Press LLC

Partial Differential
Equations

8.1 INTRODUCTION

Different engineering disciplines solve different types of problems in their respective
fields. For mechanical engineers, they may need to solve the temperature change
within a solid when it is heated by the interior heat sources or due to a rise or
decrease of its

boundary

 temperatures. For electrical engineers, they may need to
find the voltages at all circuit joints of a computer chip board. Temperature and
voltage are the variables in their respective fields. Hence, they are called

field
variables

. It is easy to understand that the value of the field variable is

space-
dependent

 and

time-dependent

. That is to say, that we are interested to know the

spatial

 and

temporal

 changes of the field variable. Let us denote the field variable
as

�

. and let the independent variables be x

i

 which could be the time t, or, the space
coordinates as x, y, and z. In order not to overly complicate the discussion, we
introduce the general two-dimensional partial differential equation which governs
the field variable in the form of:

(1)

where the coefficient functions A, B, and C in the general cases are dependent on
the variables x

1

 and x

2

, and the right-hand-side function F, called

forcing function

may depend not only on the independent variables x

1

 and x

2

 but may also depend
on the first derivatives of

 �

. There are innumerable of feasible solutions for Equation
1. However, when the initial and/or boundary conditions are specified, only particular
solution(s) would then be found appropriate.

In this chapter, we will discuss three simple cases when A, B, and C are all
constants. The first case is a two-dimensional,

steady-state heat conduction

 problem
involving temperature as the field variable and only the spatial distribution of the
temperature needs to be determined, Equation 1 is reduced to a

parabolic

 partial
differential equation named after

Poisson

 and

Laplace

 when the forcing function F
is not equal to, or, equal to zero, respectively. This is a case when the coefficient
functions in Equation 1 are related by the condition B

2

–4AC<0.
The second case is a one-dimensional,

transient heat conduction

 problem. Again,
the field variable is the temperature which is changing along the longitudinal x-axis

A x x
x

B x x
x x

C x x
x

F x x
x x

1 2

2

1
2 1 2

2

1 2
1 2

2

2
2

1 2
1 2

, , ,

 , , , ,

() ∂
∂

+ () ∂
∂ ∂

+ () ∂
∂

= ∂
∂

∂
∂







φ φ φ

φ φ φ

© 2001 by CRC Press LLC

of a straight rod and also in time. That is, x

1

 becomes x and x

2

 become the time t.
Equation 1 is reduced to an

elliptical

 partial differential equation. This is a case
when B

2

–4AC = 0.
The third case is the study of the vibration of a tightened string. The field variable

is the lateral deflection of this string whose shape is changing in time. Equation 1
is reduced to a

hyperbolic

 partial differential equation. If x is the longitudinal axis
of the string, then same as in the second case, the two independent variables are x
and t. This is a case when B

2

–4AC>0.
The reason that these problems are called parabolic, elliptical, and hyperbolic

is because their characteristic curves have such geometric features. Readers inter-
ested in exploring these features should refer to a textbook on partial differential
equations.

Details will be presented regarding how the forward, backward, and central
differences discussed in Chapter 4 are to be applied for approximating the first and
second derivative terms appearing in Equation 1. Repetitive algorithms can be
devised to facilitate programming for straight-forward computation of the spatial
and temporal changes of the field variable. Numerical examples are provided to
illustrate how these changes can be determined by use of either

QuickBASIC

,

FORTRAN

,

MATLAB

, or,

Mathematica

 programs.
Although explanation of the procedure for numerical solution of these three

types of problems is given only for the simple one- and two-dimensional cases, but
its extension to the higher dimension case is straight forward. For example, one may
attempt to solve the transient heat conduction problem of a thin plate by having two
space variables instead of one space variable for a long rod. The steady-state heat
conduction problem of a thin plate can be extended for the case of a three-dimen-
sional solid, and the string vibration problem can be extended to a two-dimensional
membrane problem.

8.2 PROGRAM PARABPDE — NUMERICAL SOLUTION
OF PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

The program

ParabPDE

 is designed for numerically solving engineering problems
governed by parabolic partial differential equation in the form of:

(1)

and

�

 is a function of t and x and satisfies a certain set of supplementary conditions.
Equation 1 is called a parabolic partial differential equation. For example,

�

 could
be the temperature, T, of a longitudinal rod shown in Figure 1 and the parameter a
in Equation 1 could be equal to k/c

�

 where k, c, and

�

 are the thermal conductivity,
specific heat, and specific weight of the rod, respectively. To make the problem more
specific, the rod may have an initial temperature of 0°F throughout and it is com-
pletely insulated around its lateral surface and also at its right end. If its left end is
to be maintained at 100°F beginning at the time t = 0, then it is of interest to know

∂
∂

= ∂
∂

φ φ
t

a
x

2

2

© 2001 by CRC Press LLC

how the temperatures along the entire length of the rod will be changing as the time
progresses. This is therefore a transient heat conduction problem. One would like
to know how long would it take to have the entire rod reaching a uniform temperature
of 100°F.

If the rod is made of a single material, k/c

�

 would then be equal to a constant.
Analytical solution can be found for this simple case.

1

 For the general case that the
rod may be composed of a number of different materials and the physical properties
k, c, and

�

 would not only depend on the spatial variable x but may also depend on
the temporal variable t. The more complicated the variation of these properties in x
and t, the more likely no analytical solution is possible and the problem can only
be solved numerically. The finite-difference approximation of Equation 1 can be
achieved by applying the forward difference for the first derivative with respective
to t and central difference for the second derivative with respect to x as follows (for
t at t

i

 and x at x

j

):

If k/c

 �

 is changing in time and also changing from one location to another, we
could designate it as a

i,j

. As a consequence, Equation 1 can then be written as:

(2)

Since the initial temperature distribution T is known, the above expression
suggests that for a numerical solution we may select an appropriate increment in t,

�

t, and the temperature be determined at a finite number of stations, N. It is advisable
to have these stations be equally spaced so that the increment

�

x is equal to L/(N–1)
where L is the length of the rod, and the instants are to be designated as t

1

 = 0, t

2

 =
t,…, t

i

 = (i–1)

�

t, and the stations as x

1

 = 0, x

2

 =

�

x,…, x

j

 = (j–1)

∆

x,…, and x

N

 =
(N–1)

�

x = L. The task at hand is then to find T(t

i

,x

j

) for i = 1,2,… and j = 1,2,…,N.
It can be noticed from Equation 2 that the there is only one temperature at t

i + 1

 and
can be expressed in terms of those at the preceding instant t

i

 as:

FIGURE 1.

�

 could be the temperature, T, of a longitudinal rod.

∂
∂

=
− ∂

∂
=

− +
()

+ − +T
t

T T

t
and

T
x

T T T

x
i j i j i j i j i j˙ ˙, , , , ,1

2

2
1 1

2

2

∆ ∆

T T

t
a

T T T

x
i j i j

i j
i j i j i j+ − +−

=
− +
()

1 1 1
2

2, ,
,

, , ,

∆ ∆

© 2001 by CRC Press LLC

(3)

Equation 3 is to be used for j = 2 through j = N–1. For the last station, j = N,
which is insulated,the temperatures on both side of this station can be assumed to
be equal (the station N + 1 is a fictitious one!). The modified equation for this
particular station is:

(4)

For generating the temperatures of the rod at N stations for any specified time
increment

�

t until the temperatures are almost all equal to 100°F throughout, the
program ParabPDE has been applied. It is listed below along with a typical printout
of the results.

FORTRAN V

ERSION

T T
a t

x
T T Ti j i j

i j
i j i j i j+ − += +

()
− +()1 2 1 12, ,

,
, , ,

∆
∆

T T
a t

x
T Ti N i N

i N
i N i N+ −= +

()
−()1 2 1

2
, ,

,
, ,

∆
∆

© 2001 by CRC Press LLC

Sample Output

© 2001 by CRC Press LLC

Q

UICK

BASIC V

ERSION

MATLAB A

PPLICATIONS

A

MATLAB

 version of

ParabPDE

 can be created easily by converting the

QuickBASIC

 program. The m file may be arranged as follows:

© 2001 by CRC Press LLC

For solving the sample transient temperature problem, this m file can be called
and interactive

MATLAB

 instructions can be entered through keyboard to obtain
the temperature distribution of the rod at various times:

© 2001 by CRC Press LLC

Notice that results of temperature distributions which have been terminated using
five differentials of 1, 0.1, 0.01, 0.001, and 0.0001 Fahrenheit are saved in Tsave
and then later plotted. Since T is a row matrix, the transpose of T, T

�

, is stored in
an appropriate column of Tsave. If the temperatures were rounded, the rod reaches
a uniform temperature distribution of 100°F when the required temperature differ-
ential is selected to be 0.001°F. If the fifth curve for the temperature differential
equal to 0.0001 is plotted, it will be too close to the forth curve and also the plot
function provides only four line types (solid, broken, dot, and center lines), the fifth
set of results is therefore not saved in Tsave. Figure 2 shows a composite graph with
axes labels and markings of the curves by making use of the MATLAB commands
xlabel, ylabel, and text.

