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Files Available from CRC Press

FORTRAN, QuickBASIC, MATLAB, and Mathematic files, which contain the
source and executable programs associated with this book are available from CRC
Press’ website — http://www.crcpress.com.

Before downloading, prepare two 3.5-inch, high-density disks — one for the
files and one for a backup. Also create a temporary directory named <interactive>
on your hard drive, which will expedite downloading. To download these files, type:
http://www.crcpress.com/us/ElectronicProducts/downandup.asp. When prompted, enter
2016 under name and crcpress under password. Then store the files in the
<interactive> folder. If you encounter a problem, call 1-800-CRC-PRES (272-7737).
The dowloaded files may be copied to a 3.5-inch disk. The temporary <interactive>
folder then may be deleted. Don’t forget to make a backup copy of your 3.5-inch disk.

There are four subdirectories <FORTRAN>, <QB>, <mFiles>, and <Math-
tica> which contain the FORTRAN source and executable programs, QuickBASIC
source and executable programs, m files of MATLAB, and input and output state-
ments of for the Mathematica operations depicted in this textbook, respectively:

1. <FORTRAN:> has the following files:

Bairstow.FOR CharacEquationFOR  CubeSpln.FOR DiffTabl.FOR

EditFOR.EXE EigenVec.FOR EigenvIt.FOR ExactFit.FOR
FindRoot .FOR FOR1 .EXE FOR2 .EXE FORTRAN.LIB
Gauss.FOR GauJor.FOR LagrangI.FOR LeastSgl.FOR
LeastSqgG.FOR LINK.EXE MatxInvD.FOR NewRaphG.FOR
NuIntgra.FOR  OdeBvpFD.FOR OdeBvpRK. FOR ParabPDE.FOR
Relaxatn.FOR RungeKut.FOR Volume.FOR WavePDE. FOR

EDITFOR.EXE is provided for re-editing the *.FOR source programs such as
Bairstow.FOR, CubeSpIn.FOR, etc. (refer to the FORTRAN programs index) to
include supplementary subprograms describing the problem which need to be solved
interactively. To re-edit, insert the 3.5-inch disk into Drive A and when the a:\ prompt
shows, type cd fortran to switch to the <FORTRAN> subdirectory. For example,
to solve a polynomial by the Bairstow’s method one needs to define the polynomial,
for which the roots are to be computed. To reedit Bairstow.FOR, the user enters
a:\editfor Bairstow.for to add new FORTRAN statements or change them. Notice
that both upper and lower case characters are acceptable. While creating a new
version of Bairstow.FOR, the old version will be saved in Bairstow. BAK.

To create an object file, FOR1 filename such as Bairstow.FOR and FOR2 need
to be implemented. A BAISTOW.OBJ will then be generated. For linking with the
FORTRAN library functions, FORTRAN.LIB, one enters, for example, LINK
Bairstow to create an executable file Bairstow.EXE. To run, the user simply types
Bairstow after the prompt A:\ and then answers questions interactively.
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2. <QuickBASIC> has the following files:

Select.BAS Select .EXE

Bairstow.EXE BRUN40 . EXE CharacEqg.EXE CubeSpln.EXE
EigenStb.EXE EigenvVec.EXE EigenVib.EXE EigenvIt.EXE
ExactFit.EXE FindRoot . EXE Gauss .EXE Lagrangl.EXE
LeastSqgl.EXE LeastSgG. EXE MatxInvD.EXE NuIntgra.EXE
OdeBvpFD.EXE OdeBVpRK.EXE ParabPDE.EXE QOB.EXE
Relaxatn.EXE RungeKut . EXE Volume.EXE

Bairstow.QB CharacEqg.QB CubeSpln.QB DiffTabl.QB
EigenStb.QB EigenvVec.QB EigenVib.QB EigenvIt.QB
ExactFit.QB FindRoot.QB GauJdor.QB Gauss.QB
LagrangI.QB LeastSgl.QB LeastSgG.QB MatxAlgb.QB
MatxMtpy.QB NewRaphG. QB Nulntgra.QB OdeBvpFD.QB
OdeBvpRK. QB ParabPDE. QR Relaxatn.QB RungeKut . QB
Volume.QB WavePDE.QB

To commence QuickBASIC, when a:\ is prompted on screen, the user enters
QB. QB.EXE and BRUN40.EXE therefore are included in <QB>. The program
Select enables user to select the available QuickBASIC program in this textbook.
After user responds with C:\Select, the screen shows a menu as shown in Figure 1
and user then follow the screen help-messages to run a desired program.

3. <mbFiles> is a subdirectory associated with MATLAB and has the following
files:

BVPF.m DerivatF.m DiffTabl.m EigenvIt.m
F.m FindRoot.m FP.m Functns.m
FuncZ.m FuncZnew.m FunF.m Gaudor.m

integrnd.m LagrangI.m LeastSgG.m NewRaphG.m
ParabPDE.m Relaxatn.m Volume.m Warping.m

WavePDE.m

When the 3.5-inch disk containing all of these m files is in Drive A, any of these
files can be accessed by enclosing the filename inside a pair of parentheses as
illustrated in Section 3.2 where Fm and FP.m are required for FindRoot.m and in
Section 5.2 where an integrand function integrnd.m is defined for numerical inte-
gration. If all files have been added into MATLAB library m files, then no reference
to the Drive A is necessary and the pair of parentheses can also be dropped.

4. <Mathtica> is a subdirectory associated with Mathematica and has the files of:

Bairstow.MTK CubeSpln.MTK DiffTabl.MTK EigenVec.MTK
ExactFit .MTK FindRoot.MTK FUNCTNS.MTK EigenvIt.MTK
Gauss.MTK GauJdor .MTK LagrangI .MTK LeastSqgl.MTK
LeastSgG.MTK MatxAlgb.MTK NewRaphG.MTK NuIntgra.MTK
OdeBvpFD.MTK  OdeBvpRK.MTK ParabPDE.MTK Rexalatn.MTK

RungeKut .MTK
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Any of the above programs can be executed by Mathematica via mouse oper-
ation. First, by clicking the File option and when the pull-down menu appears, select
Open and then enter the filename such as a:\Mathtica\MatxAlgb.MTK (assuming
the 3.5-inch disk containing <Mathtica> is in Drive A) and press the Enter key.
When all lines of this file is displayed on screen, move cursor to any input line such
as In[1]: A = {{1,2},{3,4}}; MatrixForm[A] and hit the Enter key. Mathematica
will respond by repeating those lines for Out[1]. Hence, user can reproduce all of
the output lines by sequentially running the input lines [1] through [9]. However, if
user first run In[1] and then In[3], Mathematica cannot perform the addition of [A]
because [B] is not defined. If after having run In[1], user selects In[5], or, In[6],
Mathematica then has no problem of giving out results.

Progran FIERI] - Menu-Driven Selection of Interactive Computer Programs,

- Bairstow CharacEy CubeSpln DiffTabl

EigenODE Figenlec Figenvlt ExactFit
FindRoot (auss

Lagrang] LeastSql LeastSqG
KatxInvD NewRaphG NuIntGra

0deBupFD (OdeBupRK

ParahPDE Relaxatn
RungeXut Uolume Have PDE

Press (End) key to quit,

Press #143 keus to select a desired program.  Next, press FI key fo nun,

FIGURE 1. The Select screen.
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The rapid growth of computer technology is difficult for any one to keep pace,
and to make revision of textbooks in the CAE field. However, the computational
methods developed by the pioneers, such as Euler, Gauss, Lagrange, Newton, and
Runge, continue to serve us incredibly effective. These computational algorithms
remain classic, only are now executed with modern computer technology.

As far as the programming languages are concerned, FORTRAN has been
dominating the scientific fields for many decades. BASIC considered by many to
be too plain and cumbersome while C is considered by others to be too sophisticated;
both, however, are gaining popularity and increasingly replacing FORTRAN in the
computational community. This is particularly true when QuickBASIC was intro-
duced by Microsoft.

MATLAB and Mathematica developed by the MathWorks, Inc. and Wolfram
Research, Inc., respectively both contain a vast collection of files (similar to FOR-
TRAN’s library functions) which can perform the often-encountered computational
problems. For implementation, the MATLAB and Mathematica instructions to be
interactively entered through keyboard are extremely simple. And, it also provides
very easy-to-use graphic output. When students find it too easy to use, they often
become uninterested in learning what are the methods involved. This text is prepared
with FORTRAN, QuickBASIC, MATLAB and Mathematica, and more impor-
tantly gives the algorithms involved in the methods. Ample number of sample
problems are solved to demonstrate how the developed programs should be inter-
actively applied. Furthermore, the development of the user-generated supplementary
files is emphasized so that more supporting subprograms can be added to the
MATLAB m-files and Mathematica toolkits. It is a text for self-study as well as
for the need of general references.

Numerous friends, colleagues, and students have assisted in collecting the materials
assembled herein, and they have made a great number of constructive suggestions for
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’I Matrix Algebra
and Solution
of Matrix Equations

1.1 INTRODUCTION

Computers are best suited for repetitive calculations and for organizing data into
specialized forms. In this chapter, we review the matrix and vector notation and
their manipulations and applications. Vector is a one-dimensional array of numbers
and/or characters arranged as a single column. The number of rows is called the
order of that vector. Matrix is an extension of vector when a set of numbers and/or
characters are arranged in rectangular form. If it has M rows and N column, this
matrix then is said to be of order M by N. When M = N, then we say this square
matrix is of order N (or M). It is obvious that vector is a special case of matrix when
there is only one column. Consequently, a vector is referred to as a column matrix
as opposed to the row matrix which has only one row. Braces are conventionally
used to indicate a vector such as {V} and brackets are for a matrix such as [M].

In writing a computer program, DIMENSION or DIM statements are necessary
to declare that a certain variable is a vector or a matrix. Such statements instruct
the computer to assign multiple memory spaces for keeping the values of that vector
or matrix. When we deal with a large number of different entities in a group, it is
better to arrange these entities in vector or matrix form and refer to a particular
entity by specifying where it is located in that group by pointing to the row (and
column) number(s). Such as in the case of having 100 numbers represented by the
variable names A, B, ..., or by A(1) through A(100), the former requires 100 different
characters or combinations of characters and the latter certainly has the advantage
of having only one name. The A(1) through A(100) arrangement is to adopt a vector;
these numbers can also be arranged in a matrix of 10 rows and 10 columns, or 20
rows and five columns depending on the characteristics of these numbers. In the
cases of collecting the engineering data from tests of 20 samples during five different
days, then arranging these 100 data into a matrix of 20 rows and five columns will
be better than of 10 rows and 10 columns because each column contains the data
collected during a particular day.

In the ensuing sections, we shall introduce more definitions related to vector
and matrix such as transpose, inverse, and determinant, and discuss their manipula-
tions such as addition, subtraction, and multiplication, leading to the organizing of
systems of linear algebraic equations into matrix equations and to the methods of
finding their solutions, specifically the Gaussian Elimination method. An apparent
application of the matrix equation is the transformation of the coordinate axes by a
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rotation about any one of the three axes. It leads to the derivation of the three basic
transformation matrices and will be elaborated in detail.

Since the interactive operations of modern personal computers are emphasized
in this textbook, how a simple three-dimensional brick can be displayed will be
discussed. As an extended application of the display monitor, the transformation of
coordinate axes will be applied to demonstrate how animation can be designed to
simulate the continuous rotation of the three-dimensional brick. In fact, any three-
dimensional object could be selected and its motion animated on a display screen.

Programming languages, FORTRAN, QuickBASIC, MATLAB, and Mathe-
matica are to be initiated in this chapter and continuously expanded into higher
levels of sophistication in the later chapters to guide the readers into building a
collection of their own programs while learning the computational methods for
solving engineering problems.

1.2 MANIPULATION OF MATRICES

Two matrices [A] and [B] can be added or subtracted if they are of same order, say
M by N which means both having M rows and N columns. If the sum and difference
matrices are denoted as [S] and [D], respectively, and they are related to [A] and
[B] by the formulas [S] = [A] + [B] and [D] = [A]-[B], and if we denote the elements
in [A], [B], [D], and [S] as aj bij, dij, and Sij fori=1toMandj=1to N, respectively,
then the elements in [S] and [D] are to be calculated with the equations:

s; =a;+by (1)
and
dij =a;— bij )

Equations 1 and 2 indicate that the element in the ith row and jth column of [S]
is the sum of the elements at the same location in [A] and [B], and the one in [D]
is to be calculated by subtracting the one in [B] from that in [A] at the same location.
To obtain all elements in the sum matrix [S] and the difference matrix [D], the index
i runs from 1 to M and the index j runs from 1 to N.

In the case of vector addition and subtraction, only one column is involved (N =
1). As an example of addition and subtraction of two vectors, consider the two
vectors in a two-dimensional space as shown in Figure 1, one vector {V,} is directed
from the origin of the x-y coordinate axes, point O, to the point 1 on the x-axis
which has coordinates (x,,y,) = (4,0) and the other vector {V,} is directed from the
origin O to the point 2 on the y-axis which has coordinates (x,,y,) = (0,3). One may
want to find the resultant of {R} = {V,} + {V,} which is the vector directed from
the origin to the point 3 whose coordinates are (X5,y;) = (4,3), or, one may want to
find the difference vector {D} = {V,} — {V,} which is the vector directed from the
origin O to the point 4 whose coordinates are (x,y,) = (4,-3). In fact, the vector
{D} can be obtained by adding {V,} to the negative image of {V,}, namely {V,_}
which is a vector directed from the origin O to the point 5 whose coordinates are
(X5,y5). Mathematically, based on Equations 1 and 2, we can have:
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oa-ra

o=y =[o 3] ]

When Equation 1 is applied to two arbitrary two-dimensional vectors which
unlike {V,}, {V,}, and {V,_} but are not on either one of the coordinate axes, such
as {D} and {E} in Figure 1, we then have the sum vector {F} = {D} + {E} which
has components of 1 and -2 units along the x- and y-directions, respectively. Notice
that 0467 forms a parallelogram in Figure 1 and the two vectors {D} and {E} are
the two adjacent sides of the parallelogram at O. To find the sum vector {F} of {D}
and {E} graphically, we simply draw a diagonal line from O to the opposite vertex
of the parallelogram — this is the well-known Law of Parallelogram.

It should be evident that to write out a vector which has a large number of rows
will take up a lot of space. If this vector can be rotated to become from one column
to one row, space saving would then be possible. This process is called transposition
as we will be leading to it by first introducing the length of a vector.

For the calculation of the length of a two-dimensional or three-dimensional vector,
such as {V,} and {V,} in Figure 1, it would be a simple matter because they are
oriented along the directions of the coordinate axes. But for the vectors such as {R}

and

p

2‘ /3
6 /> /é

\___Fl

IS
] ,\i\n

FIGURE 1. Two vectors in a two-dimensional space.
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and {D} shown in Figure 1, the calculation of their lengths would need to know the
components of these vectors in the coordinate axes and then apply the Pythagorean
theorem. Since the vector {R} has components equal to r, = 4 and r, = 3 units along
the x- and y-axis, respectively, its length, here denoted with the symbol ||, is:

RY=[ 4] =[#2+3]" =5 3)

To facilitate the calculation of the length of a generalized vector {V} which has
N components, denoted as v, through vy, its length is to be calculated with the
following formula obtained from extending Equation 3 from two-dimensions to N-
dimensions:

Vi=[+vieavi]” )

For example, a three-dimensional vector has components v, = v, =4, v, = v, =
3, and v, = v, = 12, then the length of this vector is [{V}| = [4% + 32 + 122]95 = 13.
We shall next show that Equation 4 can also be derived through the introduction of
the multiplication rule and transposition of matrices.