M

ATHEMATICA

 A

PPLICATIONS

The heat conduction problem of an insulated rod previously discussed in the
versions for

FORTRAN

,

QuickBASIC

, and

MATLAB

 can be solved by application
of

Mathematica

 as follows:

FIGURE 2.

A composite graph with axes labels and markings of the curves by making use
of the

MATLAB

 commands

xlabel

,

ylabel

, and

text

.

© 2001 by CRC Press LLC

In[1]:

=

(n = 11; rk = 0.037; c = 0.212; rho = 168; dt = 1; dx = 0.1;
c1 = rk/c/rho*dt/dx^2; nm1 = n–1;)

In[2]:

=

(t = Table[0,{n}]; tn = Table[0,{n}]; t[[1]] = 100; tn[[1]] = 100; tdf = 1;
tm = 0; flag1 = 0;

In[3]:

=

(While[flag1 = = 0, Do[tn[[j]] = t[[j]] + c1*(t[[j–1]]–2*t[[j]] + t[[j + 1]]),
{j,2,nm1}];

tn[[n]] = t[[n]] + 2*c1*(t[[nm1]]-t[[n]]);tm = tm + dt;flag1 = 1;
Do[If[Abs[tn[[I]]-t[[I]]]>tdf, flag1 = 0; Break,

Continue],{i,n}];
Do[t[[I]] = tn[[I]],{i,n}]]; Print[“t = “,tm]; Print[N[tn,3]])

Out[3]

=

t = 24
{100., 65.7, 37.5, 18.5, 7.83, 2.85, 0.892, 0.241, 0.0561, 0.0116, 0.00394}

The temperature distribution of the heated rod after 24 seconds is same as
obtained by the

FORTRAN

,

QuickBASIC

, and

MATLAB

 versions when every
component of two consecutive temperature distribution, kept as {t} and {tn}, differ
no more than the allowed set value of tdf = 1 degree in

In[2]

. Any component has
a difference exceeding the tdf value will cause

flag1

 to change from a value of 1 to
0 and the

Break

 command in the second Do loop in

In[2]

 to exit and to continue
the iteration.

flag1

 is created to control the

While

 command which determines when
the iteration should be terminated. The N[tn,3] instructs the components of {tn} be
printed with 3 significant figures.

When tdf is changed to a value of 0.5,

Mathematica

 can again be applied to yield

In[4]:

=

t = (Table[0,{n}]; tn = Table[0,{n}]; t[[1]] = 100; tn[[1]] = 100;
tdf = 0.5; tm = 0; flag1 = 0;)

In[5]:

=

(While[flag1 = = 0,Do[tn[[j]] = t[[j]] + c1*(t[[j–1]]–2*t[[j]] + t[[j + 1]]),
{j,2,nm1}];

tn[[n]] = t[[n]] + 2*c1*(t[[nm1]]-t[[n]]);tm = tm + dt;flag1 = 1;
Do[If[Abs[tn[[I]]-t[[I]]]>tdf, flag1 = 0; Break,

Continue],{i,n}];
Do[t[[I]] = tn[[I]],{i,n}]]; Print[“t = “,tm]; Print[N[tn,3]])

Out[5]:

=

t = 49
{100., 75.5, 53.2, 34.9, 21.3, 12., 6.24, 3., 1.35, 0.617, 0.413}

Notice that

Mathematica

 takes only 49 seconds, one second less than that
required for the

FORTRAN

,

QuickBASIC

, and

MATLAB

 versions. The reason is
that

Mathematica

 keeps more significant digits in carrying out all computations.
To show more on the effect of changing the tdf value, the following

Mathematica

runs are provided:

© 2001 by CRC Press LLC

In[6]:

=

t = (Table[0,{n}]; tn = Table[0,{n}]; t[[1]] = 100; tn[[1]] = 100;
tdf = 0.1; tm = 0; flag1 = 0;)

In[7]:

=

(While[flag1 == 0, Do[tn[[j]] = t[[j]] + c1*(t[[j–1]]–2*t[[j]] + t[[j + 1]]),
{j,2,nm1}];

tn[[n]] = t[[n]] + 2*c1*(t[[nm1]]-t[[n]]);
tm = tm + dt; flag1 = 1;
Do[If[Abs[tn[[I]]-t[[I]]]>tdf, flag1 = 0; Break,

Continue],{i,n}];
Do[t[[I]] = tn[[I]],{i,n}]]; Print[“t = “,tm];

Print[N[tn,3]])

Out[7]:

=

t = 462
{100., 93.9, 88., 82.3, 77.1, 72.5, 68.5, 65.3, 63., 61.6, 61.1}

In[8]:

=

t = (Table[0,{n}]; tn = Table[0,{n}]; t[[1]] = 100; tn[[1]] = 100;
tdf = 0.05; tm = 0; flag1 = 0;)

In[9]: = (While[flag1 == 0, Do[tn[[j]] = t[[j]] + c1*(t[[j–1]]–2*t[[j]] + t[[j + 1]]),
{j,2,nm1}];

tn[[n]] = t[[n]] + 2*c1*(t[[nm1]]-t[[n]]);
tm = tm + dt; flag1 = 1;
Do[If[Abs[tn[[I]]-t[[I]]]>tdf, flag1 = 0; Break,

Continue],{i,n}];
Do[t[[I]] = tn[[I]],{i,n}]]; Print[“t = “,tm];

Print[N[tn,3]])

Out[9]: = t = 732
{100., 97., 94., 91.2, 88.5, 86.2, 84.2, 82.6, 81.5, 80.8, 80.5}

In[10]: = t = (Table[0,{n}]; tn = Table[0,{n}]; t[[1]] = 100; tn[[1]] = 100;
tdf = 0.0001; tm = 0; flag1 = 0;

In[11]: = (While[flag1 == 0, Do[tn[[j]] = t[[j]] + c1*(t[[j–1]]–2*t[[j]] + t[[j + 1]]),
{j,2,nm1}];

tn[[n]] = t[[n]] + 2*c1*(t[[nm1]]-t[[n]]);
tm = tm + dt; flag1 = 1;
Do[If[Abs[tn[[I]]-t[[I]]]>tdf, flag1 = 0; Break,

Continue],{i,n}];
Do[t[[I]] = tn[[I]],{i,n}]]; Print[“t = “,tm]; Print[N[tn,3]])

Out[11]: = t = 3159
{100., 100., 100., 100., 100., 100., 100., 100., 100., 100., 100.}

For tdf = 0.1 and tdf = 0.05, Mathematica continues to take lesser time than the
other version; but when tdf = 0.0001, Mathematica needs two additional seconds. The

© 2001 by CRC Press LLC

reason is that seven significant figures are required in the last case, rounding may
have resulted in earlier termination of the iteration when the FORTRAN, Quick-
BASIC, and MATLAB versions are employed.

8.3 PROGRAM RELAXATN — SOLVING ELLIPTICAL PARTIAL
DIFFERENTIAL EQUATIONS BY RELAXATION METHOD

The program Relaxatn is designed for solving engineering problems which are
governed by elliptical partial differential equation of the form:

(1)

where � is called the field function and F(x,y) is called forcing function. When the
steady-state heat conduction of a two-dimensional domain is considered,2 then the
field function becomes the temperature distribution, T(x,y), and the forcing function
becomes the heat-source function, Q(x,y). If the distribution of T is influenced only
by the temperatures at the boundary of the domain, then Q(x,y) = 0 and Equation
1 which is often called a Poisson equation is reduced to a Laplace equation:

(2)

The second-order, central-difference formulas (read the program DiffTabl) can
be applied to approximate the second derivatives in the above equation at an arbitrary
point x = xi and y = yj in the domain as:

and

By substituting both of the above equations into Equation 2 and taking equal
increments in both x- and y-directions, the reduced equation is, for �x = �y,

(3)

The result is expected when the temperature distribution reaches a steady state
because it states that the temperature at any point should be equal to the average of
its surrounding temperatures.