1.2 MULTIPLICATION OF MATRICES

A matrix [A] of order L (rows) by M (columns) and a matrix [B] of order M
by N can be multiplied in the order of [A][B] to produce a new matrix [P] of order
L by N. [A][B] is said as [A] post-multiplied by [B], or, [B] pre-multiplied by [A].
The elements in [P] denoted as p; fori=1to N and j =1 to M are to be calculated
by the formula:

M
Py = zk:l a, by o)

Equation 5 indicates that the value of the element p;; in the ith row and jth column
of the product matrix [P] is to be calculated by multiplying the elements in the ith
row of the matrix [A] by the corresponding elements in the jth column of the matrix
[B]. It is therefore evident that the number of elements in the ith row of [A] should
be equal to the number of elements in the jth column of [B]. In other words, to
apply Equation 5 for producing a product matrix [P] by multiplying a matrix [A]
on the right by a matrix [B] (or, to say multiplying a matrix [B] on the left by a
matrix [A]), the number of columns of [A] should be equal to the number of row
of [B]. A matrix [A] of order L by M can therefore be post-multiplied by a matrix
[B] of order M by N; but [A] cannot be pre-multiplied by [B] unless L is equal to N!

As a numerical example, consider the case of a square, 3 X 3 matrix post-
multiplied by a rectangular matrix of order 3 by 2. Since L=3, M =3, and N = 2,
the product matrix is thus of order 3 by 2.
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[ 6+10+12 -3-4-3 28 -10
=[24+25+24 -12-10-5|=|73 27
[42+40+32  -21-16-9 114 46

More exercises are given in the Problems listed at the end of this chapter for
the readers to practice on the matrix multiplications based on Equation 5.

It is of interest to note that the square of the length of a vector {V} which has
N components as defined in Equation 4, |{V}|?, can be obtained by application of
Equation 5 to {V} and its transpose denoted as {V}T which is a row matrix of order
1 by N (one row and N columns). That is:

VI = VI V= viavi 442 (©6)

For a L-by-M matrix having elements e; where the row index i ranges from 1
to L and the column index j ranges from 1 to M, the transpose of this matrix when
its elements are designated as t,. will have a value equal to e, where the row index
r ranges from 1 to M and the column index c ranges from 1 to M because this
transpose matrix is of order M by L. As a numerical example, here is a pair of a
3 x 2 matrix [G] and its 2 X 3 transpose [H]:

6 -3
6 5 4

[G]=|5 -2| and [H]=[G] =

3x2 4 -1 2x3 -3 -2 -1

If the elements of [G] and [H] are designated respectively as g; and h;, then
h;; = g;;. For example, from above, we observe that hj, = g, = 5, hy; = g3, = -1, and
so on. There will be more examples of applications of Equations 5 and 6 in the
ensuing sections and chapters.

Having introduced the transpose of a matrix, we can now conveniently revisit
the addition of {D} and {E} in Figure 1 in algebraic form as {F} = {D} + {E} =
[4 =317 + [-3 1]T = [4+(-3) —3+1]T = [1 -2]". The resulting sum vector is indeed
correct as it is graphically verified in Figure 1. The saving of space by use of
transposes of vectors (row matrices) is not evident in this case because all vectors
are two-dimensional; imagine if the vectors are of much higher order.

Another noteworthy application of matrix multiplication and transposition is to
reduce a system of linear algebraic equations into a simple, (or, should we say a
single) matrix equation. For example, if we have three unknowns x, y, and z which
are to be solved from the following three linear algebraic equations:

© 2001 by CRC Press LLC



X+2y+3z=4
5x+6y+7z=38 (7
-2x-37=9

Let us introduce two vectors, {V} and {R}, which contain the unknown x, vy,
and z, and the right-hand-side constants in the above three equations, respectively.
That is:

[(Vi=[xyz]'=|y| and {R}=[489] = 8)

O oo B~

Then, making use of the multiplication rule of matrices, Equation 5, the system
of linear algebraic equations, 7, now can be written simply as:

[CHV}={R} ©)

where the coefficient matrix [C] formed by listing the coefficients of x, y, and z in
first equation in the first row and second equation in the second row and so on. That is,

2 3
cl=|5 6 7
-2 -3 0

There will be more applications of matrix multiplication and transposition in
the ensuing chapters when we discuss how matrix equations, such as [C]{V} = {R},
can be solved by employing the Gaussian Elimination method, and how ordinary
differential equations are approximated by finite differences will lead to the matrix
equations. In the abbreviated matrix form, derivation and explanation of computa-
tional methods becomes much simpler.

Also, it can be observed from the expressions in Equation 8 how the transposition
can be conveniently used to define the two vectors not using the column matrices
which take more lines.

FORTRAN VERSION

Since Equations 1 and 2 require repetitive computation of the elements in the
sum matrix [S] and difference matrix [D], machine could certainly help to carry out
this laborous task particularly when matrices of very high order are involved. For
covering all rows and columns of [S] and [D], looping or application of DO statement
of the FORTRAN programming immediately come to mind. The following program
is provided to serve as a first example for generating [S] and [D] of two given
matrices [A] and[B]:
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C Program MatxAlgb.l - Matrix addition and subtraction.
DIMENSION A(3,3),B(3,3),D(3,3),3(3,3)
Data A/1.,2.,3.,4.,5.,6.,7.,8.,9./,B/1.,2%2.,3*3.,3%4./
Do 5 1=1,3
DO 5 J=1,3
S(I,dJy=A(I,J)+B(I,J)
5 D(I,J)=A(1,J)-B(I,d)

WRITE (*,*) ' Matrix A'

WRITE (*,10) ((A(I,J),Jd=1,3),1I=1,23)
10 FORMAT (3F5.1)

WRITE (*,*) ' Matrix B'

WRITE (*, 10) ((B(I1,J),J-1,3),1I=1,3)

WRITE (*,15) ({(3(I,J),J=1,3),(D(T,J),Jd=1,2),T=1,3)
15 FORMAT (' Matrlx S, 7%, 'Matrix D'/ {6FH. 1)

STOP

END

The resulting display on the screen is:

Matrix A

1.0 4.0 7.0

2.0 5.0 8.0

3.0 .0 9.0

Matrix B

1.0 3.0 4.0

2.0 3.0 4.0

2.0 3.0 4.0

Matrix 3 Matrix D

2.0 7.0 11.0 L0 1.0 3.0
4.0 8.0 12.0 L0 2.0 4.0
5.0 9.0 13.0 .0 3.0 5.0

To review FORTRAN briefly, we notice that matrices should be declared as
variables with two subscripts in a DIMENSION statement. The displayed results of
matrices A and B show that the values listed between // in a DATA statment will be
filling into the first column and then second column and so on of a matrix. To instruct
the computer to take the values provided but to fill them into a matrix row-by-row,
a more explicit DATA needs to be given as:

DATA ((A(L)),J =1,3),1=1,3)/1.,4.,7.,2.,5.,8.,3.,6.,9./

When a number needs to be repeated, the * symbol can be conveniently applied
in the DATA statement exemplified by those for the matrix [B].

Some sample WRITE and FORMAT statements are also given in the program.
The first * inside the parentheses of the WRITE statement when replaced by a
number allows a device unit to be specified for saving the message or the values of
the variables listed in the statement. * without being replaced means the monitor
will be the output unit and consequently the message or the value of the variable(s)
will be displayed on screen. The second * inside the parentheses of the WRITE
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statement if not replaced by a statement number, in which formats for printing the
listed variables are specified, means “unformatted” and takes whatever the computer
provides. For example, statement number 15 is a FORMAT statement used by the
WRITE statement preceding it. There are 18 variables listed in that WRITE statement
but only six F5.1 codes are specified. F5.1 requests five column spaces and one digit
after the decimal point to be used to print the value of a listed variable. / in a
FORMAT statement causes the print/display to begin at the first column of the next
line. 6F5.1 is, however, enclosed by the inner pair of parentheses that allows it to
be reused and every time it is reused the next six values will be printed or displayed
on next line. The use (*,*) in a WRITE statement has the convenience of viewing
the results and then making a hardcopy on a connected printer by pressing the PrtSc
(Print Screen) key.

INTERACTIVE OPERATION

Program MatxAlgb.1 only allows the two particular matrices having their ele-
ments specified in the DATA statement to be added and subtracted. For finding the
sum matrix [S] and difference matrix [D] for any two matrices of same order N, we
ought to upgrade this program to allow the user to enter from keyboard the order
N and then the elements of the two matrices involved. This is interactive operation
of the program and proper messages should be given to instruct the user what to do
which means the program should be user-friendly. The program MatxAlgb.2 listed
below is an attempt to achieve that goal:

C Program MatxAlgb.2 - Interactive matrix addition and subtraction.
DIMENSION A(25,25),B(25,25),D(25,25),8(25,25)
WRITE (*,*) 'Enter the order of the two matrices, N (<25) :'
READ (*,*) N
po 3 I-1,N
WRITE (*,2) I
2 FORMAT (' Enter all elements of [A) in row',6 I3/
* ! then press RETURN/ENTER key!')

3 READ (*,”*) (A{I,J),J=1,N)
DO & I=1,N
WRITE (*,5) I
5 FORMAT (' Enter all elements of [B] in row',13/
v

*

then press RETURN/ENTER key!')
6 READ (*,*) (B(I,J),J=1,N)

Do 7 1=1,N

Do 7 J=1,N

S{I,Jd)=A(I,J)tB(L,J)
DT, J)y=RA(1L,J)-B(1,d)

WRITE (*,™)

WRITE (*,*} 'Matriz A’

DO 8 I=1,N

8 WRITE (*,10) I, {A(1,3),J=L, N}
10 FORMAT (' Row ',I3/(5E15.9))
WRITE (*,™*)
WRITE (*,* ‘Matrix B'
Do 12 I=1,
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12 WRITE (*,10) I, (B(I,J),J=1,N)
WRITE (*,*}
WRITF (*,*) 'Matrix S'
po 15 I=1,N

15 WRITE (*,10) I,{S8(I,J),J=1,N)
WRITE (*,*)
WRITE (*,*) 'Matriz D'
Do 22 1I=1,N

22 WRITE (*,10) L, (D(I,J),Jd=1,N}
STOP
END

The interactive execution of the problem solved by the previous version Matxalgb.1
now can proceed as follows:

Enter the order of the two matrices, N (<25)
Enter all elements of [A] in row 1
then press RETURN/ENTER key!
1,4,7
Enter all elements of [A] in row 2
then press RETURN/ENTER key!
2,5,8
Inter all elements of [A] in row 3
then press RETURN/ENTER key!
3,6,9
Enter all elements of [B] in row 1
then press RETURN/ENTER key!
1,3,4
Enter all elements of [B] in row
then press RETURN/ENTER key!
2,3,4
Enter all elements of [B] in row 3
then press RETURN/ENTER key!

D

2,3,4
Matrix A
Row 1

.10000E+01 L40000E+01 . 70000E+01
Row 2

.20000E+01 .50000E+01 .80000E+01
Row 3

.30000E4+01 .60000E+01 .S0000E+01
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Matrix B

Row 1

.10000E+01 .30000E+01 LA0000E+01
Row 2

.20000E+01 .30000E+01 L40000E+01
Row 3

L20000E+01 .30000FE+01 LA0000E4+01
Matrix 5
Row 1

.20000E+01 .70000E+01 11000E+02
Row 2

.40000E4+01 .80000E+01 .12000E4+02
Row 3

.50000E+01 .90000E+01 13000E+02
Matrix D
Row 1

.00000E+01 .10000E+01 .30000E+01
Row 2

L.00000FE+01 .20000E+01 .40000E+01
Row 3

.10000E4+01 .30000E+01 .50000E+01

The results are identical to those obtained previously. The READ statement
allows the values for the variable(s) to be entered via keyboard. A WRITE statement
has no variable listed serves for need of skipping a line to provide better readability
of the display. Also the I and E format codes are introduced in the statement 10. Iw
where w is an integer in a FORMAT statement requests w columns to be provided
for displaying the value of the integer variable listed in the WRITE statement, in
which the FORMAT statement is utilized. Ew.d where w and d should both be integer
constants requests w columns to be provided for display a real value in the scientific
form and carrying d digits after the decimal point. Ew.d format gives more feasibility
than Fw.d format because the latter may cause an error message of insufficient width
if the value to be displayed becomes too large and/or has a negative sign.

MORE PROGRAMMING REVIEW

Besides the operation of matrix addition and subtraction, we have also discussed
about the transposition and multiplication of matrices. For further review of computer
programming, it is opportune to incorporate all these matrix algebraic operations
into a single interactive program. In the listing below, three subroutines for matrix
addition and subtraction, transposition, and multiplication named as MatrixSD,
Transpos, and MatxMtpy, respectively, are created to support a program called
MatxAlgb (Matrix Algebra).
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c Program MatxAlgb - Interactlve matrix addition and subtraction,
C transposition, and muLtipllcatlon
DIMENSION A(25,25),AT(25,25),B(25,25),P(25,25),50rD(25,25)
WRITE (*,50)
50 FORMAT (' Enter -1/1/2/3 for matrix subtraction/addition/',
* "transposition/multiplication :')
READ (*,*) K
KP2=+K+2
GO TO (L100,100,100,200,300) KP2
C Matrix addition or subtraction.
100 WRITE (*,103)
103 FORMAT (' Enter the order of the two matrices [A] & [B],'
* 'M & N (both<2Ze) ")
READ (*,*) M,N
DO 107 I-1,M
WRITE (*,105) I
105 FORMAT (' Enter all elements of [A] in row',K I3/
* ! then press RETURN/ENTER key!')
107 READ (*,*) (A(IL,J),J=1,N)
Do 126 I=1,M
WRITE (*,121) 1
121 FORMAT(' Enter all elements of [B] in row',I3/
* ! then press RETURN/ENTER key!'")
126 READ (*,*) (B(1,d),J=L1,N)
CALIL MatrixSD(A,B,25,20,M,N,K,S5orD)
IF (K) 131,131,145
131 WRITE (*,*) 'Matrix [A]-[B]’
135 DO 138 I=1,M

138 WRITE (*,141) I, {(SorD(I,J),J=1,N)
141 FORMAT (' Row ',T5/(5EL5.5))
GO TO 500
145 WRITE (*,*) 'Matrix [A]+[B]"
GOTO 135
C Matrix transposition.
200 WRITE (*,203)
GO TO 500
C Matrix multiplication.