∂
∂

+ ∂
∂

= ()
2

2

2

2

φ φ
x y

F x y,

∂
∂

+ ∂
∂

=
2

2

2

2 0
T

x
T

y

∂
∂

=
− +
()

− +
2

2
1 1

2

2T
x

at x y
T T T

xi j
i j i j i j , ˙ , , ,

∆

∂
∂

=
− +

()
− +

2

2
1 1

2

2T
y

at x y
T T T

yi j
i j i j i j , ˙ , , ,

∆

T T T T Ti j i j i j i j i j, , , , ,= + + +()− + − +
1
4 1 1 1 1

© 2001 by CRC Press LLC

Before we proceed further, it is appropriate at this time to introduce a numerical
case. Suppose that a plate which initially (at time t = 0) has a temperature equal to
0°F throughout and is insulated along a portion of its boundary, is suddenly heated
at its upper left boundary to maintain a linearly varying temperature Tb as shown in
Figure 3. If this heating process is to be maintained, we are then interested in
knowing the temperature distribution, changed from its initial state of uniformly
equal to 0°F if given sufficient time to allow it to reach an equilibrium (steady) state.
Numerically, we intend to calculate the temperatures, denoted as a matrix [T], at a
selected number of locations. Therefore, the plate is first divided into a gridwork of
M rows and N columns along the x- and y-directions, respectively, as indicated in
Figure 1. The directions of x- and y-axes are so selected for the convenience of
associating them with the row and column of the temperature matrix [T] which is
of order M by N. The values of M and N should be so decided such that the
increments �x and �y are equal in order to apply Equation 3. To be more specific,
let M = 10 and N = 20 and the linear temperature variation along the upper left
boundary Tb be:

(4)

Here, Ti,j is to be understood as the temperature at the location (xi,yj). Equation
4 describes the temperature along the left boundary y = y1 but only for xi in the
range of i = 1 to i = 6.

Since the temperatures at the stations which are on the insulated boundaries of
the plate are also involved, these unknown temperatures need to be treated differently.
By an insulated boundary, it means that there is no heat transfer normal to the
boundary. Since the heat flow is depended on the temperature difference across that

FIGURE 3. A plate, which initially (at time t = 0) had a temperature equal to 0°F throughout,
insulated along a portion of its boundary and suddenly heated at its upper left boundary to
maintain a linearly varying temperature Tb.

T i for ii, , , ,1 10 1 1 2 6= −() = …

© 2001 by CRC Press LLC

insulated boundary, mathematically it requires that �T/�n = 0 there, n being the
normal direction. At the vertical boundaries x = xM, we have �T/�n = �T/�x = 0 since
x is the normal direction. Based on the central difference and considering two
increments in the x direction, at a yjth station we can have:

or

(5)

Since xM + 1 is below the bottom boundary of the plate shown in Figure 3, there
is no need to calculate the temperatures there, however Equation 5 enables the
temperatures at the stations along the bottom boundary of the plate TM,j for j = 1 to
N to be averaged. Returning to Equation 4, we notice that if Equation 5 is substituted
into it, the resulting equation which relates only to three neighboring temperatures is:

(6)

Notice that j = 1 and j = N are not covered in Equation 6. These two cases
concerning the insulated stations at the left and right bottom corners of the plate
will be discussed after we address the two vertical, insulated boundaries y = y1 and
y = yN.

For the boundaries y = y1, ∂T/∂n becomes ∂T/∂y. Again, we can apply the central
difference for double y increments to obtain:

or

(7)

Thus, the modified Equation 3 for the left insulated boundary is:

(8)

In a similar manner, we can derive for the right insulated boundary y = yN

or

∂
∂ () =

−
() =+ −T

x
at x y

T T

xM j
M j M j , ˙ , ,1 1

2
0

∆

T TM j M j+ −=1 1, ,

T T T T for j NM j M j M j M j, , , , , , ,= + +() = … −− − +
1
4

2 2 3 11 1 1

∂
∂ () =

−
() =T

y
at x y

T T

y
i i , ˙ , ,

1 1
0 2

2
0

∆

T Ti i, ,0 2=

T T T T for ii i i i, , , , , ,1 1 1 1 1 2

1
4

2 7 8 9= + +() =− +

∂
∂ () =

−
() =+ −T

y
at x y

T T

yi N
i N i N , ˙ , ,1 1

2
0

∆

© 2001 by CRC Press LLC

(9)

and

(10)

Having derived Equations 6, 8, and 10, it is easy to deduce the two special
equation for the corner insulated stations to be:

(11)

and

(12)

We have derived all equations needed for averaging the temperature at any station
of interest including those at the insulated boundaries by utilizing those at its
neighboring stations. It suggests that a continuous upgrading process can be devel-
oped which assumes that the neighboring temperatures are known. This so-called
relaxation method starts with an initial assumed distribution of temperature [T(0)]
and continues to use Equations 3 and 6 to 12 until the differences at all locations
are small enough. Mathematically, the process terminates when:

(13)

where � is a prescribed tolerance of accuracy and k = 0,1,2,… is the number of
sweeps in upgrading the temperature distribution. Superscripts (k + 1) and (k) refer
to the improved and previous distributions, respectively. The order of sweep will
affect how the temperatures should be upgraded. For example, if the temperatures
are to be re-averaged from top to bottom and left to right, referring to Figure 1, then
Equation 3 is to be modified as:

(14)

Notice that the neighboring temperatures in the row above, i–1, and in the column
to the left, j–1, have already been upgraded while those in the row below, i + 1, and
in the column to the right, j + 1, are yet to be upgraded. Similar modifications are
to be made to Equations 6 to 12 during relaxation.

T Ti N i N, ,+ −=1 1

T T T T for ii N i N i N i N, , , , ,= + +() =− + −
1
4

2 8 91 1 1

T T TM M M, , ,1 2 1 1

1
2

= +()−

T T TM N M N M N, , ,= +()− −
1
2 1 1

T Ti j
k

j

N

i

M

i j
k

, ,
+()

==

()∑∑ − <1

11

ε

T T T T Ti j
k

i j
k

i j
k

i j
k

i j
k

, , , , ,
+()

−
+()

+
()

−
+()

+
()= + + +()1

1
1

1 1
1

1

1
4

© 2001 by CRC Press LLC

The program Relaxatn is developed according to the relaxation method
described above. For solving the problem shown in Figure 3, both FORTRAN and
QuickBASIC versions are made available for interactively specifying the tolerance.
Sample results are presented below.

FORTRAN VERSION

© 2001 by CRC Press LLC

Sample Results

The program Relaxatn is first applied for an interactively entered value of equal
to 100. Only one relaxation needs to be implemented as shown below. The temper-
ature distribution for Sweep #1 is actually the initial assumed distribution. One
cannot assess how accurate this distribution is. The second run specifies that be

© 2001 by CRC Press LLC

equal to 1. The results show that 136 relaxation steps are required. For giving more
insight on how the relaxation has proceeded, Sweeps #10, #30, #50, #100, and #137
are presented for interested readers. It clearly indicates that a tolerance of equal to
100 is definitely inadequate.

© 2001 by CRC Press LLC

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Results

Irregular Boundaries

Practically, there are cases where the domain of heat conduction have boundaries
which are quite irregular geometrically as illustrated in Figure 4. For such cases, the
equation derived based on the relaxation method, Equation 3, which states that the
temperature at any point has the average value of those at its four neighboring points
if they are equally apart, has to be modified. The modified equation can be derived
using a simple argument applied in both x and y directions. For example, consider
the temperature at the point G, TG, in Figure 4. First, let us investigate the horizontal,
y direction (for convenience of associating x and y with the row and column indices
i and j, respectively as in Figure 2). We observe that TG is affected more by the
temperature at the point C, TC, than by that at the point I, TI because the point C is
closer to the point G than the point I. Since the closer the point, the greater the
influence, based on linear variation of the temperature we can then write:

(15)

where the increment from point I to point G is the regular increment �y while that
between G and C is less and equal to ���y with �� having a value between 0 and
1. Similarly, along the vertical, x direction and considering the points B, G, and H
and a regular increment �x, we can have:

(16)

T
y

y y
T

y
y y

T T TG C I C I=
+ ′

+ ′
+

=
+ ′

+ ′
+ ′

∆
∆ ∆

∆
∆ ∆β

β
β β

β
β

1
1 1

T
x

x x
T

x
x x

T T TG B H B H=
+ ′

+ ′
+ ′

=
+ ′

+ ′
+ ′

∆
∆ ∆

∆
∆ ∆α

α
α α

α
α

1
1 1

© 2001 by CRC Press LLC

where like ��, 	� has a value between 0 and 1. As often is the case, the regular
increments �x and �y are taken to be equal to each other for the simplicity of
computation. Equations 15 and 16 can then be combined and by taking both x and
y directions into consideration, an averaging approach leads to:

(17)

For every group of five points such as B, C, G, H, and I in Figure 4 situated at
any irregular boundary, the values of 	� and �� have to be measured and Equation
17 is to be used during the relaxation process if the boundary temperatures are
known.

If some points along an irregular boundary are insulated such as the points B
and C in Figure 4, we need to derive new formula to replace Equation 6 or Equation
10. The insulated condition along BC requires �T�n = 0 where n is the direction
normal to the cord BC when the arc BC is approximated linearly. If the values of ‘
and ‘ are known, we can replace the condition �T/�n = 0 with

(18)

The remainder of derivation is left as a homework problem.

MATLAB APPLICATION

A Relaxatn.m file can be created to perform interactive MATLAB operations
and generate plots of the temperature distributions during the course of relaxation.
This file may be prepared as follows:

FIGURE 4. There are cases where the domain of heat conduction have boundaries which
are quite irregular geometrically.

T T T T TG B H C I=
+ ′

+ ′
+ ′

+
+ ′

+ ′
+ ′







1
2

1
1 1

1
1 1α

α
α β

β
β

∂
∂

= ∂
∂

+ ∂
∂

= ∂
∂

+ ∂
∂

= ′ ∂
∂

+ ′ ∂
∂

=T
n

TdX
Xdn

TdY
Ydn

T
X

T
Y

T
X

T
Y

sin cosθ θ α β 0

© 2001 by CRC Press LLC

This file can be applied to solve the sample problem run by first specifying the
boundary temperatures described in Equation 4 to obtain an initial distribution by
entering the MATLAB instructions:

© 2001 by CRC Press LLC

The fprintf command enables a label be added, in which the format %3.0f
requests 3 columns be provided without the decimal point for printing the value of
NR, and \n requests that next printout should be started on a new line. The Relaxatn.m
can now be utilized to perform the relaxations. Let first perform one relaxation by
entering

>> NR = NR + 1; fprintf(‘Sweep # %3.0f \n’,NR), [D,T] = feval(A:Relaxatn’,T]

The resulting display of the error defined in Equation 13 and the second tem-
perature distribution is:

© 2001 by CRC Press LLC

In case that we need to have the 30th temperature distribution by performing
29 consecutive relaxations, we enter:

>> for NR = 3:30; [D,T] = feval(A:Relaxatn',T]; end
>> fprintf('Sweep # %3.0f \n',NR),D,T

The resulting display of the error defined in Equation 13 and the 30th temperature
distribution is:

To obtain a plot of this temperature distribution after the initial temperature
distribution has been relaxed 29 times, with gridwork and title as shown in Figure 5a,
the interactive MATLAB instructions entered are:

>> V = 0:1:50; contour(T,V’), grid, title(‘* After 30 relaxations *’)

Notice that 51 contours having values 0 through 50 with an increment of 1
defined in the row matrix V. In Figure 5a, the contour having a value equal to 0 is

© 2001 by CRC Press LLC

FIGURE 5. After 38 relaxations (a) and after 137 relaxations (b).

© 2001 by CRC Press LLC

along the upper edge (Y = 10) and right edge (X = 20), the first curved contour of
the right has a value equal to 1, and the values of the contours are increased from
right to left until the point marked “5” which has a temperature equal to 50 is
reached. It should be noted that along the left edge, the uppermost point marked
“10” has a temperature equal to zero and the temperatures are increased linearly (as
for the initial conditions) to 50 at the point marked with “5”, and from that point
down to the point marked “1” the entire lower portion of the left edge is insulated.

For obtaining the 137th sweep, we can continue to call the service Relaxatn.m
by similarly applying the MATLAB instructions as follows:

>> for NR = 31:137; [D,T] = feval(A:Relaxatn',T]; end
>> fprintf('Sweep # %3.0f \n',NR),D,T

The resulting display of the error defined in Equation 13 and the 137th temper-
ature distribution is:

© 2001 by CRC Press LLC

Figure 5b shows the 137th temperature distribution when the interactive MAT-
LAB instructions entered are:

>> V = 0:1:50; contour(T,V’), grid, title(‘* After 137 relaxations *’)

Notice that area near the insulated boundaries at the right-lower corner has finally
reached a steady-state temperature distribution, i.e., changes of the entire temperature
distribution will be insignificant if more relaxations were pursued.

MATHEMATICA APPLICATIONS

To apply the relaxation method for finding the steady-state temperature distri-
bution of the heated plate already solved by the FORTRAN, QuickBASIC, and
MATLAB versions, here we make use of the Do, If, and While commands of
Mathematica to generate similar results through the following interactive opera-
tions:

In[1]: = t = Table[0,{10},{20}]; eps = 100; nr = 0; d = eps + 1;

In[2]: = Do[t[[i,1]] = (I–1)*10,{i,2,6}];

In[3]: = (While[d>eps, d = 0;nr = nr + 1;
Do[Do[ts = t[[i,j]]; t[[i,j]] = .25*(t[[I–1,j]] + t[[I + 1,j]]

+ t[[i,j–1]] + t[[i,j + 1]]);
d = Abs[ts-t[[i,j]]] + d;,{j,2,19}],{i,2,6}];

Do[ts = t[[i,1]]; t[[i,1]] = .25*(t[[I–1,1]] + t[[I + 1,1]]
+ 2*t[[i,2]]); d = Abs[ts-t[[i,1]]] + d;

Do[ts = t[[i,j]]; t[[i,j]] = .25*(t[[I–1,j]] + t[[I + 1,j]]
+ t[[i,j–1]] + t[[i,j + 1]]);
d = Abs[ts-t[[i,j]]] + d;,{j,2,19}];
If[i = = 7,Continue, ts = t[[i,20]];
t[[i,20]] = .25*(t[[I–1,20]] + t[[I + 1,20]] + 2*t[[i,19]]);
d = Abs[ts-t[[i,20]]] + d;],{i,7,9}];
ts = t[[10,1]]; t[[10,1]] = .5*(t[[9,1]] + t[[10,2]]);
d = Abs[ts-t[[10,1]]] + d;
Do[ts = t[[10,j]]; t[[10,j]] = .25*(2*t[[9,j]] + t[[10,j–1]]

+ t[[10,j + 1]]); d = Abs[ts-t[[10,j]]] + d;,{j,2,19}];
ts = t[[10,20]]; t[[10,20]] = .5*(t[[9,20]] + t[[10,19]]);
d = Abs[ts-t[[10,20]]] + d;])

In[4]: = Print[“Sweep #”,nr]; Round[N[t,2]]

Out[4] = Sweep #2

{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{10, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{20, 9, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},

© 2001 by CRC Press LLC

{30, 13, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{40, 18, 7, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{50, 20, 8, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{17, 11, 5, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 6, 5, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 2, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{ 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}}

Notice that In[2] initializes the boundary temperatures, nr keeps the count of
how many sweeps have been performed, and the function Round is employed in
In[4] to round the temperature value to a two-digit integer. When the total temper-
ature differences, d, is limited to eps = 100 degrees, the t values obtained after two
sweeps are slightly different from those obtained by the other versions, this is again
because Mathematica keeps more significant digits in all computation steps than
those in the FORTRAN, QuickBASIC, and MATLAB programs. By changing the
eps value from 100 degrees to 1 degree, Mathematica also takes 137 sweeps to
converge as in the FORTRAN, QuickBASIC, and MATLAB versions:

In[5]: = t = Table[0,{10},{20}]; eps = 1; nr = 0; d = eps + 1;

In[6]: = Do[t[[i,1]] = (I–1)*10,{i,2,6}];

In[7]: = Print[“Sweep #”,nr]; Round[N[t,2]]

Out[7] = Sweep #137

{{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{10, 8, 7, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0},
{20, 16, 13, 10, 8, 7, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 0, 0, 0},
{30, 24, 19, 15, 12, 9, 8, 6, 5, 4, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0},
{40, 30, 23, 18, 15, 12, 10, 8, 6, 5, 4, 4, 3, 2, 2, 1, 1, 1, 0, 0},
{50, 34, 26, 20, 16, 13, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 1, 1, 0, 0},
{35, 30, 25, 21, 17, 15, 12, 10, 8, 7, 6, 5, 4, 3, 3, 2, 2, 1, 1, 0},
{29, 27, 24, 21, 18, 15, 13, 11, 9, 7, 6, 5, 4, 3, 3, 2, 2, 1, 1, 1},
{26, 26, 23, 21, 18, 16, 13, 11, 9, 8, 6, 5, 4, 4, 3, 2, 2, 1, 1, 1},
{26, 25, 23, 21, 18, 16, 13, 11, 9, 8, 7, 5, 4, 4, 3, 2, 2, 2, 1, 1}}

The above results all agree with those obtained earlier.