300 WRITE {*,303)
302 FORMAT (' To find P{I.,,NJ=A(L,M)B(M,N}, first enter L, M,'

* ' and N {(all<26) : ")
READ (*,*} L,M,N
DO 307 T=1,L
WRITE (*,1058) I
307 READ (*,*) (A{(I,J),J=1,M)
DO 326 I=1,M
WRITE (*,121) l
326 READ (*,*) (B(I,J),J=1,N)

CALL MaLxMtpy(A,B,25,26,25,L,M,N,p)
331 WRITE (*,*) 'Matrix [P]

DO 338 I=1,L
338 WRITE (*,141) I, (P(I,J),J=L,N)
500 STOP

END

SUBROUTINE MATXMTPY (A, B, Lmax, Mmax, Nmax, L, M, N, P)

C Mat.rix multiplication of P(L,N)—-A(L,M)B(M,N).
C Input arguments: A, B, L, M, and N.
C Ooutput argument: P

DIMENSION A (Lmax,Mmax),B{(Mmax,Nmax), P (lmax, Nmax)
DO 5 I1=1,L
DO 5 J-1,N
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S P(I,J}=P(I,)+A(I,K)*B(K,J)
RETURN
END

SUBROUTINE TRANSPOS (A,Mmax,Nmax, M, N, AT)
Finds the transpose AT(N,M) for a given matrix A(M,N).
DIMENSION A (Mmax,Nmax) , AT (Nmax, Mmax)
Do 5 1=1,M
Do 5 J=1,N
5 AT(J,I)=A(I,J)
RETURN
END

@]

SUBROQUTINE MATRIXSD (A, B, Mmax, Nmax,M, N, K, SORD)
C Finds the sum matrix 30RD(M,N)=A(M,N) +B{M,N} when K=1;
C or the difference matrix SORD{M,N)=A(M,N})-B{(M,N} when K=-1.
DIMENSION A (Mmax, Nmax),B(Mmax, Nmax), SORD (Mmax, Nmax)
Do 5 I=1,M
DO 5 J=1,N
SORD (T, J)=A(T,J) +K*B(T,J)
RETURN
END

o

The above program shows that Subroutines are independent units all started with
a SUBROUTINE statement which includes a name followed by a pair of parentheses
enclosing a number of arguments. The Subroutines are called in the main program
by specifying which variables or constants should serve as arguments to connect to
the subroutines. Some arguments provide input to the subroutine while other argu-
ments transmit out the results determined by the subroutine. These are referred to
as input arguments and output arguments, respectively. In many instances, an argu-
ment may serve a dual role for both input and output purposes. To construct as an
independent unit, a subprogram which can be in the form of a SUBROUTINE, or
FUNCTION (to be elaborated later) must have RETURN and END statements.

It should also be remarked that program MatxAlgb is arranged to handle any
matrix having an order of no higher than 25 by 25. For this restriction and for having
the flexibility of handling any matrices of lesser order, the Lmax, Mmax, and Nmax
arguments are added in all three subroutines in order not to cause any mismatch of
matrix sizes between the main program and the called subroutine when dealing with
any L, M, and N values which are interactively entered via keyboard.

Computed GOTO and arithmetic IF statements are also introduced in the pro-
gram MatxAlgb. GOTO (i,j,k,...) C will result in going to (execute) the statement
numbered i, j, k, and so on when C has a value equal to 1, 2, 3, and so on, respectively.
IF (Expression) a,b,c will result in going to the statement numbered a, b, or c if the
value calculated by the expression or a single variable is less than, equal to, or,
greater than zero, respectively.

It is important to point out that in describing any derived procedure of numerical
computation, indicial notation such as Equation 5 should always be preferred to
facilitate programming. In that notation, the indices are directly used, or, literally
translated into the index variables for the DO loops as can be seen in Subroutine
MatxMtpy which is developed according to Equation 5. Subroutine MatrixSD is
another example of literally translating Equations 1 and 2. For defining the values
of the element in the following tri-diagonal band matrix:
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we ought not to write 25 separate statements for the 25 elements in this matrix but

derive the indicial formulas for i,j = 1 to 5:

CijZO, if j>i+2,0r,j<i—-2

and

Then, the matrix [C] can be generated with the DO loops as follows:

DO 5 I=1,5
Do 5 J=1,5
C(T,J) =0,
IF (J.FQ.T) C{I,d)=1.
I (J.EQ.(I+1)) C(I,J)=2.
IF (J.RBQ.(TI-1)) C(T,J)=-3.
5 CONTINUE

The above short program also demonstrates the use of the CONTINUE state-
ment for ending the DO loop(s), and the logical IF statements. The frue, or, false
condition of the expression inside the outer pair of parentheses directs the computer
to execute the statement following the parentheses or the next statement immediately
below the current IF statement. Reader may want to practice on deriving indicial
formulas and then write a short program for calculating the elements of the matrix:

[M]=

0 N N KR WD
N N R WD = O
AN kWD = O O
wm A~ WD = O O O
A WD = O O O O
W NN =, O O O O O
N = O O O O O O
- O O O O o o O

© 2001 by CRC Press LLC

(10)



As another example of writing a computer program based on indicial notation,

consider the case of calculating e* based on the infinite series:

TR T TR T

il
i=0

an

With the understanding that 0! = 1, we have expressed the series as a summation
involving the index i which ranges from zero to infinity. A FUNCTION ExpoFunc
can be developed for calculating e* based on Equation 11 and taking only a finite
number of terms for a partial sum of the series when the contribution of additional
term is less than certain percentage of the sum in magnitude, say 0.001%. This

FUNCTION may be arranged as:

FUNCTION ExpoFunc (X)
C Calculates EXP(X)
ExpoFunc=1.
NT=1
UpP=X
FACTO=1.
TERM=UP/FACTO

w

TF (ABS{TkKRM).LT.0.00001*AB3 (ExpoFunc))

ExpoFunc=ExpoFunc+TERM
NT=NT+1
FACTO=FACTO*NT
UpP=UP*X
GOTO 5
) RETURN
END

[Xel
[¥al
[te

To further show the advantage of adopting vector and matrix notation, here let
us apply FUNCTION ExpoFunc to examine the surface z(x,y) = e**Y above the
rectangular area 0<x<2.0 and 0<y<1.5. The following program, ExpTest, will enable
us to compare the values of e**¥ generated by the FUNCTION ExpoFunc and by
the function EXP available in the FORTRAN library (hence called library function).

C  Program ExpTest - Application of FUNCTION LixpoFunc for 7=¢**(x+v).

DIMENSION X(35).Y(4).2(4.,5).2F(4,5)

WRITI (*,1)
I FORMAT(20X.'Z using Expolunc' 25X.7 using 1:XP'/)
DO3I=1.4

3 Y(h=(J-1H*0.5
WRITE (*5) (Y(h, =1 4)1=1.2)
SFORMATTXAC Y= F3.1.3X),3X 4 Y="F3.1.3X))

DO9YI=15
X(D=(I-1*0.5
NDO7I1=14
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Z(Lh=ExpoFunc(X(*Expolune( Y1)
7 7FAD=LXPXMy*EXP(Y ()
9 WRITE (* 10) X(D(Z(I.NJ=1.H(ZFLNI=1.4)
10 FORMAT( X="I'3 1 41'9.5.3X 41'9 5}

STOP

FND

The resulting printout is:

2 using ExpoFunc Z using EXP
Y= .0 ¥=0.5 Y=1.0 Y=1.5 Y= .0 ¥Y=0.5 Y=1.0 ¥Y=1.5
X= .0 1.00000 1.64872 2.71B25 4.4B167 1.00000 1.64872 2.71828B 4.48169
X=0.5 1.64872 2.71828 4.48164 7.388502 1.64872 2.71828 4.48B169 7.388906
X=1.0 2.71825 4.48164 7.38BS1 12.18232 2.71828 4.48169 7.3B806 12.18249
X=1.5 4.48167 7.38902 12.18232 20.08537 4.48169 7.3B3%06 12.1824% 20.08554
X=2.0 7.38900 12.18238 20.08517 33.11504 7.38906 12.18249 20.0B554 33.11545

It is apparent that two approaches produce almost identical results, so the 0.001%
accuracy appears quite adequate for the x and y ranges studied. Also, arranging the
results in vector and matrix forms make the presentation much easy to comprehend.

We have experienced how the summation process for an indicial formula involv-
ing a X should be programmed. Another operation symbol of importance is IT which
is for multiplication of many factors. That is:

N

l_Iai =aa,...ay (12)

i=1

An obvious application of Equation 12 is for the calculation of factorials. For
example, 5! = ITi for i ranges from 1 to 5. As an exercise, we display the values of
1! through 50! with the following program involving a subroutine IFACTO which
calculates 1! for a specified I value:

C Program FT - Factorial Table
WRITE (*,*) ' 1T e
WRITE (*,*)
Do 5 I=1,30
CALL IFACTO(1,RIF)
WRITE (*,3) I,RIF
3 FORMAT(I3,E15.7)
STOP
END
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SUBROUTINE IFACTO(I,RIF)
C Calculates the I factorial and gives answer in real form as
C RIF.

RIF=1.

DO 7 K=1,1I

7 RIF=RIF*K
RETURN
END

The resulting print out is (listed in three columns for saving space)

I

I

1 .1000000E+01 7 .5040000E+04 13 . 6227021E+10 i9 .1216451E+18 25 .1B51121E+26
2 .2000000E+01 8 .4032000R+05 14 .B717825%E+11 20 .2432802E+19 26 .4032815E+27
3 .6000000E+01 9 .3628B00E+06 15 .1307674E+13 21 -5109094E+20 27 .1088B87E+29
4 .2400000E+02 10 .3628800E+07 16 .2082279E+14 22 .11240C01E+22 28 .3048884E+30
5 .1200000E+03 11 .3991680E+08 17 .35568T4E+15 23 .2585202E+23 29 .BB41763E+31
6 .7200000E+03 12 .4790016E+09 18 .6402374E+16 24 .6204485E+24 30 -2653539E+33

Another application of Equation 12 is for calculation of the binomial coefficients
for a real number r and an integer k defined as:

(lr():r(r—l)(r—2]3!...(r—k+1):ﬁr—:+1 13

i=1

We shall have the occasion of applying Equations 12 and 13 when the finite
differences and Lagrangian interpolation are discussed.

Sample Applications

Program MatxAlgb has been tested interactively, the following are the resulting
displays of four test cases:

FEnter -1/1/2/3 for matrix
subtraction/addition/transposition/multiplication
-1
Fnter the order of the two matrices [A] & [B], M & N
(both<26)
2,2
Enter all elements of [A] in row 1
then press RETURN/ENTER key!
1,2
Enter all elements of [A] in row 2
then press RETURN/ENTER key!
3,4
Enter all elements of [B] in row 1
then press RETURN/ENTER key!
5,6
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Do

Enter all elements of [B] in row
then press RETURN/ENTER key!

7,8
Matrix [A]-[B]
Row 1

-.40000E+01 -.40000E+01
Row 2

-.40000E+01 -.40000E+01
Stop - Program terminated.

Enter -1/1/2/3 for matrix
subtraction/addition/transposition/multiplication
1
Enter the order of the two matrices [A] & [R], M & N
(both<26)
2,2
Enter all elements of [A] in row 1
then press RETURN/ENTER key!
1,2
Enter all elements of [A] in row 2
then press RETURN/ENTER key!
3,4
Enter all elements of [B] in row 1
then press RETURN/ENTER key!
5,6
Enter all elements of [b] in row
then press RETURN/ENTER key!

hS}

7,8
Matrix [Al+[B]
Row 1

.60000FE+01 .80000E+01
Row 2

.10000E+02 L12000E402
Stop - Program terminated.

Enter -1/1/2/3 for matrix
subtraction/addition/lransposition/multiplication
2
Fnter the order of the two matrices [A] & [B], M & N
{(both<2zo)
2,3
Enter all elements of [A] in row 1
then press RETURN/ENTER key!
1,2,3
Enter all elements of [A] in row 2
then press RETURN/ENTER key!
4,5,0
Transpose of [A]
Row 1
L1I0000E+01 LA00D00DE+01
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Row 2

.20000E+01 LH0000E+OL
Row 3

30000401 .00000E+01
Stop - Program terminated.

kEnter -1/1/2/3 for matrix

subtraction/addition/transposition/multiplication

3

To find P(L.N)=A{(L,M)B(M,N), first enter L, M, and N

(all<2e)

2,3,2

Enter all elements of [A] in row 1
then press RETURN/ENTER key!

1,2,3

Enter all elements of [A] in row
then press RETURN/ENTER key!

4,5,6

Enter all elements of [B] in row 1
then press RETURN/ENTER key!

1,2

Fnter all elements of [B] in row 2
then press RETURN/ENTER key!

[N

2,3
Enter all elements of [B] in row 3
then press RETURN/ENTER key!
3,4
Matrix [P]
Row 1
.14000E+02 .20000E+02
Row 2
2000E+02 .47000E+02
Stop - Program terminated.

QuickBASIC VErsioN

The QuickBASIC language has the advantage over the FORTRAN language
for making quick changes and then running the revised program without compilation.
Furthermore, it offers simple plotting statements. Let us have a QuickBASIC version
of the program MatxAlgb and then discuss its basic features.

Program MatxAlgb - Interactive matrix addition and subtraction,
transposition, and multiplication.

DECLARE SUB MatrixsSD (A(), B(), M, N, K, SorD())
DECLARE SUB Transpos (C(), M, N, CT())
DECLARE SUB MatxMtpy (D(), E(), L, M, N, P())
PRINT "Enter -1/1/2/3 for matrix subtraction/addition/";
PRINT "transposition/multiplication :"
INPUT
IF (K
IF (K
IF (K
GOTO 300

~1) THEN 100
1) THEN 100
2) THEN 200

o=
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100

131
135

145

200

300

331

500

Matrix addition or subtraction.
PRINT "Enter the order of the two matrices [A] & [B], M & N "
INPUT M, N: DIM A(M, N), B(M, N), SorD(M, N)
FOR I =1 TO M
PRINT "Enter all elements of [A]l in row"; I
PRINT " then press RETURN/ENTER key after entering each number!"
FOR J = 1 TO N: INPUT ; A(I, J): NEXT J: PRINT : NEXT I
FCR I = 1 TO M
PRINT "Enter all elements of [B] in row"; I

PRINT " then press RETURN/ENTER key after entering each number!”
FOR J = 1 TO N: INPUT ; B(I, J): NEXT J: PRINT : NEXT I
CALL MatrixSD(A(), B(), M, N, K, SoxD())

IF (K < 0) THEN 131 ELSE 145
PRINT "Matrix [A]-[Bl}"
FOR I =1 TO M

PRINT "Row "; I
FOR J = 1 TO N: PRINT USING " #._####~""""; SorD(I, J); : NEXT J
PRINT : NEXT I: GOTO 500

PRINT "Matrix [A]+[B]": GOTO 135

Matrix transposition.
PRINT "Enter the order of the matrix [C], M & N :"
INPUT M, N: DIM C(M, N), CT(N, M)
FOR I =1 TO M
PRINT "Enter all elements of [C] in row"': I

PRINT " then press RETURN/ENTER key after entering each number!"
FOR J =1 TO N: INPUT ; C(I, J): NEXT J: PRINT : NEXT I
CALL Transpos(C(), M, N, CT()): PRINT "Transpose of [C]"
FOR I =1 TO N
PRINT "Row "; I
FOR J = 1 TO M: PRINT USING " #.####"""""; CT(I, J):; : NEXT J

PRINT : NEXT I: GOTO 500
Matrix multiplication.
PRINT "To find P(L,N)=D(L,M)E(M,N), first enter L, M, and N :"
INPUT L, M, N: DIM D(L, M), E(M, N), P(L, N)
FOR I =1 TO L
PRINT "Enter all elements of [D] in row"; I
PRINT " then press RETURN/ENTER key after entering each number!"
FOR J = 1 TO M: INPUT ; D(I, J): NEXT J: PRINT : NEXT I
FOR I = 1 TO M
PRINT "Enter all elements of [E] in row"; I
PRINT " then press RETURN/ENTER key after entering each number!"
FOR J = 1 TO N: INPUT ; E(I, J): NEXT J: PRINT : NEXT I
CALL MatxMtpy(D(}), EQ), L, M, N, P())
PRINT "Matrix [P]"
FOR I =1 TO L

PRINT "Row "; I
FOR J = 1 TO N: PRINT USING " # #### """~ P(I, J): : NEXT J
PRINT : NEXT I

END

SUB MatrixSD (A(), B{), M, N, K, SorD{())
Finds the sum matrix SORD(M,N)=A(M,N)+B(M,N) when K=1:
or the difference matrix SORD(M,N)=A(M N)-B(M,N) when K=-1.
FOR I =1 TO M
FOR J =1 TO N
SorD(I, J) = A(I, J) + K * B{(I, J): NEXT J: NEXT I
END SUB

SUB MatxMtpy (A(), B(), L, M, N, P())
Matrix multiplication of P(L,N)=A(L,M)B(M,N).
Input arguments: A, B, L, M, and N.
OCutput argument: P
FOR 1 =1 TO L
FOR J =1 TO N
P(I, J) = 0!
FCR K = 1 TO M
P(I, J) = P(I, J) + A(I, K) * B(K, O)
NEXT K: NEXT J: NEXT I
END SUB
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SUB Transpos (A(}), M, N, AT())
Finds the transpose AT(N,M) for a given matrix A(M ,N).
FOR I =1 TO M
FOR J =1 TO N
AT(J, I) = A(I, J): NEXT J: NEXT I
END SUB

Notice that the order limit of 25 needed in the FORTRAN version is removed
in the QuickBASIC version which allows the dim statement to be adjustable. ' is
replacing C in FORTRAN to indicate a comment statement in QuickBASIC. READ
and WRITE in FORTRAN are replaced by INPUT and PRINT in QuickBASIC,
respectively. The DO loop in FORTRAN is replaced by the FOR and NEXT pair

in QuickBASIC.