WARPING ANALYSIS OF A TWISTED BAR WITH NONCIRCULAR CROSS SECTION

As another example of applying the relaxation method for engineering analysis,
consider the case of a long bar of uniform rectangular cross section twisted by the
two equal torques (T) at its ends. The cross section of the twisted bar becomes
warped as shown in Figure 6. If z-axis is assigned to the longitudinal direction of
the bar, to find the amount of warping at any point (x,y) of the cross sectioned
surface, denoted as W(x,y), the relaxation method can again be employed because

© 2001 by CRC Press LLC

W(x,y) is governed by the Laplace equation.3 Due to anti-symmetry of W(x,y), that
is W(–x,y) = W(x,–y) = –W(x,y), only one-fourth of the cross section needs to be
analyzed. Let us consider a rectangular region 0≤x≤a and 0≤y≤b. It is obvious that
the anti-symmetry leads to the conditions W(x,0) = 0 and W(0,y) = 0 along two of
the four linear boundaries. To derive the boundary conditions along the right side
x = a and the upper side y = b, we have to utilize the relationships between the
warping function W(x,y) and shear stresses
xz and
yz which are:

(19,20)

where G and � are the shear rigidity and twisting angle of the bar, respectively.
Along the boundaries x = a and y = b, the shear stress should be tangential to the
lateral surface of the twisted bar requires:

(21)

where s is the variable changed along the boundary. Along the upper boundary y =
b, dy/ds = 0 and dx/ds = 1 and along the right boundary x = a, dx/ds = 0 and dy/ds =
1. Consequently, Equation 19 reduces to:

(22,23)

To apply the relaxation method for solving W(x,y) which satisfies the Laplace
equation for 0<x<a and 0<y<b and the boundary conditions W(0,y) = W(x,0) = 0

FIGURE 6. In the case of a bar of uniform rectangular cross section twisted by the two
equal torques (T) at its ends, the cross section of the twisted bar becomes warped as shown.

τ θ τ θxz yzG
W
x

y and G
W
y

x= ∂
∂

−



 = ∂

∂
+







∂
∂

−



 − ∂

∂
+







=W
x

y
dy
ds

W
y

x
dx
ds

0

∂
∂

= − = ∂ = =W
y

x for y b and
W
x

y for x a

© 2001 by CRC Press LLC

and Equations 22 and 23, let us partition the rectangular region 0≤x≤a and 0≤y≤b
into a network of MxN using the increments �x = a/(M–1) and �y = b/(N–1). In
finite-difference forms, Equations 22 and 23 yield, respectively:

(24)

and

(25)

where xi = (i–1)�x and yj = (j–1)�y. Equations 24 and 25 can be combined to yield
a finite-difference formula for relaxing the corner point (xM,yN). That is:

(26)

Program Relaxatn.m has been modified to develop a new m file Warping.m
for the warping analysis which uses input values for a, b, M, N, and which is needed
in Equation 13 for termination of the relaxation. MATLAB statements for sample
application of Warping.m are listed below along with the m-file itself. The mesh
plot of the warping surface W(x,y) obtained after 131 sweeps of relaxation by
initially assuming W(x,y) = 0 throughout the entire region and an � value equal to
100 is shown in Figure 7.

FIGURE 7. The result for � = 100 when a = 30 and b = 20 means that each of the 600
gridpoints is allowed to have, on average, a difference equal to 1/6 during two consecutive
relaxations.

W x y y b W x b y x y for i Mi N i i, , , , ,= ≡() = −() − = … −∆ ∆ 2 3 1

W x x a y W a x y y x for j NM j j j= ≡() = −() + = … −, , , , ,∆ ∆ 2 3 1

W x a y b W a y W x b b x a yM N N M≡ ≡() = () + () + −[]− −, . , ,5 1 1 ∆ ∆

© 2001 by CRC Press LLC

Notice that the variable Nrelax keeps track how many sweeps have been per-
formed during the relaxation procedure, it is an output argument like W which can
be printed if desired. The exit flag, FlagExit, is initially set equal to zero and changed
to a value of unity when the total error, SumOfDs, is less than and allowing the
relaxation to be terminated.

Figure 7 is the result for � = 100 when a = 30 and b = 20 which means that each
of the 600 gridpoints is allowed to have, on average, a difference equal to 1/6 during
two consecutive relaxations. The W values are found to be in the range of –154 and
24.8 for = 100. When is set equal to 1 which means that each gridpoint is allowed
to have, on the average, a difference of 1/600, the mesh plot of W is shown in
Figure 8. The W values are now all equal to or less than zero.

© 2001 by CRC Press LLC

It is noteworthy that if the cross section of the twisted rod is square, that is when
a = b, there is no warping along the x = y line as illustrated by the mesh plot shown in
Figure 9. This case is left as a homework problem for the readers to work out the details.

FIGURE 8.

FIGURE 9.

© 2001 by CRC Press LLC

8.4 PROGRAM WAVEPDE — NUMERICAL SOLUTION OF WAVE
PROBLEMS GOVERNED BY HYPERBOLIC PARTIAL
DIFFERENTIAL EQUATIONS

Program WavePDE is designed for numerical solution of the wave problems gov-
erned by the hyperbolic partial differential equation.1 Consider the problem of a
tightened string shown in Figure 10. The lateral displacement u satisfies the equation:

(1)

where x is the variable along the longitudinal direction of the string and a is the
wave velocity related to the tension T in the string and the mass m of the string by
the equation:

(2)

Together with the governing equation of u, Equation 1, there are also so-called
initial conditions prescribed which may be expressed as:

(3,4)

f(x) in Equation 3 describe the initial position while v0(x) describes the initial
velocity of the tightened string. And, also there are so-called boundary conditions
which in the case of a string at both ends are:

(5,6)

FIGURE 10. The problem of a tightened string.

∂
∂

= ∂
∂

2

2
2

2

2

u
t

a
u

x

a
T
m

2 =

u t x f x and
u t x

t
v x=() = () ∂ =()

∂
= ()0

0
0,

,

u t x x and u t x x LN, ,= =() = = =() =1 0 0 0

© 2001 by CRC Press LLC

If the string is made of a single material, T/m would then be equal to a constant.
Analytical solution can be found for this simple case. For the general case that the
string may be composed of a number of different materials and the mass m is then
a function of the spatial variable x. The more complicated the variation of these
properties in x and t, the more likely no analytical solution possible and the problem
can only be solved numerically.

The finite-difference approximation of Equation 1 can be achieved by applying
the central difference for the second derivatives for both with respect to the space
variable x and the time variable t. If we consider the displacement u only a finite
number of stations, say N, defined with a spatial increment �x and using a time
increment of �t, then specially, for t at ti and x at xj, we can have:

and

Substituting the above expressions into Equation 1, we obtain:

(7)

Equation 7 is to be applied for j = 2 through j = N–1. Initially for t = t1 = 0,
Equation 7 can be applied for i = 2, then ui–1,j≡ u(t1,xj) term is simply f(xj) and can
be calculated using Equation 3, and the ui,j–1, ui,j, and ui,j + 1 terms can be calculated
using the forward-difference approximations of Equation 4 which are, for k =
2,3,…,N–1

(8)

Since both f(x) and v0(x) are prescribed, use of Equation 7 enables all u to be
calculated at t = t3 and at all in-between stations xj, for j = 2,3,…,N–1. When u
values at t = t2 and t = t3 are completely known, Equation 7 can again be utilized to
compute u at t = t4 for i = 4 and so forth. Because the string is tightened, we expect
the magnitudes of u values to continuously decrease in time. That is, for a specified
tolerance, we may demand that the computation be terminated when

(9)

∂
∂

=
− −

()
− +

2

2
1 1

2

2u
t

u u u

t
i j i j i j, , ,

∆

∂
∂

=
− +
()

− +
2

2
1 1

2

2u
x

u u u

x
i j i j i j, , ,

∆

u u u
a t

x
u u ui j i j i j i j i j i j+ = − += − + + 



 − +()1 1

2

1 12 2, , , , , ,

∆
∆

u t x u t x v x t f x v x tk k k k k2 1 0 0, ,() = () + () = () + ()∆ ∆

max.
j=2~N-1

ui j, < ε

© 2001 by CRC Press LLC

It should be noted that the obtained u values are only for the selected increments
�t and �x. Whether or not the results will change if either increment is reduced,
need be tested.