Sample Applications

When the four cases previously run by the FORTRAN version are executed by
the QuickBASIC version, the screen prompting messages, the interactively entered

data, and the computed results are:

Enter -1/1/2/3 for matrix
subtraction/addition/transposition/multiplication
? -1
Enter the order of the two matrices [A] & [B], M &
22,2
Enter all elements of [A] row 1

then press RETURN/ENTER key after entering each
number!
712 2
Enter all elements of [A] row 2

then press RETURN/ENTER key after entering each
number!
2 32 4

Enter all elements of [B] row ]
then press RETURN/ENTER key after entering each
number'!
? 52 6
Enter all elements of [B] row 2
then press RETURN/ENTER key a
number!
2 72 8
Matrix [A]-[B]
Row 1
-.4000E401 -.4000E+01
Row 2
-.4000E+01 -.4000E+01

fter entering ecach

knter -1/1/2/3 for matrix
subtraction/addition/transposition/multiplication
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21
Enter the order of the two matrices [A] & [B], M
22,2
Enter all elements of [A] row 1
then press RETURN/ENTER key after entering each
number!
21 2
Enter all elements of [A] row 2
then press RETURN/ENTER key after entering each
number!
7372 4
Enter all elements of [B] row 1
then press RETURN/ENTER key after entering each
number!
7 5?6
Enter all elements of |B| row
then press RETURN/ENTER key after entering each
numper!

N

? 77 8
Matrix [A]+[B]
Row 1
.6000E+01 LB000E+01
Row 2
.1200E+02 L1200E4+02

Enter -1/1/2/3 for matrix
subtraction/addition/transposition/multiplication
72
Enter the order of the matrix [C], M & N
22,3
Enter all elements of [C] row 1

then press RETURN/ENTER key after entering each
numper!
2?17 27 3
Enter all elements of [ C] row 2

then press RETURN/ENTER key after entering each
numper !

? 47 B 6
Transpose of [(C]
Row 1

LJ1000E+01 L40007-01
Row 2

L2000E101 CGCO0E+0L
Row 1

.3000E+01 LOCO0E+D1

Lnter -1/1/2/3 for matrix
subtracticn/addition/Lranspositicn/mulliplication
23

&

N

To find P(L,N)=D{L.M)E(M,N), first enter L, M, and N

?2,3,2
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Enter all elements of [D] row 1
then press RETURN/ENTER key after

number!

21?27 3

Enter all elements of [D] row 2
tnen press RETURN/ENTER key after

number!

P47 h? 6

Enter all elements ol [E] row 1
then press RETURN/ENTER key after

nunper!

1 Z

Enter all elenents of [E] row
then press RETURN/ENTER key after

number!

227 3

Fnter all elements of 'E| row
then press RETURN/ENTER key after

numper!

Do

[99]

P57 4
Matrix [P]
Row 1
0.1400E+02 O0.2000E+02
Row 2

0.3200E+02 0.4700E+02

MATLAB APPLICATIONS

MATLAB developed by the Mathworks, Inc. offers a quick tool for matrix
manipulations. To load MATLAB after it has been set-up and stored in a subdirectory
of a hard drive, say C, we first switch to this subdirectory by entering (followed by

pressing ENTER)
C:\cd MATLAB

and then switch to its own subdirectory BIN by entering (followed by pressing ENTER)

C:\MATLAB>cd BIN

Next, we type MATLAB to obtain a display of:
C:\MATLAB>BIB>MATLAB

Pressing the ENTER key results in a display of:

>>

which indicates MATLAB is ready to begin. Let us rerun the cases of matrix
subtraction, addition, transposition, and multiplication previously considered in the
FORTRAN and QuickBASIC versions. First, we enter the matrix [A] in the form of:

>> A =[1,2;3,4]

entering

enlering

entering

entering

entering

When the ENTER key is pressed, the displayed result is:
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3 4

Notice that the elements of [A] should be entered row by row. While the rows
are separated by ;, in each row elements are separated by comma. After the print
out of the above results, >> sign will again appear. To eliminate the unnecessary line
space (between A = and the first row 1 2), the statement format compact can be entered
as follows (the phrase “pressing ENTER key” will be omitted from now on):

>> format compact, B = [5,6;7,8]
B =

56

7 8

Notice that comma is used to separate the statements. To demonstrate matrix sub-
traction and addition, we can have:

>> A-B
ans =
-4 4
-4 4
>>A+B
ans =
6 8
10 12

To apply MATLAB for transposition and multiplication of matrices, we can have:

>> C = [1,2,3;47536]

C=

1 2 3
4 5 6
>> C'
ans =

1 4

2 5

3 6
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>> D =[1,2,3:4,5.6]; E = [1,2;2,3;:3,4]; P = D*E
P =

14 20

32 47

Notice that MATLAB uses ' (single quote) in place of the superscripted symbol
T for transposition. When ; (semi-colon) follows a statement such as the D statement,
the results will not be displayed. As in FORTRAN and QuickBASIC, * is the
multiplication operator as is used in P = D*E, here involving three matrices not three
single variables. More examples of MATLAB applications including plotting will
ensue. To terminate the MATLAB operation, simply enter quit and then the
RETURN key.

MATHEMATICA APPLICATIONS

To commence the service of Mathematica from Windows setup, simply point
the mouse to it and double click the left button. The Input display bar will appear
on screen, applications of Mathematica can start by entering commands from
keyboard and then press the Shift and Enter keys. To terminate the Mathematica
application, enter Quit[] from keyboard and then press the Shift and Enter keys.

Mathematica commands, statements, and functions are gradually introduced
and applied in increasing degree of difficulty. Its graphic capabilities are also utilized
in presentation of the computed results.

For matrix operations, Mathematica can compute the sum and difference of
two matrices of same order in symbolic forms, such as in the following cases of
involving two matrices, A and B, both of order 2 by 2:

In[1]: = A= {{1,2},{3,4}}; MatrixForm[A]

Out[1]//MatrixForm =
1 2
3 4

In[1]: = is shown on screen by Mathematica while user types in A =
{{1,2},{3,4}}; MatrixForm[A]. Notice that braces are used to enclose the elements
in each row of a matrix, the elments in a same row are separated by commas, and
the rows are also separated by commas. MatrixForm demands that the matrix be
printed in a matrix form. Out[1]//MatrixForm = and the rest are response of Math-
ematica.

In[2]: = B={{5,6},{7,8}}; MatrixForm[B]

Out[2]//MatrixForm =
5 6
7 8
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In[3]: = MatrixForm[A + B]

Out[3]//MatrixForm =
6 8
10 12

In[4]: = Dif = A-B; MatrixForm[Dif]

Out[4]//MatrixForm =
-4 4
-4 4

In[3] and In[4] illustrate how matrices are to be added and subtracted, respec-
tively. Notice that one can either use A + B directly, or, create a variable Dif to
handle the sum and difference matrices.

Also, Mathematica has a function called Transpose for transposition of a
matrix. Let us reuse the matrix A to demonstrate its application:

In[5]: = AT = Transpose[A]; MatrixForm[AT]

Out(5 J//MatrixForm =
1 3
2 4

1.3 SOLUTION OF MATRIX EQUATION

Matrix notation offers the convenience of organizing mathematical expression in an
orderly manner and in a form which can be directly followed in coding it into
programming languages, particularly in the case of repetitive computation involving
the looping process. The most notable situation is in the case of solving a system
of linear algebraic equation. For example, if we need to determine a linear equation
y = a, + a,x which geometrically represents a straight line and it is required to pass
through two specified points (x,,y,) and (X,,y,). To find the values of the coefficients
a, and a, in the y equation, two equations can be obtained by substituting the two
given points as:

(), +(x,)a, =, ey

and

(1)a, + (xz)az =Y, @
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To facilitate programming, it is advantageous to write the above equations in
matrix form as:

[CHA}={Y} ©)

where:

KFE 2%&=E}mﬂﬂ=&} @

The matrix equation 3 in this case is of small order, that is an order of 2. For
small systems, Cramer’s Rule can be conveniently applied which allows the unknown
vector {A} to be obtained by the formula:

{ay=[[e,] [e.]]"/1c) 5)

Equation 5 involves the calculation of three determinants, i.e., , [[C,]|, |[[C,]|, and
|[C]| where [C,] and [C,] are matrices derived from the matrix [C] when the first
and second columns of [C] are replaced by {Y}, respectively. If we denote the
elements of a general matrix [C] of order 2 by o for i,j = 1,2, the determinant of
[C] by definition is:

)

‘[C]‘ = €€ — €128y (6)

The general definition of the determinant of a matrix [M] of order N and whose
elements are denoted as m;; for i,j = 1,2,...,N is to add all possible product of N
elements selected one from each row but from different column. There are N! such
products and each product carries a positive or negative sign depending on whether
even or odd number of exchanges are necessary for rearranging the N subscripts in
increasing order. For example, in Equation 6, c,, is selected from the first row and
first column of [C] and only c,, can be selected and multiplied by it while the other
possible product is to select c,, from the second row and first column of [C] and
that leaves only c,, from the second row and first column of [C] available as a factor
of the second product. In order to arrange the two subscripts in non-decreasing order,
one exchange is needed and hence the product c,,c,, carries a minus sign. We shall
explain this sign convention further when a matrix of order 3 is discussed. Howeyver,
it should be evident here that a matrix whose order is large the task of calculating
its determinant would certainly need help from computer. This will be the a topic
discussed in Section 1.5.

Let us demonstrate the application of Cramer’s Rule by having a numerical case.
If the two given points to be passed by the straight line y = a, + a,x are (x,,y,) =
(1,2) and (x,,y,) = (3,4). Then we can have:
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1
3 =1x3-1x1=3-1=2

I x, |
‘[cl]‘:yl X1=2 1=2><3—1><4:6—4:2
y, X, 4 3
and
o= Y2l 2 oidacaxi—4-2-2
A5 oy, 4

Consequently, according to Equation 5 we can find the coefficients in the
straight-line equation to be:

a, =[c]/[c]=2/2=1 and a,=[C,]/[C]=2/2=1

Hence, the line passing through the points (1,2) and (3,4)isy=a,+a,x =1 +x.

Application of Cramer’s Rule can be extended for solving three unknowns from
three linear algebraic equations. Consider the case of finding a plane which passes
three points (x;,y;) for i =1 to 3. The equation of that plane can first be written as
Z=a, + a,X + a;y. Similar to the derivation of Equation 3, here we substitute the
three given points into the z equation and obtain:

(Da, +(xl)a2 +(y1)a3 =z, @)

(D, +(x,)a, +(y,)a; =z, (®)
and

(Da, + (x3)a2 + (y3)213 =1z, 9)

Again, the above three equations can be written in matrix form as:

[CRA}={Z} (10)

where the matrix [C] and the vector {A} previously defined in Equation 4 need to
be reexpanded and redefined as:

1 X, \2 a z,
[C]=l x, vy,.{A}=la,, and {Z}=|z, (11)
1 x, s a, z,
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And, the Cramer’s Rule for solving Equation 10 can be expressed as:

) =[[leicie] e 1

where [C;] for i= 1 to 3 for matrices formed by replacing the ith column of the
matrix [C] by the vector {Z}, respectively. Now, we need the calculation of the
determinant of matrices of order 3. If we denote the element in a matrix [M] as my;
for i,j = 1 to 3, the determinant of [M] can be calculated as:

‘[M]‘ =m,m,,My; — My M,;My, +Mm,;,mMy;my,
(13)
—m;, M, My; +Mm;;M, My, — MM, My,

To give a numerical example, let us consider a plane passing the three points,
XpY1.2y) = (1,2,3), (X5,¥2,2,) = (-1,0,1), and (x3,y3,25) = (—4,-2,0). We can then have:

‘[C]‘: Lox, y=l -1 0}==2

and

Il
|
~

[c]=h x, z=p -1 1
1 x z| I -4 =2

According to Equation 13, we find a, = |[C,]/|[C]| = 0/(=2) =0, a, = |[C,]//|[C]| =
2/(-2) = -1, and a, = |[C;]|/|[C]| = —4/(-2) = 2. Thus, the required plane equation is
Z=2a; + a,X + a3y = -X + 2y.

QuickBASIC VERSION OF THE PROGRAM CRAMERR

A computer program called CramerR has been developed as a reviewing exer-
cise in programming to solve a matrix equation of order 3 by application of Cramer
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Rule and the definition of determinant of a 3 by 3 square matrix according to
Equations 12 and 13, respectively. First, a subroutine called Determ3 is created
explicitly following Equation 13 as listed below:

SUB Determ3(A() ,D)
D=A(1,1)*(A(2,2)*A(3,3)-A(2,3)*A(3,2))
+A(2,1)*(A(3,2)*A(1,3)-A(1,2)*A(3,3))
+A(3,1)*(A(1,2)*A(2,3)-A(1,3)*A(2,2))
END SUB

To interactively enter the elements of the coefficient matrix [C] and also the
elements of the right-hand-side vector {Z} in Equation 12 and to solve for {A}, the
program CramerR can be arranged as:

PROGRAM CramerR - solves a matrix equation C(3,3)X(3)=V(3) by Cramer Rule.

DECLARE SUB DETERM3(C() ,D)
SCREEN 2: CLEAR : CLS : KEY OFF
PRINT "Program CramerR - solves the matrix equation C(3,3)X(3)=V(3)"

PRINT " by Cramer Rule.’
DIM C(3,3),CT(3,3),DC(3),V(3)
' Input
PRINT : PRINT "Input the elements of the coefficient matrix [C], row by row"
PRINT " and press <Enter> key after entering a number :"

FOR I=1 TO 3
FOR J=1 TO 3
INPUT: C(I,J)
NEXT J
PRINT
NEXT I
PRINT
PRINT "Input the elements of the constant vector {V} :":
FOR I =1 TO 3
INPUT ; V(I)
NEXT I
Solve for {X}
CALL DETERM3 (C() ,DC)
FOR I=1 TO 3
FOR IR=1 TO 3
FOR JC=1 TO 3
CT (IR.JC)=C(IR,JC)
IF (JC.EQ.I) CT(IR,JC)=Z(IR)
NEXT JC:
NEXT IR
CALL DETERM3(CT () ,DC(I))
X{I1)=DC(I)/DC
NEXT I
PRINT : PRINT "The solution vector has elements
FOR I = 1 TO 3: PRINT X(I);: NEXT I: END
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1.4 PROGRAM GAUSS

Program Gauss is designed for solving N unknowns from N simultaneous, linear
algebraic equations by the Gaussian Elimination method. In matrix notation, the
problem can be described as to solve a vector {X} from the matrix equation:

[CHX}={V} (1)

where [C] is an NxN coefficient matrix and {V} is a Nx1 constant vector, and both
are prescribed. For example, let us consider the following system:

9x,+x, +x,=10 2)
3x,+6x,+x,=14 3)
2%, +2x, +3x,=3 4

If the above three equations are expressed in matrix form as Equation 1, then:

9 1 10
[C]=|3 6 1| {v}=|14} (5.6)
2 2 3 3
and
X1
{X}=]x, :[Xl X, X3]T 7
X

3
where T designates the transpose of a matrix.

GAUSSIAN ELIMINATION METHOD

A systematic procedure named after Gauss can be employed for solving x,, X,,
and x; from the above equations. It consists of first dividing Equation 28 by the
leading coefficient, 9, to obtain:

1 1 10
X1+§X2+§X3=3 (8)

This step is called normalization of the first equation of the system (1). The next
step is to eliminate x, term from the other (in this case, two) equations. To do that,
we multiply Equation 8 by the coefficients associated with x, in Equations 3 and 4,
respectively, to obtain:
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1 1 10
3X1+§X2+§X3:? (9)
and
2 2 20
2X|+§X2+§X3=? (10)

If we subtract Equation 9 from Equation 3, and subtract Equation 10 from Equa-
tion 4, the x, terms are eliminated. The resulting equations are, respectively:

17 2 32

My 425 222 11

372 373 3 (i
and

16 25 7

— X, +—X,=— 12

92 973 9 (12)

This completes the first elimination step. The next normalization is applied to
Equation 11, and then the X, term is to be eliminated from Equation 12. The resulting
equations are:

2 32
+—X, = 13
AT AT (13)
and
393 393
S 14
153727 153 (14)
The last normalization of Equation 14 then gives:
x,=-1 (15)
Equations 8, 13, and 15 can be organized in matrix form as:
1 19 19 || x, 10/9
{v}=]|0 1 21171 x, |=]32/17 (16)

0 0 1 X -1

3
The coefficient matrix is now a so-called upper triangular matrix since all
elements below the main diagonal are equal to zero.
As x5 is already obtained in Equation 15, the other two unknowns, x, and X,

can be obtained by a sequential backward-substitution process. First, Equation 13
can be used to obtain:

32 2 32 2
SR S

32+2
X, = Xy = = =
17 17 17 17

17

2
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Once, both x, and x; have been calculated, x, can be obtained from Equation 8 as:

LN IS S U P O (K2 W

1
9 92 9% 9 97 9 9

To derive a general algorithm for the Gaussian elimination method, let us denote
the elements in [C], {X}, and {V} as Cij> Xis and v,, respectively. Then the normal-
ization of the first equation can be expressed as:

(Cl’j)new - (Cl’j) "ld/(CLl )old 17

and

(Vl)new = (Vl) old/(cl,l)old (18)

Equation 17 is to be used for calculating the new coefficient associated with x;
in the first, normalized equation. So, j should be ranged from 2 to N which is the
number of unknowns (equal to 3 in the sample case). The subscripts old and new
are added to indicate the values before and after normalization, respectively. Such
designation is particularly helpful if no separate storage in computer are assigned
for [C] for the values of its elements. Notice that (¢, )., = 1 is not calculated.
Preserving this diagonal element enables the determinant of [C] to be computed.
(See the topic on matrix inversion and determinant.)

The formulas for the elimination of X, terms from the second equation are:

(Cz’j)new - (CZ’J)OM B (Cz’l)old (Cl'j)old (19)

for j=2,3,...,N (there is no need to include j = 1) and

(VZ )new = (V2 )old - (02’1 )old(Vl )old (20)

By changing the subscript 2 in Equations 19 and 20, x, term in the third equation
can be eliminated. In other words, the general formulas for elimination of x, terms
from all equation other than the first equation are, for k= 2,3,....N

(Ck,j)new = (Ck’j)old - (CkJ )o]d (ClJ)old @h

forj=23,....N
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(Vk)new = (Vk )old - (Cksl)old (Vl)old (22)

Instead of normalizing the first equation, we can generalize Equations 17 and
18 for normalization of the ith equation, for i = 1,2,...,N to the expressions:

(€)= (015) o/ (<1, @3)

forj=1i+ 1,i +2,...Nand

(Vi)uew =(v,) old/(ci,i)old (24

Note that (c;;),.,, should be equal to 1 but no need to calculate since it is not
involved in later calculation for finding {X}.

Similarly, elimination of x; term from kth equation for k=1 + L,i + 2,....N
consists of using the general formula:

(Ckvj)new - (Ck’j)om - (Ck*i)old(ci’j)old (25)

forj=1i+ 1,i+2,...Nand

(Vk)new = (Vk )old - (Cksi)old(vi)nld (26)

Backward substitution for finding x; involves the calculation of:

N

X, =V, —Z‘Ci,jxj 27

jei+l

for i= N-1,N-2,...,2,1. Note that x is already found equal to vy after the Nth
normalization.

Program Gauss listed below in both QuickBASIC and FORTRAN languages
is developed for interactive specification of the number of unknowns, N, and the
values of the elements of [C] and {V}. It proceeds to solve for {X} and prints out
the computed values. Sample applications of both languages are provided immedi-
ately following the listed programs.

A subroutine Gauss.Sub is also made available for the frequent need in the
other computer programs which require the solution of matrix equations.
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QuickBASIC VEersioN

PROGRAM Gauss - solves a matrix equation C(N N)X(N)=V(N)
N by Gaussian Elimination method.
X and V share same storage space.

SCREEN 2: CLEAR : CLS : KEY OFF
PRINT "Program Gauss - solves matrix equation C(N,N)X(N)=V(N)"
PRINT " by Gaussian-Elimination methed."
PRINT : PRINT "Input the order of matrix equation, N : ";
INPUT N : DIM C(N, N), V(N)
PRINT : PRINT "Input the elements of the coefficient matrix, row by row"
PRINT " and press <Enter> key after entering a number :@°
FOR I=1 TO N
FOR J=1 TO N
INPUT;C(I,J)
NEXT J
PRINT
NEXT I
PRINT
PRINT "Input the elements of the constant vector
FOR I =1 TON
INPUT : V(I)
NEXT I
FOR I =1 TO N ' **% Normalization

FOR J=I+1 TO N: C(I,J)=C(I,J)/C(I,I): NEXT J
V(I)=vV(I)/C(I,I) : IF I = N THEN GOTO 271
FOR K = I+1 TO N

IF C(K,I})=0 THEN 265 ELSE V(K)=V(K)-C(K,6I)*V(I) ' ***% Elimination
FOR J=I+1 TO N: C(K,J)=C(K,J}-C(K,I)*C(I,J): NEXT J
265 NEXT K
NEXT I

271 FOR I=N-1 TO 1 STEP -1
FOR J=I+1 TO N: V(I)=V(I)-C(I,J)*V(J): NEXT J

NEXT I
PRINT : PRINT : PRINT "The sclution vector has elements @ "7
FOR I = 1 TO N: PRINT V(I): : NEXT I: PRINT: PRINT: END

Sample Application
Program Gauss - solves matrix equation C(N,N)X{N)=V(N)
by Gaussian elimination method.
Input the order of matrix equation, N : 3

Input the elements of the coefficient matrix, row by row
and press <knter> key after entering a number

? 092 121
? 372 62 1
? 22 2?2 3

Input the elements of the constant vector :7 102 147 3
The solution vector has elements : 1 2 -1
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FORTRAN VERSION

C PROGRAM Gauss - solves matrix equation C(N,N)X{N)=V(N)
C by Gaussian elimination method.
c X and V share same storage space.
DIMENSION C(50,50) ,V(50)
WRITE (*,*) 'Program Gauss - solves matrix equation C(N, N)X(N)=V(N)'
WRITE (*,*) ° by Gaussian elimination methed.®
WRITE (*,*) 'Input the order of matrix equation, N : '
READ (*, *) N
WRITE (*,*) 'Input the elements of the coefficient matrix,'
WRITE (*,*) ' ©row by row and press <Enter> key after entering’
WRITE (*,*) each row :'
DO 5 I=1,N
5 READ (*,*) (C(I,J),J=1,N)
WRITE (*,*) 'Input the elements of the constant vector
READ (*,*) (V(I),I=1,N)
CALL GAUSS (C,N,50,V)
WRITE (*,15) (V(I),I=1,N)
15 FORMAT (' The vector {V} is'/5E16.5)
STOP
END
SUBROUTINE GAUSS (C,N,M,V)
[}
C SOLVES MATRIX EQUATION C(N,N) *X(N)=V(N) BY GAUSSIAN ELIMINATION.
C X and V share same storage. C is dimensioned (M,M) in the calling program.
(o}
DIMENSION C(M, 6 M) 6 V(N)
C
N1=N-1
DO 25 K=1,N1
KP1=K+1
C
C NORMALIZATION
c
DO 10 J=KP1,N
10 C(K,J)=C(K,J) /C(K, K}
V (K)=V(K) /C(K,K)
C
c ELIMINATION
C
DO 25 I=KPl,N
DO 20 J=KP1,N
20 C({I,J)y=C(1,J)-C(I,K)*C(K,J)
25 V(I)=V{I)-C(I,K)*V(K)
c
c BACKWARD SUBSTITUTION
C

V (N) =V (N) /C (N ,N)
DO 35 I=1,N1
IR=N-I
IR1=IR+1
DO 35 J=IRL,N
35 V(IR) =V (IR) -C(IR,J) *V(J)
RETURN
END
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Sample Application

Program Gauss - sclves matrix equation C(N,N)X (Nj=V(N)
by Gauss-Jordan elimination method.

Input the order of matrix equation, N

3

Input the elements of the coefficient matrix,
row by row and press <Enter> key after entering
each row

9,1,1

3,6,1

2,72,3

Input the elements of the constant vector

10,14,3
The vector {V} is

.10000K+01 .20000E+01 -.10000E+01
Stop - Program terminated.

GAUSS-JORDAN METHOD

One slight modification of the elimination step will make the backward substi-
tution steps completely unnecessary. That is, during the elimination of the x; terms
from the linear algebraic equations except the ith one, Equations 25 and 26 should
be applied for k equal to 1 through N and excluding k = i. For example, the x terms
should be eliminated from the first, second, fourth through Nth equations. In this
manner, after the Nth normalization, [C] becomes an identity matrix and {V} will
have the elements of the required solution {X}. This modified method is called
Gauss-Jordan method.

A subroutine called GauJor is made available based on the above argument. In
this subroutine, a block of statements are also added to include the consideration of
the pivoting technique which is required if ¢;; = 0. The normalization steps,
Equations 49 and 50, cannot be implemented if c;; is equal to zero. For such a
situation, a search for a nonzero ¢;, is necessary for i =k + 1,k + 2,...,N. That is,
to find in the kth column of [C] and below the kth row a nonzero element. Once
this nonzero c;; is found, then we can then interchange the ith and kth rows of [C]
and {V} to allow the normalization steps to be implemented; if no nonzero ¢;; can
be found then [C] is singular because the determinant of [C] is equal to zero! This
can be explained by the fact that when ¢, , = 0 and no pivoting is possible and the
determinant D of [C] can be calculated by the formula:

N
D=c c,,...¢ - .Cyn = Hck’k (28)

k=1

where II indicates a product of all listed factors.
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A subroutine has been written based on the Gauss-Jordan method and called
GauJor.Sub. Both QuickBASIC and FORTRAN versions are made available and
they are listed below.

QuickBASIC VErsioN

SUB Gaudor (A(), N, C(), I}
' Gauss-Jordan Eliminalion method for solving [A]{X}={C}.
' {C} exits as {X}.
' Also calculate the determinant D of [A].
FOR T = 1 TO N
IF A(I, I) = 0O THEN 220

! *** Normallzation ***
200 FOR J T + 1 TO N
y = A(I, Iy / A(I, I)

b= Cctiy / A(L, 1)
I=N THEN 280 ELSE 2L0

! *** Pivoting ***

220 FOR J = 1 4 L TO N
IF A(J, 1) = 0 THEN 230
FOR K = T TO N
T = A{(I, K)
A(I, K} = A(J, K)
A(d, K} =T
NEXT K
7= C(I)
C(I) = C{(J)
C(J) = T
GOTO 200
230 NEXT J

PRINT "The coefficient matrix is singular.":
GOTO 300

1

' ¥+* Klimination ***
250 FOR K = 1 TO N
IF K = L THEN 265
IF A(K, I) — 0 THEN 265
C(K) = C(K}) - MK, I) * C(I)
FOR J = T + 1 TO N
A(K, J) = A(K, J} - A(K, I) * A{I, J)
NEXT J
265 NEXT K
NEXT I
\]
! Calculates determinant.
280 D = 1!

FOR I =1 TO N
D=0D* A(I, 1)
NEXT I
300 END SUB
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FORTRAN VERSION

C
c
(o}
C
C
C
C
(o}
[o

8

10
C
Cc
C

12

14

15

16

18
o]
C
o]

20

25

30

35
C

40

SUBROUTINE GAUJOR(C,N,M,V,D)

SOLVES MATRIX EQUATION C(N,N)*X(N)=V(N) BY GAUSSIAN ELIMINATION.

CALCULATES DETERMINANT, D, of C. Pivoting is provided.
X and V share same storage.
C is dimensioned (M,M) in the calling program.

DIMENSION C(M,M),V(N)

DO 35 K=1,N

KP1=K+1

IF (C(K,K).EQ.0.) GOTO 12

NORMALIZATION

DO 10 J=KP1l,N
C(K,J)=C(K,J)/C(K,K)
V(K)=V(K) /C(K,K)

IF (I.EQ.N) RETURN
GOTO 20

PIVOTING

DO 14 I=KP1l,N

IF (C(I,K).NE.O0.) GOTO 16
CONTINUE

WRITE (*,*) 'The coefficient matrix is singular!'
STOP

DO 18 J=KP1l,N

T=C(K, J)

C(K,J)=C(I,d)

C(I,J)=T

T=V (K)

V(K)=V(I)

V(I)=T

GOTO 8

ELIMINATION

DO 30 I=1,N
IF (I.EQ.K) GOTO 30
DO 25 J=KP1l,N
C(I,J)=C(I,J)-C(I K)*C(K,J)
V{(I)=V(I)-C(I,K)*V(K)
CONTINUE
CONTINUE
CALCULATES Determinant
D=1.
DO 40 K=1,N
D=D*C (K, K)
RETURN
END
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Sample Applications

The same problem previously solved by the program Gauss has been used again
but solved by application of subroutine GauJor. The results obtained with the Quick-
BASIC and FORTRAN versions are listed, in that order, below:

Program Gaudor - solves matrix equaltion A(N,N)X (N} C(N)
by Gauss-Jordan elimination method.