Equation 7 relates the displacement at xj at t = ti + 1 to the displacements at the
same location xj at two previous instants ti and ti–1, and also those of its left and
right neighboring points at one time increment earlier, t = ti. This is an approximation
which ignores the influences of the displacements of its left and right neighboring
points at the present time t = ti + 1, namely ui + 1,j–1 and ui + 1,j + 1. These influences can
be taken into consideration if the central-difference approximation for the curvature
term in the x domain is applied for t = ti + 1 instead of at t = ti in derivation of Equation
7. Reader is urged to work Problem 5 to find the effect of this change.

A computer program called WavePDE has been developed for generating the
deflection of the string at N stations for any specified time increment �t until the
deflection are almost all equal to zero throughout. The program allows interactive
specification of the values of a, L, �t, and �x, and requires the user to define
FUNCTION Subprograms F(X) and V0(X). Both FORTRAN and QuickBASIC
versions are listed below along with a sample application.

QUICKBASIC VERSION

© 2001 by CRC Press LLC

Sample Application

The two function subprograms F and V0 listed in the program WavePDE are
prepared for a string that has a length equal to 32 cm and is fastened at its two ends.
At time t = 0, the string is lifted at x = 24 cm upward up 2 cm and then released
from rest. That is, for Equations 3 and 4, we have a particular case of f(x) = x/12
in cm for 0≤x≤24 cm and f(x) = 8(x/4) in cm for 24<x≤32, and v0(x) = 0. Suppose
that the wave velocity, a in Equation 1, is equal to 90 cm/sec2. We may be interested
in knowing the lateral displacements at 15 stations between its two ends equally
spaced at an increment of �x = 2 cm for t>0. To perform the step-by-step calculation
according to Equation 7, let us compute these displacements using a time increment
of �t = 0.001 second and proceed until t reaches 2 second or when the maximum
displacement umax is less than or equal to 0.001. In view of the small �t, the results
are to be printed after t has been increased by 0.1 second. An interactive run of the
program WavePDE is presented below:

© 2001 by CRC Press LLC

© 2001 by CRC Press LLC

MATLAB APPLICATIONS

A MATLAB version of WavePDE.m can be developed to run the sample
problem as follows:

When this function is applied for generating displacements using a time incre-
ment of 0.001 and a storing increment of 0.1, the MATLAB commands, the data
for plotting, and the resulting graph (Figure 2) having 21 curves each with 17 points
are as follows:

© 2001 by CRC Press LLC

Notice that solid, broken, dotted, and dot center lines and in that order are used
repeatedly for plotting the 21 curves in Figure 11. The first four curves have been
marked using the text command. Form the 21st column listed above, we observe
that maximum initial displacement of 2 cm has only been reduced to 0.8529 cm
after two seconds. It should be pointed out that in WavePDE.m the computation
should also be ended when the sum of the absolute values of displacements is less
than the specified tolerance.

© 2001 by CRC Press LLC

MATHEMATICA APPLICATION

Mathematica can be applied to investigate the string vibration problem by the
following interactive operations:

In[1]: = f[fx_]: = If[x>24, 8x/4, x/12]

In[2]: = (asq = 81000; dt = 0.001; dx = 2: n = 15; eps = .1; tend = 2; dtp = 0.1;
v0 = 0; np = 100; c = (dt/dx)^2*asq; exitflagg = 0; t = 0)

In[3]: = u0 = Table[0.{j,n + 2}]; Do[x = (j–1)*dx; u0[[j]] = f[x];,{j,n + 2}];

In[4]: = (Print["t = ",N[t,3]," String's Displacements are: "];
Print[N[u03]])

Out[4]: = t = 0 String's Displacements are:
{0, 0.167, 0.333, 0.5, 0.667, 0.833, 1., 1.17, 1.33, 1.5, 1.67, 1.83,
2., 1.5, 1., 0.5, 0}

FIGURE 11. Solid, broken, dotted, and dot center lines are used repeatedly for plotting the
21 curves in this figure.

© 2001 by CRC Press LLC

In[5]: = t = t + dt; u = u0 + dt*v0; un = Table[0.{j,n + 2}]; nc = 2;

In[6]: = (While[exitflag == 0, usum = 0; Do[un[[j + 1]] =-u0[[j + 1]] + c*u[[j]]
+ 2*(1–c)*u[[j + 1]] + c*u[[j + 2]];

usum = usum + Abs[un[[j + 1]]];,{j,n}];
t = t + dt; If[(usum<eps)||(t>tend), exitflag = 1; Break,

u0 = u; u = un;];
If[nc = = np, Print["t = ",N[t,3],

" String's Displacements are: "];
Print[N[u,3]]; nc = 1;, nc = nc + 1]])

Out[6]: = t = 0.1 String's Displacements are:
{0. 0.167, 0.333, 0.5, 0.667, 0.833, 0.997, 1.14, 1.21, 1.07, 0.795,
0.692, 0.499, 0.359, 0.131, 0.0961, 0}

t = 0.2 String's Displacements are:
{0. 0.163, 0.315, 0.423, 0.418, 0.24, –0.0295, –0.184, –0.285,
–0.515, –0.632, –0.474, –0.749, –0.564, –0.287, –0.168, 0}

t = 0.3 String's Displacements are:
{0. –0.449, –0.818, –1.01, –1.12, –1.31, –1.47, –1.47, –1.45, –1.22,
–0.95, –0.812,–0.691, –0.514, –0.298, –0.193, 0}

t = 0.4 String's Displacements are:
{0. –0.42, –0.88, –1.26, –1.54, –1.63, –1.49, –1.44, –1.36, –1.17,
–0.98, –0.829, –0.7, –0.456, –0.371, –0.146, 0}

t = 0.5 String's Displacements are:
{0. 0.242, 0.411, 0.285, 0.0344, 0.00989, –0.0857, –0.355, –0.0622,
–0.774, –0.804, –0.803, –0.6, –0.528, –0.308, –.177, 0}

t = 0.6 String's Displacements are:
{0. 0.0971, 0.341, 0.481, 0.695, 0.976, 1.1, 1.01, 0.896, 0.855,
0.68, 0.546, 0.217, 0.0517, –0.0764, –0.0592, 0}

t = 0.7 String's Displacements are:
{0. 0.183, 0.289, 0.523, 0.706, 0.82, 0.958, 1.11, 1.38, 1.59, 1.82,
1.74, 1.62, 1.44, 1.15, 0.663, 0}

t = 0.8 String's Displacements are:
{0. 0.207, 0.297, 0.481, 0.724, 0.808, 0.913, 1.17, 1.2, 1.24, 1.1,
0.893, 0.689, 0.567, 0.481, 0.273, 0}

t = 0.9 String's Displacements are:
{0. 0.164, 0.296, 0.379, 0.495, 0.44, 0.296, 0.0756, –0.104, –0.411,
–0.537, –0.51, –0.563, –0.57, –0.537, –0.323, 0}

© 2001 by CRC Press LLC

t = 1.0 String's Displacements are:
{0. –0.22, –0.459, –0.725, –1.05, –1.15, –1.31, –1.34, –1.28, –1.31
–1.2, –0.888, –0.539, –0.463, –0.53, –0.197, 0}

t = 1.1 String's Displacements are:
{0. –0.564, –0.992, –1.41, –1.64, –1.81, –1.69, –1.47, –1.25, –1.03,
–1.06, –0.878, –0.651, –0.485, –0.361, –0.127, 0}

t = 1.2 String's Displacements are:
{0. –0.0102, 0.0177, 0.194, 0.133, –0.126, –0.447, –0.714, –0.804,
–0.869, –0.789, –0.8, –0.639, –0.479, –0.324, –0.165, 0}

t = 1.3 String's Displacements are:
{0. 0.134, 0.357, 0.611, 0.813, 0.91, 0.897, 0.944, 0.815, 0.674,
0.465, 0.222, –0.0661, –0.0771, –0.0758, –0.135, 0}

t = 1.4 String's Displacements are:
{0. 0.227, 0.43, 0.455, 0.57, 0.721, 1.07, 1.3, 1.47, 1.56, 1.67,
1.64, 1.53, 1.38, 1.03, 0.484, 0}

t = 1.5 String's Displacements are:
{0. 0.207, 0.32, 0.515, 0.561, 0.869, 1.08, 1.12, 1.09, 1.18, 1.27,
1.24, 1.16, 0.882, 0.515, 0.268, 0}

t = 1.6 String's Displacements are:
{0. 0.122, 0.339, 0.368, 0.499, 0.531, 0.534, 0.281, 0.0675, –0.0461,
–0.285, –0.451, –0.579, –0.613, –0.48, –0.205, 0}

t = 1.7 String's Displacements are:
{0. –0.106, –0.269, –0.467, –0.732, –0.909, –1.19, –1.31, –1.25,
–1.2, –1.08, –0.995, –0.837, –0.533, –0.156, 0.00405, 0}

t = 1.8 String's Displacements are:
{0. –0.585, –1.2, –1.55, –1.65, –1.72, –1.74, –1.58, –1.38, –1.66,
–0.903, –0.718, –0.701, –0.542, –0.366, –0.166, 0}

t = 1.9 String's Displacements are:
{0. 0.0718, –0.0337, –0.188, –0.197, –0.4499, –0.591, –0.741, –0.937,
–1.02, –0.919, –0.742, –0.546, –0.481, –0.362, –0.203, 0}

t = 2.0 String's Displacements are:
{0. 0.0356, 0.543, 0.699, 0.666, 0.816, 0.828, 0.853, 0.708, 0.399,
0.0934, –0.0436, –0.0906, –0.161, –0.192, –0.0974, 0}

The results are in complete agreement with those obtained previously.