Input the order of matrix equation, N : 3

Input the elements of the coefficlent maftrix, row by row
and press <Enter> key after entering a number

2972 17 1

? 372 6?2 1

? 22 272 3

Input the elemenls of the constant vector :2 10?7 1472 3
The solution vector is

T 2 -1
Determinant of [A] = 131
Program Gaudor - solves matrix equation C{N,N}X(N)=V(N)

by Gauss-Jordan elimination method.
Input the order of matrix equation, N
3
Input the elements of the coefficient matrix,
row by row and press <Enter> key after entering
each row

9,1,1
3,6,1
2,2,3
Input the elements of the constant vector
10,14,3
The vector {V} Is
.10000E+01 L2U000E+01 -.10000E+01
The determinant of the coefficient mabtrix — L13100K+03
Stop - Program terminated.

MATLAB APPLICATIONS

For solving the vector {X} from the matrix equation [C]{X} = {R} when both
the coefficient matrix [C] and the right-hand side vector {R} are specified, MATLAB
simply requires [C] and {R} to be interactively inputted and then uses a statement
X = C\R to obtain the solution vector {X} by multiplying the vector {R} on the left
of the inverse of [C] or dividing {R} on the left by [C]. More details are discussed
in the program MatxAlgb. Here, for providing more examples in MATLAB appli-
cations, a m file called GauJor.m is presented below as a companion of the FOR-
TRAN and QuickBASIC versions:
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function [X,D]=GauJor (C,N,R)
% Solves matrix eguation [C]{X}={R} of order N by Gauss-Jordan Elimination.
% Also finds the determinant D of [C].
%
ExitFlag=0; D=0:
for I=1:N, ipl=I+1;
if C(i,i)==
% Pivoting
for k=ipl:N
if Cc(k,i)~=0
for j=ipl:N, T=C(k,]j): C(k,3)=C(i,]j): C(1,3) =T: end
T=R(k) ; R(k)=R(I): R(I)=T; break
end
end
ExitFlag=1;
end
% Normalization
if ExitFlag==0;
for j=ipl:N, C(i,3)=C(i,3)/C(i,1i); end
R(I)=R(I)/C(i,1i);
% Elimination
for k=1:N
if I~=k
for J=ipl:N, C(k,3)=C(k,])-C(k,1)*C(i,]); end
R(k)=R(k) -C(k,1) *R(I);

end
end
end
if I==N, break
end
end

if ExitFlag==1;
error (' The coefficient matrix is singular.’)
else D=1: X=R; for I=1:N, D=D*C(i,i); end
end

This file GauJor.m should then be added into MATLAB. As an example of
interactive application of this m file, the sample problem used in the FORTRAN
and QuickBASIC versions is again solved by specifying the coefficient matrix [C]
and the right hand side vector {R} to obtain the resulting display as follows:

>»> Cc=[9,1,1;3,6,1:;2,2,3}; R=[10,14,3]"'; [¥,D]-GaudJor(C,3,R)
X:

1.0000

2.0000

1.0000
D:

131

The results of the vector {X} and determinant D for the coefficient matrix [C]
are same as obtained before.

MATHEMATICA APPLICATIONS

For solving a system of linear algebraic equations which has been arranged in
matrix form as [A]{X} = {R}, Mathematica’s function LinearSolve can be applied
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to solve for {X} when the coefficient matrix [A] and the right-hand side vector {R}
are both provided. The following is an example of interactive application:
In[1]: = A = {{3,6,14},{6,14,36},{14,36,98 } }
Out[1]: =
{{3, 6, 14}, {6, 14, 36}, {14, 36, 98} }
In[2]: = MatrixForm[A]

Out[2]//MatrixForm: =

3 6 14

6 14 36

14 36 98
In[3]: = R = {9,20,48}
Out[3]: =

{9, 20, 48}
In[4]: = LinearSolve[A,R]
Out[4]: =

{-9,13,-3}

Output[2] and Output[1] demonstrate the difference in display of matrix [A]
when MatrixeForm is requested, or, not requested, respectively. It shows that without
requesting of MatrixForm, some screen space saving can be gained. Output[4] gives
the solution {X} = [-9 13 -3]T for the matrix equation [A]{X}= {R} where the
coefficient matix [A] and vector {R} are provided by Input[1] and Input[3], respectively.

1.5 MATRIX INVERSION, DETERMINANT,
AND PROGRAM MatxinvD

Given a square matrix [C] of order N, its inverse as [C]~! of the same order is defined
by the equation:

[CI[CT " =[cT[Cl=1] M

where [I] is an identity matrix having elements equal to one along its main diagonal
and equal to zero elsewhere. That is:

1o . 0
o 1 0 . . .0

[1]= @
0 0 1

© 2001 by CRC Press LLC



To find [C], let ¢;; and d;; be the elements at the ith row and jth column of the
matrices [C] and [C]!, respectively. Both i and j range from 1 to N. Furthermore,
let {D;} and {I;} be the jth column of the matrices [C]™ and [I], respectively. It is
easy to observe that {I;} has elements all equal to zero except the one in the jth row
which is equal to unity. Also,

[p}=[ad,...dy] 3)
and

[c]" =[DD,...D,] )

Based on the rules of matrix multiplication, Equation 1 can be interpreted as
[C{D,} ={L,}, [C{D,} = {L}, ..., and [C]{Dy} = {Iy}. This indicates that program
Gauss can be successively employed N times by using the same coefficient matrix
[C] and the vectors {1} to find the vectors {D,} fori=1,2,...,N. Program MatxInvD
is developed with this concept by modifying the program Gauss. It is listed below
along with a sample interactive run.

QuickBASIC VErsioN

* Program MatxInvD - Calculates inverse and determinant of a square matrix
SCREEN 2: CLS : CLEAR : KEY OFF

PRINT " * Program MatxInvD - Calculates inverse and determinant of a square matrix
wn

PRINT : INPUT "Enter the order of the matrix : ", N : DIM C(N, N}, Cl1(N, N)
PRINT : PRINT "Enter the elements of the matrix row-by-row and press <Enter> key"
PRINT " after entering each element : ": PRINT

FOR J =1 TON
FOR J1=1 TO N: INPUT ; C(J, J1): NEXT J1: PRINT: NEXT J: GOSUB 195

PRINT : PRINT "Determinant = "; D : IF D <> 0 THEN 170
PRINT : PRINT "The matrix is singular'!": PRINT : END
170 PRINT : PRINT "The inverse matrix is :": PRINT

FOR J =1 TO N
FOR J1=1 TO N: PRINT USING " ##.###°"""";C1(J,J1); : NEXT J1
PRINT : NEXT J: PRINT : END

185 ' * Find inverse Cl1 of C(N,N) by Gaussian elimination *
FOR Tl =1 TO N

FOR T2=1 TO N: C1(T1,T2)=0: NEXT T2: CI1(T1,Tl)=1: NEXT Tl: N1=N-1: D=1
FOR Tl = 1 TO N1

* PIVOTING *

Q1 =T1 + 1: IF C(Tl, Tl) <> O THEN 285

FOR T2 = Q1 TO N: IF C(T2,T1)=0 THEN 245 ELSE D=D* (-1) " (T1+T2): GOTO 260
245 NEXT T2 : D = 0: RETURN
260 ' * Interchanging rows *

FOR T4=1 TO N

T = C (T2, T4): C(T2, T4)
T = C1(T2, T4): C1(T2, T4)

C(Tl, T4): C(T1,T4)=T
C1(T1, T4): C1(T1,T4)=T: NEXT T4

285 ' * Normalization *

FOR T4= Q1 TO N: C(T1,T4)
FOR T4= 1 TO N: C1(T1,T4)

C(T1,T4) / C(T1,T1): NEXT T4
C1(T1,T4) / C(T1,T1l): NEXT T4

© 2001 by CRC Press LLC



' * Elimination *

FOR T4 = Tl + 1 TO N
FOR T5 = Q1 TO N: C(T4,T5) = C(T4,T5) - C(T4,Tl)* C(T1,TS): NEXT TS5
FOR T7 = 1 TO N: C1(T4,T7)=C1(T4,T7) - C(T4,T1)*C1(T1,T7): NEXT T7
NEXT T4: NEXT T1

* Backward Substitution *
FOR T6 = 1 TO N: Cl(N, T6) = CL{(N, T6) / C(N, N)
FOR T4 = 1 TO N1: Tl = N - T4

FOR T5 = Tl + 1 TO N: C1(T1,T6) = CI1(T1,T6)-C(T1,T5)*Cl(T5,T6): NEXT T5
NEXT T4: D = D * C(T6, T6): NEXT T6: RETURN

Sample Application

* Program MatxInvD - Calculates inverse and determinant of a square matrix *
Enter the order of the matrix :@ 3

Enter the elements of the matrix row-by-row and press <Enter> key
after entering each element

2 32 0?2 0
? 07 47 O
? 0? 07 5

Determinant = 60
The inverse matrix is

3.333E-01 O0.000E+00 O.000E+00
0.000E+00 2.500E-01 O0.CO00E+00
0.000E+00 0.000E+00 2.000E-01

FORTRAN VERSION

C * Program MatxInvD - Calculates inverse and determinant of a square matrix of order N
DIMENSION C({50,50),C1(50,50)
WRITE (*,2)
2 FORMAT (' * Program MatxInvD - Calculates inverse and

* ‘determinant of a square matrix *')
WRITE (*,4)
4 FORMAT (' Enter the order of the matrix : ')

READ (*,*) N
WRITE (*, 6)
6 FORMAT (' Enter the elements of the matrix row-by-row and
* ‘press <Enter> key after entering an entire row : ')
DO 10 I=1,N
10 READ (*, %) (C(I,J),J=1,N)
CALL MATXINVD(C,50,N,C1,D)
WRITE (*,*) 'Determinant = ',D
IF (D.NE.0O.) GO TO 20
WRITE (*,*) 'The matrix is singular!’
STOP
20 WRITE (*,*) 'The inverse matrix is
DO 25 I=1,N
25 WRITE (*,30) (C1l(I,J),Jd=1,N)
30 FORMAT (4E20.5)
END

SUBROUTINE MATXINVD({C,M,N,C1,D)
[of
C * Find inverse C1 of C(N,N) by Gaussian elimination *
c Both C & Cl1 are dimensioned M by M in the calling program.
c
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DIMENSION C(M,M),C1(M,M)
Do 8 I=1,N
DO 5 J=1,N

5 C1(I,J)=0
8 Ci(1,1)=1
N1=N-1
D=1
DO 800 IE=1,N1
C
C * PIVOTING *
[
I1=IE+1
IF (C(IE,IE).NE.O) GO TO 285
DO 245 K=I1,N
IF (C(K,IE).EQ.0.) GO TO 245
D=D* (-1) ** (IE+K)
GO TO 260
245 CONTINUE
D=0
RETURN
C
C * Interchanging rows *
C
260 DO 270 J=1,N
T=C(K,J)
C(K,J)=C({IE,J)
C(IE,J)=T
T=C1 (K, J)
C1(X,J)=Cl(IE,6J)
270 Cl{(IE,J)=T
C
C * Normalization ¥
C
285 DO 300 J=I1,N
300 C(IE,J)=C(1E,J) /C(IE,IE)
DO 400 J=1,N
400 C1(IE,J)=C1(IE,J) /C(IE,IE)
C
C * Elimination *
o}
DO 422 K=IE+1,N
DO 411 J=11,N
411 C{K,J)=C(K,J)~C(K,IE)*C(IE,6J)
DO 416 J=1,N
416 C1l{K,J)=C1l(K,J)-C(K,6IE)*C1(IE,J)
422 CONTINUE
800 CONTINUE
c
C * Backward Substitution *
C

DO 900 J=1,N
C1(N,J)=C1(N,J)/C(N,N)
DO 810 I=1,N1
IR=N-I
DO 805 K=IR+1l,N
805 C1 (IR, J)=Cl (IR, J) -C(IR,K) *Cl(K,J)
810 CONT INUE
900 D=D*C(J,J)
RETURN
END
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Sample Applications

* Program MatxInvD - Calculates inverse and determinant of a square matrix *
Enter the order of the matrix :

3

Enter the elements of the matrix row-by-row and press <Enter> key after entering
an entire row :

3,0,0

0,4,0

0,0,5

Determinant = 60.0000000

The inverse matrix is :
.33333E+00 .00000E+00 .00000E+0D
.00000E+00 .25000E+400 .00000E+00D
.00000E+00 .00000E+00 .20000E+00

MATLAB APPLICATION

MATLAB offers very simple matrix operations. For example, matrix inversion
can be implemented as:

>> A=[1,2:;3,4]

A =
1 2
3 4
>> Ainv=inv (A)
Ainv =
-2.0000 1.0000
1.5000 -0.5000

To check if the obtained inversion indeed satisfies the equation [A}[A]' = [1]
where [I] is the identity matrix, we enter:

>> I=A*Ainv
I =
1.0000 0
0.0000 1.0000

Once [A]! becomes available, we can solve the vector { X} in the matrix equation
[Al{X} = {R}if {R} is prescribed, namely {X} = [A]"'{R}. For example, may enter
a {R} vector and find {X} such as:

>> R=[13;31]

R =
13
31

>> X=A\R

X =
5.0000
4.0000
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MATHEMATICA APPLICATIONS

Mathematica has a function called Inverse for inversion of a matrix. Let us
reuse the matrix A that we have entered in earlier examples and continue to dem-
onstrate the application of Inverse:

In[1]: = A= {{1,2},{3,4}}; MatrixForm[A]

Out[1]//MatrixForm =

1 2

3 4
In[2]: = B = {{5,6},{7,8}}; MatrixForm[B]
Out[2]//MatrixForm =

5 6

7 8
In[3]: = MatrixForm[A + B]
Out[3]//MatrixForm =

6 8

10 12
In[4]: = Dif = A-B; MatrixForm[Dif]
Out{4]//MatrixForm =

-4 4

-4 4
In[5]: = AT = Transpose[A]; MatrixForm[AT]
Out[5]//MatrixForm =

1 3

2 4

In[6]: = Ainv = Inverse[A]; MatrixForm[Ainv]
Out[6]//MatrixForm =
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To verify whether or not the inverse matrix Ainv obtained in Output[6] indeed
satisfies the equations [A][A]"' = [I] which is the identity matrix, we apply Math-
ematica for matrix multiplication:

In[7]: = Iden = A.Ainv; MatrixForm[Iden]

Out[7]//MatrixForm =
1 0
0 1

A dot is to separate the two matrices A and Ainv which is to be multiplied in that
order. Output[7] proves that the computed matrix, Ainv, is the inverse of A! It should
be noted that D and I are two reserved variables in Mathematica for the determinant
of a matrix and the identity matrix. In their places, here Dif and Iden are adopted,
respectively. For further testing, we show that [A]J[A]T is a symmetric matrix:

In[8]: = S = A.AT; MatrixForm[S]

Out[8]//MatrixForm =
5 11
11 25

And, the unknown vector {X} in the matrix equation [A]{X} = {R} can be
solved easily if {R} is given and [A]"! are available:

In[9]: = R={13,31}; X = Ainv.R

Out[9] = {5, 4}

The solution of x, = 5 and x, = 4 do satisfy the equations x, + 2x, = 13 and 3x,
+ 4x, = 31.
TRANSFORMATION OF COORDINATE SYSTEMS, ROTATION, AND ANIMATION

Matrix algebra can be effectively applied for transformation of coordinate sys-
tems. When the cartesian coordinate system, x-y-z, is rotated by an angle O, about
the z-axis to arrive at the system x’-y’-z" as shown in Figure 2, where z and z’ axes
coincide and directed outward normal to the plane of paper, the new coordinates of
a typical point P whose coordinates are (XpypZp) can be easily obtained as follows:

x, =OPcos(, —6,) = (OPcos, )cos6, +(OPsin6, )sin,
=x,cos6, +y sinb,

y, =OPsin(6, —6,)=(OPsin®,)cos6, —(OPcos®, )sin®,
=x,sin@, +y_sin®,
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)

P

FIGURE 2. The cartesian coordinate system, x-y-z, is rotated by an angle ©, about the z-
axis to arrive at the system x’-y'-z’.

and

In matrix notation, we may define {P} = [x, yp zp]T and {P'} = [x,' yp' 2,']T and
write the above equations as {P'} = [T,]{P} where the transformation matrix for a
rotation of z-axis by O, is:

cos0, sin6, 0
[T,]=|-sin6, cos®, 0 o)
0 0 1

In a similar manner, it can be shown that the transformation matrices for rotating
about the x- and y-axes by angles O, and ©,, respectively, are:

1 0 0
[TX] =10 cos0, sin®_ (6)
0 —sin®,  cosO,

and

cos Gy 0 —sin Gy
[T ]: 0 1 0 7)

sin© 0 cosO
y y
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P'

FIGURE 3. Point P whose coordinates are (XpYypZp) is rotated to the point P' by a rotation
of ©,.

It is interesting to note that if a point P whose coordinates are (XpypZp) is rotated
to the point P' by a rotation of ©, as shown in Figure 3, the coordinates of P' can
be easily obtained by the formula {P'} = [R,]{P} where [R,] = [T,]". If the rotation
is by an angle O, or ©,, then {P'} = [R ]{P} or {P'} = [R ]{P} where [R ] = [T]"
and [R,] = [T,]".

Having discussed about transformations and rotations of coordinate systems,
we are ready to utilize the derived formulas to demonstrate the concept of ani-
mation. Motion can be simulated by first generating a series of rotated views of
a three-dimensional object, and showing them one at a time. By erasing each
displayed view and then showing the next one at an adequate speed, a smooth
motion of the object is achievable to produce the desired animation. Program
Animatel.m is developed to demonstrate this concept of animation by using a
4 X 2 X 3 brick and rotating it about the x-axis by an angle of 25° and then
rotating about the y-axis as many revolutions as desired. The front side of the
block (x-y plane) is marked with a character F, and the right side (y-z plane) is
marked with a character R, and the top side (x-z plane) is marked with a character
T for helping the viewer to have a better three-dimensional perspective of the
rotated brick (Figure 4). The x-rotation prior to y-rotation is needed to tilt the top
side of the brick toward the front. The speed of animation is controlled by a
parameter Damping. This parameter and the desired number of y-revolutions,
Ncycle, are both to be interactively specified by the viewer (Figure 5).
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/’ =

FIGURE 4. The characters F, R, and T help the viewer to have a better three-dimensional
perspective of the rotated brick.

| Aninate a rotating block of size 4x2x3 with Front, Top,
and Right sides marked by F, T, and R, respectively.

F

Reduce the speed of Animation by increasing the Damping!

-3
Press any key to start animation.
-4 L 4
_5 1 L L —_—1 1
-6 -4 -2 g 2 4 [

FIGURE 5. The speed of animation is controlled by a parameter Damping. This parameter and
the desired number of y-revolutions, Ncycle, are both to be interactively specified by the viewer.
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FuncTioN ANIMATET(NcycLe,DAMPING)

op e

Define the points for drawing block, F, T, and R

®m=[ -2, 2, 2, -2, -2, -2, 2, 2, -2, -2, 2, 2, 2, 2, -2, -23:

yb=[ 1, 1, 1, t, 1, -1, -2, -1, -1, -1, -1, 1, i, -1, -1, 11:

zb=[1.5,1.5,-1.5,~1.5,1.5,1.5,1.5,-1.5,-1.5,1.5,1.5,1.5,-1.5,-1.5,-1.5,-1.5]1;

xs=[-6,6,6,-6,-6]: ys=[5,5,-5,-5,5])/

xf=[1.4,1.4,1.8,1.4,1.4,1.7); yf=(.4,.8,.8,.8,.6,.6]:

2f=[1.5,1.5,1.5,1.5,1.5,1.5];

xt={-1.8,-1.4,-1.6,-1.6); yt=[1,1,1,1]; zt=(-1.3,-1.3,-1.3,-.8]:

xr=[2,2,2,2,2,2,2); yr=[.4,.8,.8,.6,.6,.6,.4];
zr={-.9,~.9,-1.3,-1.3,-.9,-1.1,-1.3]:

E

Describe the animation

plot({xs,ys), hold, plot(xb,yb), plot(xf,yf), plot(xt,yt), plot(xr,yr)
text(-5.8,3, 'Animate a rotating block of size 4x2x3 with Front, Top, ')
text(-4.6,2.5, and Right sides marked by F, T, and R, respectively.')
text (~5.8,-3, 'Reduce the speed of Animation by increasing the Damping! '}
text(-4,-3.5, 'Press any key to start animation.’)

pause

X-rotation

for kxr=1:5; ax=5*kxr*pi/180; c=cos(ax): s=sin(ax);
ybn=yb*c-zb*s; zbn=yb*s+zb*c; yfn=yf*c-zf*s; zfn=yf*s+zf*c;
ytn=yt*c-zt*s; ztn=yt*s+zt*c; yrn=yr*c-zr*s; zrn=yr*s+zr*c;
clg, plot(xb,ybn), plot(xf,yfn), plot(xt,ytn), plot(xr,yrn)
for hold=1:Damping; end
end

o

*®

Y-rotation

kend=36*Ncycle;

for kyr=1:kend; ay=-Kkyr*pi/l8; c=cos(ay); s=sin(ay)’
xbn=xb*c+zbn*s; xfn=xf*c+zfn*s; xtn=xt*c+ztn*s, xrn=xr*c+zrn*s:
clg, plot{xbn,ybn), plot(xfn,yfn), plot(xtn,ytn), plot(xrn,yrn)
for hold=1:Damping; end
end

end

Notice that the coordinates for the corners of the brick are defined in arrays xb,
yb, and zb. The coordinates of the points to be connected by linear segments for
drawing the characters F, R, ant T are defined in arrays xf, yf, and zf, and xr, yr,
and zr, and xt, yt, and zt, respectively.

The equations in deriving [R,] (= [T,]") and [R,] (= [T,]") are applied for x-
and y- rotations in the above program. Angle increments of 5 and 10° are arranged
for the x- and y-rotations, respectively. The rotated views are plotted using the new
coordinates of the points, (xbn,ybn,zbn), (xfn,yfn,zfn), etc. Not all of these new
arrays but only those needed in subsequent plot are calculated in this m file.

MATLAB command clg is used to erase the graphic window before a new
rotated view the brick is displayed. The speed of animation is retarded by the “hold”
loops in both x- and y-rotations involving the interactively entered value of the
parameter Damping. The MATLAB command pause enables Figure 4 to be read
and requires the viewer to press any key on the keyboard to commence the animation.
Notice that a statement begins with a % character making that a comment statement,
and that % can also be utilized for spacing purpose.

The xs and ys arrays allow the graphic window to be scaled by plotting them
and then held (by command hold) so that all subsequent plots are using the same
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finination of a Rotating Brick

(Demonstrated with a 4x2x3 brick)

T
Y ANIMATION
F___—
Z
otated _
TOP VIEM -80 Degrees about Y-axicH
¥ After having
¥ F ¥ | rotated 25
L _ degrees about
X Z X-axis
FRONT VIEW RIGHT-SIDE VIEW

Enter the speed of your processor, e.g.., 28 MHz & 90

FIGURE 6. Animation of a rotating brick.

scales in both x- and y-directions. The values in xs and ys arrays also control where
to properly place the texts in Figure 4 as indicated in the text statements.

QuickBASIC VErsioN

A QuickBASIC version of the program Animatel.m called Animatel.QB also
is provided. It uses commands GET and PUT to animate the rotation of the 4 X 3
X 2 brick. More features have been added to show the three principal views of the
brick and also the rotated view at the northeast corner of screen, as illustrated in
Figure 6.

The window-viewport transformation of the rotated brick for displaying on the
screen is implemented through the functions FNTX and FNTY. The actual ranges
of the x and y measurements of the points used for drawing the brick are described
by the values of V1 and V2, and V3 and V4, respectively. These ranges are mapped
onto the screen matching the ranges of W1 and W2, and W4 and W3, respectively.

The rotated views of the brick are stored in arrays S1 through S10 using the
GET command. Animation retrieves these views by application of the PUT com-
mand. Presently, animation is set for 10 y-swings (Ncycle = 10 in the program
Animatel.m, arranged in Line 600). The parameter Damping described in the
program Animatel.m here is set equal to 1500 (in Line 695).
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* Program Animatl.QB - animates a Rotating Brick *
DECLARE SUB XRotate (N AX,XS() ,¥S(),Z8() ,XN() ,YN() ZN{())
DECLARE SUB YRotate (N AY,XS(),¥S{),ZsS() , XN(Q) YN , ZN())
CLEAR: CLS: KEY OFF: CV = 3.1416/180: SCREEN 2: W=8: H=B: ASPR=11/25: N=24: NS=1250
DIM S1(NS),hS2(N8),S3(NS),S4(NS) , S5(NS),S6(NS),87(NS),S8B(NS) ,S9(NS),S10(NS),sV(200),
DIM X (N) ,XO(N) XN(N) XS(N¥) Y (N), YO (N}, YN(N) YS(N) Z0(N), 6 ZN(N)  ZS5(N)
FOR I = 1 TO N: READ XO(I), YO(I), ZO(I): NEXT I

DATA  -2,-1,-1.5, 2,-1,-1.5, 2, 1,-1.%, -2, 1,-1.5, -2,-1,1.5, 2,-1,1.5,
2,1, 1.5

pATA -2, 1, 1.5, 1.4,.4, 1.5, 1.4,.6, 1.5, 1.4,.8, 1.5, 1.8,.8,1.5, 1.7,.6,1.5,
-1.8, 1,-1.3

DATA -1.6, 1,-1.3, -1.4, 1,-1.3, -1.6, 1, -.9, 2,.4, -.9, 2,.6,-.9, 2,.8,-.9,
2,.8,-1.3 DATA 2,.6,-1.3, 2,.6,-1.1, 2,.4,-1.3

LOCATE 2, 26: PRINT " Animation of a Rotating Brick"

GET (24.5 * W, H - 1)-(56.5 * W, 2 * H+ 1), 81: PUT (24.5 * W, H - 1), 81, PRESET
LOCATE 4, 5: PRINT " (Demonstrated with a 4x2x3 brick)"

DEF FNTX (X) = V1 + (X - Wl1) * TSl : DEF FNTY (Y¥) = V4 - (Y - W3) * Ts2

V1l =11*W: V2 = V1 + 31*W: V3 = 10*H: V4 = V3 + 31*W*ASPR: W1=-3 : W2=3 : W3=-3 : W4=3

T81=(V2-V1) /(W2-W1) : TS2=(V4-V3)/(W4-W3) : LOCATE 22, 22: PRINT "FRONT VIEW"
FOR I=1 TO N: X({I)=XO0(I): Y(I)=YO(I): NEXT I 'DRAW FRONTAL VIEW, Transform
and plot

GOSUB 480: GOSUB 4S50
PSET (FNTX (1) ,FNTY(0)): LINE - (FNTX(0) FNTY({0)): LINE - (FNTX(0),6 FNTY(.5))
LOCATE 18, 33: PRINT "X": LOCATE 16, 26: PRINT "Y"
CALL YRotate(N,-90*CV,X0() ,Y0() ,20() ,XN() ,¥YN() ,2ZN())
VI = 39 * W: V2 = V1l + 31 * W ' DRAW
RIGHT VIEW
LOCATE 22, 48: PRINT "RIGHT-SIDE VIEW"

FOR I=1 TO N: X(I)=XN(I): Y(I)=YN(I): NEXT I: GOSUB 4B0: GOSUB 480 'Transform
and plot
PSET (FNTX(-1) ,FNTY(0)) : LINE - (FNTX({0) FHTY(0)) LINE - (FNTX(0) FNTY(.5))

LOCATE 18, 4% : PRINT "Z2": LOCATE 16, 56: PRINT "Y"
CALL XRotate (N,90*CV,X0(),Y0(),20() ,XN() ,¥YN() ,2ZN{())
V1=11*W: V2=V1+431*W: V3=1.25%H: V4=V3+31*W*ASPR

LOCATE 14, 23 : PRINT "TOP VIEW" ‘' DRAW
TOP VIEW
FOR I=1 TO N: X(I)=XN(I): Y(I)=YN(I): NEXT I: GOSUB 480: GOSUB 430 'Transform
and plot
PSET (FNTX(1),FNTY(Q)) : LINE - (FNTX(0) FNTY(0)): LINE - (FNTX(0) FNTY(-.5))
LOCATE 9, 34 : PRINT "X" : LOCATE 11, 27: PRINT "2"
V1=43%W © V2=V1420*W: V3=3*H © V4=V3+20*WAASPR 'ROTATE
ABOUT X-AXIS
FOR XL=1 TO 5 : TAX=TAX+5 1 GET (43*W,3*H)-(68*W,14*H) ,s1
TS1 = (V2 - V1) / (W2 - Wl): T82 = (V4-V3)/(W4-W3)
IF XL = 1 THEN 300 ELSE GOSUB 580: GOTO 305 'Update
before rotate
300 FOR I = 1 TOQ N: XS(I) = XO0(I): ¥YS(I) = YO(I): ZS(I) = 20(I): NEXT I
308 CALL XRotate(N,5*CV,XS() ,¥YS() ,Z28() ,XN{() ,YN{() ,2N()): PUT (43*W,3*H),hS1,XOR
FOR I =1 TO N: X(I)=XN(I): Y(I)=¥YN(I): NEXT I
GOSUB 4B0: GOSUB 4%90: GOSUB 695 'Transform
and plot
LOCATE 12,53: PRINT "Rotated” : LOCATE 13,45: PRINT USING "## Degrees about
X-axis" ;TAX
NEXT XL : AY = -10 : TAY=0
FOR YL=1 TO 9: TAY=TAY+AY: X1=43*W: Y1 =3*H: X2=68*W: Y2=14*H: GOSUB 580 "ROTATE
ABOUT Y-AXIS
ON YL GOTO 340, 345, 350, 355, 360, 365, 370, 375, 380
340 GET (X1, Y1)-(X2, ¥2), 81: GOTO 385
345 GET (X1, Y1)-(X2, ¥2), S2: GOTO 385
350 GET (X1, Y1)-(X2, ¥Y2), S83: GOTO 385
355 GET (X1, Y1)-(X2, ¥2), S4: GOTO 385
360 GET (X1, Y1)-(X2, Y2), S5: GOTO 385
365 GET (X1, Y1)-(X2, Y2), S6: GOTO 385
370 GET (X1, Y1)-(X2, Y2), 87: GOTO 385
375 GET (X1, ¥Y1)-(X2, Y2), SB: GOTO 385
380 GET (X1, Y1)-(%2, ¥Y2), S9
385 CALL YRotate(N,AY*CV,XS(),¥S() ,ZS() ,XN{) ,YN(},2N())
FOR I = 1 TO N: X(I) = XN(I): Y(I) = YN(I): NEXT I
ON YL GOTOC 395, 400, 405, 410, 415, 420, 425, 430, 435
395 PUT (X1, Y1), S1, XOR: GOTO 440
400 PUT (X1, Y1), S2, XOR: GOTO 440
405 PUT (X1, Y1)}, S3, XOR: GOTO 440
410 PUT (X1, Y1), sS4, XOR: GOTC 440
415 PUT (X1, Y1), S5, XOR: GOTO 440
420 PUT (X1, Y1), 86, XOR: GOTO 440
425 PUT (X1, Y1), 87, XCR: GOTO 440
430 PUT (X1, Y1), S8, XCOR: GOTO 440
435 PUT (X1, Y1), 89, XOR
440 GOSUB 4B0: GOSUB 4%0 ‘Transform
and plot
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LOCATE 12,53: PRINT "Rotated": LOCATE 13,44: PRINT USING "### Degrees about Y-axis*';TAY
IF YL <> 1 GOTO 470
LOCATE 16,65: PRINT "* After having”": LOCATE 17,67: PRINT "rctated 25"