© 2001 by CRC Press LLC

8.5 PROBLEMS

PARABPDE

1. Expand the program ParabPDE to print out the computed temperature
distribution along the entire rod only when the temperature at an interac-
tively specified location reaches an interactively entered value. The time
required to reach this condition should be printed as shown below. Call
this new program ParaPDE1.

Enter the x value at which a desired temperature is to be specified: 6.0
Enter the temperature to be reached, in °F: 50
It takes X.XXXXXE + 00 seconds.

Notice that a format of E13.5 is to be used to print out the time.
2. Consider the transient heat-conduction problem where k/cρ = 0.00104

ft2/sec, �t = 1 sec, �x = 1”, and at the left end of the rod, x = 0, the
temperature u is equal to 50°F initially but equal to 0°F for t>0. Compute
the temperatures at x = 1”, 2”, and 3” when t = 1, 2, and 3 seconds.

3. Use the same data as in the program ParabPDE, but modify the program
for the case when the right end is not insulated but is maintained at 0°F
until t = 100 seconds and then is heated at 100°F afterwards. Print out
the times required for the station at the mid-length reaches to 10°F, 20°F,
at 10°F increments until 100°F.

4. Study the effect of changing the value of DT in the program ParabPDE
on tfinal, the time required for reaching the uniform distribution of 100°F
throughout the rod. Tabulate DT vs. tfinal.

5. Change the steady-state temperature from 100°F to 75°F and generate a
plot similar to that shown in Figure 2.

6. For the rod shown in Figure 1, one-half of the surface insulation, for x/L =
0.4 to x/L = 0.7, is to be removed and the temperature for that portion of
the rod is to be maintained at 70°F. Modify the program ParabPDE is
accommodate for the computation needed to determine how long it takes
to reach a stable temperature distribution.

7. Apply MATLAB and Mathematica (using ParaPDE.m) to solve the
transient heat-conduction problem by decreasing �x from 1 to 0.5.

RELAXATN

1. For the problem treated by the program Relaxatn except that the temper-
ature is equal to 100°F along the top boundary, perform the relaxation by
upgrading T starting from the top boundary instead of from the bottom
boundary to expedite the convergence. Modify the program Relaxatn to
perform this new sweeping process.

2. Round the right lower corner of the square plate with a radius equal to 5
and consider this corner as an insulated boundary. Modify the program

© 2001 by CRC Press LLC

Relaxatn and rerun the problem to print out the converged temperature
distribution.

3. Initially, the temperatures are assumed to be equal to zero everywhere in
the plate shown in Figure 12 except those on the boundary. Carry out one
complete relaxation (starting from the top row and from left to right, and
then down to the next row and so on) cycle to upgrade the unknown
temperatures.

4. Complete the derivation of relaxation equations for the temperatures at
the points B and C shown in Figure 2 by use of Equation 18 and by
considering the cord BC only. Derive the equation for the point B by
averaging the effects of both cords AB and BC.

5. For the problem described in Problem 3, derive a matrix equation of order
5 for direct solution of the five unknown temperatures (two between points
A and F, and three along the bottom insulted boundary) based on the
finite-difference formulas, Equations 3, 6, 8, 10, 11, or, 12. Compare the
resulting temperature distribution with that obtained in Problem 3.

6. Rework Problem 3 if the boundary DEFG is insulated but TD and TG

remain equal to 100°F.
7. Initially, the temperatures are assumed to be equal to zero everywhere in

the shown in Figure 13 except those on the boundary. Carry out one
complete relaxation (starting from the top row and from left to right, and
then down to the next row and so on) cycle to upgrade the unknown
temperatures. The points A, B, and D are on a straight line.

8. Rework Problem 7 if the boundary ABCD is insulated but TD remains
equal to 100°F.

9. Following the same process as in Problem 8, but obtain the direct solution
of the temperature distribution for Problem 7.

FIGURE 12. Problem 3.

© 2001 by CRC Press LLC

10. The warping of a twisted bar of uniform rectangular cross section already
depicted by the mesh plot shown in Figures 5 and 6 also can be observed
using the contour plotting capability of MATLAB. Apply program Warp-
ing.m and the command contour to generate a contour plot for a = 30 and
b = 20 using = 100 and = 1 (Figures 14A and 14B, respectively).

FIGURE 13. Prtoblem 7.

FIGURE 14A. Problem 10.

© 2001 by CRC Press LLC

11. Direct solution of the warping function W(X,Y) can also be obtained
following the procedure described in Problem 8. For a rectangular cross
section (-a≤X≤a and -b≤Y≤b) of a twisted rod, the warping W(X,Y) needs
to be found only for the upper right quadrant 0≤X≤a and 0≤Y≤b which
in general can be divided into a gridwork of (M + 1)x(N + 1). The
antisymmetry conditions W(X = 0,Y) = W(X,Y = 0) = 0 reduces to only
(M + 1)x(N + 1)-(M + N + 1) = MxN unknowns, i.e., only solving those
W’s for X>0. That means we have to derive a system of MxN linear
algebraic equations: along the boundaries X = a and Y = b, Equations 23
to 25 are to be used and for the interior grid points (0<X<a and 0<Y<b),
Equation 3 is to be used. Generate such a matrix equation and then apply

FIGURE 14B. Problem 10.

FIGURE 15. Problem 4.

© 2001 by CRC Press LLC

the program Gauss to find these MxN W’s. Compare the resulting W
distribution with those obtained by the relaxation method shown in
Figures 5 and 6 for a = 30 and b = 20.

12. Same as Problem 11 except for the case a = b = 20 and for comparing
with Figure 7.

13. Solve the warping problem by Mathematica.

WAVEPDE

1. For the string problem analyzed in the Sample Application, modify the
program slightly so that the times required for the string to have the
magnitudes of its maximum displacements reduced to 0.8, 0.6, 0.4, and
0.2, and the corresponding deflected shapes can be printed.

2. Rearrange the subprogram FUNCTION F in the program WavePDE to
consider the case of an initial, upward lifting the mid-third (8≤x≤16 cm)
of the string by 1 cm. Rerun the program using the same input data as in
the Sample Application.

3. Consider a string which is composed of two different materials even
though it is subjected to a uniform tension T so that the left and right one-
thirds (i.e., , 0≤x≤8 cm and 24≤x≤32 cm, respectively) of the string has
a wave velocity a = 80 cm/sec while its mid-third (i.e., 8≤x≤16 cm) has
a wave velocity a = 90 cm/sec. Modify and then rerun program WavePDE
using the other input same as in the Sample Application.

4. A tightened string of length L equal to 1 ft is lifted as shown in 15 and
is released with a velocity distribution v = �y(t = 0,x)/�t = 2sin�x/L in
ft/sec. If the constant T/m appearing in Equation 2 is equal to 8,100
ft2/sec2, use a time increment �t = 0.0005 sec and a space increment �x =
0.1L and apply Equation 7 to find the y values at t = 0.001 sec and for
the stations x2 and x3.

5. In approximating Equation 1 by finite differences, we may keep the same
approach for �2u/�t2 as in deriving Equation 7 but to apply the second
central-difference formula for �2u/�t2 not at t = ti but at t = ti + 1. The
resulting equation, for C = (a�t/�x)2, is:

Derive a matrix equation for solving the unknowns uj for j = 1,2,…,N–1,
at t = ti + 1. Note that the boundary conditions are ui + 1,0 = ui + 1,N = 0. Write
a program WavePDE.G which uses the Gaussian Elimination method to
solve this matrix equation and run it for the Sample problem to compare
the results.

6. Change the MATLAB m file WavePDE to solve Problem 4.
7. Apply Mathematica to solve Problem 4.

− + +() − = − ++ − + + + −Cu C u Cu u ui j i j i j i j i j1 1 1 1 1 12 2, , , , ,

© 2001 by CRC Press LLC

8.6 REFERENCES

1. C. R. Wylie, Jr., Advanced Engineering Mathematics, Chapter 9, Second Edition,
McGraw-Hill, New York, 1960.

2. J. P. Holman, Heat Transfer, McGraw-Hill, New York, 1963.
3. S. Timoshenko and J. N. Goodier, Theory of Elasticity, Chapter 11, Second Edition,

McGraw-Hill, New York, 1951.

	TOC.PDF
	Engineering Analysis
	Engineering Analysis
	Files Available from CRC Press
	Dedication
	Preface and Acknowledgments
	Contents

	CH-01.PDF
	Engineering Analysis
	Table of Contents
	Matrix Algebra and Solution of Matrix Equations
	1.1 Introduction
	1.2 Manipulation of Matrices
	1.2 Multiplication of Matrices
	FORTRAN Version
	Interactive Operation
	More Programming Review
	Sample Applications
	QuickBASIC Version
	Sample Applications
	MATLAB Applications
	Mathematica Applications

	1.3 Solution of Matrix Equation
	QuickBASIC Version of the program CramerR

	1.4 Program Gauss
	Gaussian Elimination Method
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	Gauss-Jordan Method
	QuickBASIC Version
	FORTRAN Version
	Sample Applications
	MATLAB Applications
	Mathematica Applications

	1.5 Matrix Inversion, Determinant, and Program MatxInvD
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Applications
	MATLAB Application
	Mathematica Applications
	Transformation of Coordinate Systems, Rotation, and Animation
	Function Animate1(Ncycle,Damping)
	QuickBASIC Version

	1.6 Problems
	Matrix Algebra
	Gauss
	Matrix Inversion

	1.7 Reference

	CH-02.PDF
	Engineering Analysis
	Table of Contents
	Exact, Least-Squares, and Cubic Spline Curve-Fits
	2.1 Introduction
	2.2 Exact Curve Fit
	FORTRAN Version
	Sample Applications
	QuickBASIC Version
	Sample Application
	MATLAB Application

	2.3 Program LeastSq1�—�Least-Squares Linear Curve-Fit
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	MATLAB Application
	Transformed Least-Squares Curve-Fit

	2.4 Program LeastSqG — Generalized Least-Squares CurveFit
	QuickBASIC Version
	Sample Applications
	FORTRAN Version
	Sample Application
	MATLAB Application
	Mathematica Applications

	2.5 Program CubeSpln — Curve Fitting with Cubic Spline
	QuickBASIC Version
	Sample Application
	MATLAB Application
	Mathematica Applications

	2.6 Problems
	Exact Curve-Fit
	LeastSq1
	LEASTSQG
	Cubic Spline

	2.7 References

	CH-03.PDF
	Engineering Analysis
	Table of Contents
	Roots of Polynomials and Transcendental Equations
	3.1 Introduction
	3.2 Iterative Methods and Program FindRoot
	Incremental Search
	Bisection Search
	Linear Interpolation
	Newton-Raphson Iterative Method
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	MATLAB Application
	Method of Successive Substitution
	Mathematica Applications

	3.3 Program NewRaphG�— Generalized Newton-Raphson Iterative Method
	Transcendental Equations
	Extended Newton-Raphson Method
	QuickBASIC Version
	FORTRAN Version
	Sample Application
	MATLAB Applications
	Mathematica Applications

	3.4 Program Bairstow — Bairstow’s Method for Finding Polynomial Roots
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	MATLAB Application
	Mathematica Applications

	3.5 Problems
	FindRoot
	NewRaphG
	Bairstow

	3.6 References

	CH-04.PDF
	Engineering Analysis
	Table of Contents
	Finite Differences, Interpolation, and Numerical Differentiation
	4.1 Introduction
	4.2 Program DiffTabl — Applications of Finite-Difference Table
	Backward-Difference Operator
	Central-Difference Operator
	Differentiation Operator
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	MATLAB Application
	Mathematica Applications

	4.3 Program LagrangI — Applications of Lagrangian Interpolation Formula
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	MATLAB Application
	Mathematica Applications

	4.4 Problems
	DiffTabl
	LagrangI

	4.5 Reference

	CH-05.PDF
	Engineering Analysis
	Table of Contents
	Numerical Integration and Program Volume
	5.1 Introduction
	5.2 Program NuIntGra — Numerical Integration by Application of the Trapezoidal and Simpson Rules
	Trapezoidal Rule
	Simpson’s Rule
	QuickBASIC Version
	FORTRAN Version
	MATLAB Application
	Mathematica Application

	5.3 Program Volume — Numerical Approximation of Double Integration
	FORTRAN Version
	Sample Application
	QuickBASIC Version
	Sample Applications
	MATLAB Application
	Mathematica Applications

	5.4 Problems
	NuIntGra
	Volume

	5.5 References

	CH-06.PDF
	Engineering Analysis
	Table of Contents
	Ordinary Differential Equations�— Initial and Boundary Value Problems
	6.1 Introduction
	6.2 Program RungeKut — Application of the Runge-Kutta Method for Solving the Initial-Value Problems
	Runge-Kutta Method (Fourth-Order)
	Subroutine RKN
	FORTRAN Version
	QuickBASIC Version
	Program RungeKut
	QuickBASIC Version
	FORTRAN Version
	Function F
	QuickBASIC Version
	FORTRAN Version
	Sample Applications of the program RungeKut
	A Nonlinear Oscillation Problem Solved by RungeKut
	MATLAB Application
	Mathematica Applications

	6.3 Program OdeBvpRK — Application of Runge-Kutta Method for Solving Boundary-Value Problems
	Numerical Examples
	FORTRAN Version
	QuickBASIC Version
	MATLAB Applications
	Mathematica Applications

	6.4 Program OdeBvpFD — Application of Finite Difference Method for Solving Boundary-Value Problems
	FORTRAN Version
	Sample Application
	QuickBASIC Version
	Sample Applications
	MATLAB Applications
	Membrane Problem
	Beam Deflection Problem
	Mathematica Applications

	6.5 Problems
	RungeKut
	OdeBvpRK
	OdeBvpFD

	6.6 References

	Ch-07.pdf
	Engineering Analysis
	Table of Contents
	Eigenvalue and Eigenvector Problems
	7.1 Introduction
	7.2 Programs EigenODE.Stb and EigenODE.Vib — for Solving Stability and Vibration Problems
	Program EigenODE.Stb
	FORTRAN Version
	Sample Applications
	Program EigenODE.Vib
	FORTRAN Version
	Sample Application
	MATLAB Applications
	Mathematica Applications

	7.3 Program CharacEq — Derivation of Characteristic Equation�of a Specified Square Matrix
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	MATLAB Application
	Mathematica Applications

	7.4 Program EigenVec — Solving Eigenvector by Gaussian Elimination Method
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	Sample Application
	MATLAB Applications
	Mathematica Applications
	Principal Stresses and Planes
	Quadratic Forms and Canonical Transformation

	7.5 Program EigenvIt — Iterative Solution of the Eigenvalue and Eigenvector
	QuickBASIC Version
	Sample Application
	FORTRAN Version
	MATLAB Application
	Mathematica Applications

	7.6 Problems
	Programs EigenODE.Stb and EigenODE.Vib
	CharacEq
	EigenVec
	EigenvIt

	7.7 References

	CH-08.PDF
	Engineering Analysis
	Table of Contents
	Partial Differential Equations
	8.1 Introduction
	8.2 Program ParabPDE — Numerical Solution of Parabolic Partial Differential Equations
	FORTRAN Version
	Sample Output
	QuickBASIC Version
	MATLAB Applications
	Mathematica Applications

	8.3 Program Relaxatn — Solving Elliptical Partial Differential Equations by Relaxation Method
	FORTRAN Version
	Sample Results
	QuickBASIC Version
	Sample Results
	Irregular Boundaries
	MATLAB Application
	Mathematica Applications
	Warping Analysis of a Twisted Bar with Noncircular Cross Section

	8.4 Program WavePDE — Numerical Solution of Wave Problems Governed by Hyperbolic Partial Differential Equations
	QuickBASIC Version
	Sample Application
	MATLAB Applications
	Mathematica Application

	8.5 Problems
	ParabPDE
	Relaxatn
	WavePDE

	8.6 References

	© 2001 by CRC Press LLC: © 2001 by CRC Press LLC