LOCATE 18,67: PRINT "degrees about" : LOCATE 19,67: PRINT "X-axis"
470 NEXT YL: GET (X1, Y1)-(X2, Y2), sl0
FOR I=1 TO 500 : NEXT: GOSUB 5%0: LOCATE 22,1 : END
480 FOR I=1 TO N : X(I}=FNTX(X(I)): Y(I)=FNTY(Y(I)):@ NEXT I: RETURN ‘Converts window to
viewport

490 PSET (X(5),Y(5)): LINE -(X(6) ,¥Y(§)): LINE -(X(2),Y(2)): LINE -(X(1),Y(1))
'DRAW BRICK

LINE -(X(5),¥Y(5)): LINE —(X{(8) ,Y(8)): LINE -(X(7),Y(7)): LINE -(X(3),Y{(3)): LINE
- (X(4) ,¥Y(4))

LINE - (X(8B) ,Y(8)): PSET (X(6) Y(6)): LINE -(X(7),¥(7)): PSET (X(3),Y(3)): LINE
—(X(2) ,¥Y(2))

PSET (X(1),Y(1})): LINE -(X(4),Y(4))

PSET (X(9),Y(8)): LINE -(X(11),¥(11)): LINE -(X(12),¥(12)): PSET (X(10),¥Y(10))
'DRAW "F"

LINE -(X(13),Y(13))
PSET (X(14) ,Y(14)): LINE -(¥X{16) ,Y(16)): PSET (X{(17),Y(l7)): LINE -(X(15),Y(15))

'DRAW "T"
PSET (X{18),Y(18)): LINE -(X(20),¥(20)): LINE -(X(21),¥(21)): LINE -(X{(22), Y(22))
'DRAW "R”

LINE -(X(1%),Y(19)) :PSET (X(23) ,Y(23)): LINE -(X(24),Y(24}): RETURN

580 FOR I=1 TO N: XS(I)=XN(I): YS(I)=YN(I}) : 2S8(I)=ZN(I): NEXT I: RETURN

'Updating

590 LOCATE B, 70: PRINT "ANIMATION": GET (68.5*W,7*H-1)-(78.5*W,8*H) , SV

'Animation

PUT (68.5%W,7*H-1) ,SV,PRESET

600 FOR I=1 TO 10: PUT (X1,Y1l),S10,PSET: GOSUB 6%5: PUT (X1,Yl),S9,PSET: GOSUB 695
PUT (X1,Y1l), SB, PSET: GOSUB 695: PUT (X1,Y1),S7,PSET: GOSUB 635
PUT (X1,Y1l), S6,PSET: GOSUB 695: PUT (X1,Yl),S5,PSET: GOSUB 695
PUT (X1,Y1l), S4,PSET: GOSUB 695: PUT (X1,Y1l), 83,PSET: GOSUB 635
PUT (X1,Y1l), S2,PSET: GOSUB 685: PUT (X1,Y1l),6S1,PSET: GOSUB 695
PUT (X1,¥1l), S2,PSET: GOSUB 695: PUT (X1,Y1),6S3,PSET: GOSUB 695
PUT (X1,Y1), S4,PSET: GOSUB 68%5: PUT (X1,Yl),S5, PSET: GOSUB 6S%5
PUT (X1,Y1), S6,PSET: GOSUB 695: PUT (X1,Y1l),87,PSET: GOSUB 695
PUT (X1,Y1), 88,PSET: GOSUB 695: PUT (X1,Y1l) 89,PSET: GOSUB 695: NEXT

I: RETURN

695 FOR PS = 1 TO 1500: NEXT PS: RETURN

'pause

SUB XRotate (N,AX,XS(),¥S() 250 ,XN() ,¥N(),2N())
' X-ROTATION

CS = COS(AX): SN = SIN(AX)

FOR I=1 TO N: XN(I)=XS(I): YN(I)=YS(I)*CS-ZS(I)*SN: ZN(I)=YS(I)*SN+ZS(I)*CS: NEXT I

END SUB

SUB YRotate (N, AY,XS(),¥S(),Z28() XN() ,¥YN(),2N0)

Y-ROTATION
CS = COS(AY): SN = SIN(AY)

FOR I=1 TO N: YN(I)=YS(I): XN(I)=XS(I)*CS+ZS(I)*SN: ZN(I)=-XS(I)*SN+ZS(1)*CS: NEXT I
T

1.6 PROBLEMS

MATRIX ALGEBRA

1. Calculate the product [A][B][C] by (1) finding [T] = [A][B] and then
[T][C], and (2) finding [T] = [B][C] and then [A][T] where:

1 2 3 6 3 1 2
Al= B|=|14 3 C|=
L PR R S L

2. Calculate [A][B] of the two matrices given above and then take the
transpose of product matrix. Is it equal to the product of [B]T[A]™?
3. Are ([A][B][C]DT and the product [C]"[B]T[A]" identical to each other?
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4. Apply the QuickBASIC and FORTRAN versions of the program Matx-
Algb to verify the results of Problems 1, 2, and 3.

5. Repeat Problem 4 but use MATLAB.

6. Apply the program MatxInvD to find [C]™! of the matrix [C] given in
Problem 1 and also to ([C]")™". Is ([C] )T equal to ([C]T)'?

7. Repeat Problem 6 but use MATLAB.

8. For statistical analysis of a set of N given data X, X,, ..., Xy, it is often
necessary to calculate the mean, m, and standard deviation, 5, by use of
the formulas:

1
mzﬁ(Xl+X2+...+XN)

and

o= %= m) + () o (x, _m)z]}“

Use indicial notation to express the above two equations and then develop
a subroutine meanSD(X,N,RM,SD) for taking the N values of X to
compute the real value of mean, RM, and standard deviation, SD.

9. Express the ith term in the following series in indicial notation and then
write an interactive program SinePgrm allowing input of the x value to
calculate sin(x) by terminating the series when additional term contributes
less than 0.001% of the partial sum of series in magnitude:

3
1 X XS

Sin x=> -2 4% _
I3 s

Notice that Sin(x) is an odd function so the series contains only terms of
odd powers of x and the series carries alternating signs. Compare the
result of the program SinePgrm with those obtained by application of the
library function Sin available in FORTRAN and QuickBASIC.

10. Same as Problem 9, but for the cosine series:

Notice that Cos(x) is an even function so the series contains only terms
of even powers of x and the series also carries alternating signs.

11. Repeat Problem 4 but use Mathematica.

12. Repeat Problem 6 but use Mathematica.
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1. Run the program GAUSS to solve the problem:

What kind of problem do you encounter? “Divided by zero” is the mes-
sage! This happens because the coefficient associated with X, in the first
equation is equal to zero and the normalization in the program GAUSS
cannot be implemented. In this case, the order of the given equations
needs to be interchanged. That is to put the second equation on top or
find below the first equation an equation which has a coefficient associated
with x, not equal to zero and is to be interchanged with the first equation.
This procedure is called “pivoting.” Subroutine GauJor has such a feature
incorporated, apply it for solving the given matrix equation.

. Modify the program GAUSS by following the Gauss-Jordan elimination
procedure and excluding the back-substitution steps. Name this new pro-
gram GauJor and test it by solving the matrix equations given in Problems
1 and 2.

. Show all details of the normalization, elimination, and backward substi-
tution steps involved in solving the following equations by application of
Gaussian Elimination method:

4%, + 2%, - 3x;, =8

5x, — 3%, + 7x; = 26

—X; + 9x, - 8x; =-10

. Present every normalization and elimination steps involved in solving the

following system of linear algebraic equations by the Gaussian Elimina-
tion Method:

5%, — 2X, + 2x3 =9, 2%, + 7X, — 2x; = 9, and 2x, — 2x, + 9x; = 41
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10.
11.
12.
13.
14.

Apply the Gauss-Jordan elimination method to solve for x,, x,, and x;
from the following equations:

1 x|
2 9 3|lx|=
24 x| [

Show every normalization, elimination, and pivoting (if necessary) steps
of your calculation.

. Solve the matrix equation [A]{X}= {C} by Gauss-Jordan method

where:

3 1| x, -2
2 5 -1|x,|=[-3
4 7%, 3

Show every interchange of rows (if you are required to do pivoting before
normalization), normalization, and elimination steps by indicating the
changes in [A] and {C}.

Apply the program GauJor to solve Problem 7.

Present every normalization and elimination steps involved in solving the
following system of linear algebraic equations by the Gauss-Jordan Elim-
ination Method:

5x,—2x, + X3 =4

2%, + 7x,— 2%, =9

X, — 2%, + 9x; =40
Apply the program Gauss to solve Problem 9 described above.
Use MATLAB to solve the matrix equation given in Problem 7.
Use MATLAB to solve the matrix equation given in Problem 9.

Use Mathematica to solve the matrix equation given in Problem 7.
Use Mathematica to solve the matrix equation given in Problem 9.

MATRIX INVERSION

1.

Run the program MatxInvD for finding the inverse of the matrix:

30 2
[A]l=[0 5 ©
2 0 3
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10.
11.

12.
13.

14.

Write a program Invert3 which inverts a given 3 x 3 matrix [A] by using
the cofactor method. A subroutine COFAC should be developed for cal-
culating the cofactor of the element at Ith row and Jth column of [A] in
term of the elements of [A] and the user-specified values of I and J. Let
the inverse of [A] be designated as [AI] and the determinant of [A] be
designated as D. Apply the developed program Invert3 to generate all
elements of [AI] by calling the subroutine COFAC and by using D.
Write a QuickBASIC or FORTRAN program MatxSorD which will
perform the addition and subtraction of two matrices of same order.
Write a QuickBASIC or FORTRAN program MxTransp which will
perform the transposition of a given matrix.

. Translate the FORTRAN subroutine MatxMtpy into a MATLAB m file

so that by entering the matrices [A] and [B] of order L by M and M by
N, respectively, it will produce a product matrix [P] of order L by N.

. Enter MATLAB commands interactively first a square matrix [A] and

then calculate its trace.

Use MATLAB commands to first define the elements in its upper right
corner including the diagonal, and then use the symmetric properties to
define those in the lower left corner.

Convert either QuickBasic or FORTRAN version of the program Matx-
InvD into a MATLAB function file MatxInvD.m with a leading statement
function [Cinv,D] = MatxInvD(C,N)

Apply the program MatxInvD to invert the matrix:

3 4
[Al=|5 6 7
8 9 10

Verify the answer by using Equation 1.
Repeat Problem 9 but by MATLAB operation.
Apply the program MatxInvD to invert the matrix:

-9 -1 =2
[A]=|-3 -4 -5
-6 -7 -8

Verify the answer by using Equation 1.

Repeat Problem 11 but by MATLAB operations.

Derive [R,] and verify that it is indeed equal to [T,]T. Repeat for [R,] and
[R,].

Apply MATLAB to generate a matrix [R,] for 0, = 45° and then to use
[R,] to find the rotated coordinates of a point P whose coordinates before
rotation are (1,-2,5).

© 2001 by CRC Press LLC



15.

16.

17.

18.

19.

20.

21.

PENDULUM SHING

»

Enter the speed of your processor.
e.9., enter o8 for 50 HHz : S0}

FIGURE 7. Problem 18.

What will be the coordinates for the point P mentioned in Problem 14 if
the coordinate axes are rotated counterclockwise about the z-axis by 45°?
Use MATLAB to find your answer.

Apply MATLAB to find the location of a point whose coordinates are
(1,2,3) after three rotations in succession: (1) about y-axis by 30°, (2)
about z-axis by 45" and then (3) about x-axis by —60°".

Change m file Animatel.m to animate just the rotation of the front (F)
side of the 4 X 2 X 3 brick in the graphic window.

Write a MATLAB m file for animation of pendulum swing! as shown in
Figure 7.

Write a MATLAB m file for animation of a bouncing ball' using an
equation of y = 3e*!*sin(2x + 1.5708) as shown in Figure 8.

Write a MATLAB m file for animation of the motion of crank-piston
system as shown in Figure 9.

Write a MATLAB m file to animate the vibrating system of a mass
attached to a spring as shown in Figure 10.
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% Bouncing-Ball Animation ¥

% To see how a ball bounces, we need a ball ¥ Let us create a ball first.

Now, let it bounce 1t

Hant to see it again, enter Y/N ?

Enter the speed of your processor, e.y., enter 5@ for 58 MHz & 5@

22.

23.

24.
25.
26.
27.
28.

FIGURE 8. Problem 19.

Write a MATLAB m file to animate the motion of a cam-follower system
as shown in Figure 11.

Write a MATLAB m file to animate the rotary motion of a wankel cam
as shown in Figure 12.

Repeat Problem 9 but by Mathematica operation.

Repeat Problem 11 but by Mathematica operation.

Repeat Problem 14 but by Mathematica operation.

Repeat Problem 15 but by Mathematica operation.

Repeat Problem 16 but by Mathematica operation.
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Reciprocating Piston Engine

[T

I

|

[T

Crank Connecting Rod
rotates converts the motion

Developed by Chris L. Jensen,
enhanced by Dr. Y. €. Pao, May, 1986

FIGURE 9. Problem 20.

© 2001 by CRC Press LLC

il
ston
1des

Pi
5




Jscillatlon of a Compressed opring

Enter number of swings & 3
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FIGURE 10. Problem 21.
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FIGURE 11. Problem 22.
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ANTHATION

of Wankel rotor motion

Designed by Dr. Y. €. Pao,
the University of Nebraska-Lincoln, June, 1388

FIGURE 12. Problem 23.
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2 Exact, Least-Squares, and
Cubic Spline Curve-Fits

2.1 INTRODUCTION

Engineers conduct experiments and collect data in the laboratories. To make use of
the collected data, these data often need to be fitted with some particularly selected
curves. For example, one may want to find a parabolic equation y = ¢, + ¢,x + ¢3x?
which passes three given points (X,,y;) for i = 1,2,3. This is a problem of exact curve-
fit. Or, since knowing in advance that these three points should all fall on a straight
line, but the reason that they are not is because of bad calibration of the measuring
equipment or because of presence of noises in the testing environment.

In case that we may want express this straight line by the equation y = ¢, + c,x
for the stress and strain data collected for a stretching test of a metal bar in the
elastic range, then the question of how to determine the two coefficients c, and c,
is a matter of deciding on which criterion to adopt. The Least-Squares method is
one of the criteria which is most popularly used. The two cases cited are the
consideration of adopting the two and three lowest polynomial terms, x°, x!, and x?,
and linearly combining them.

If the collected data are supposed to represent a sinusoidal function of time, the
curve to be determined may have to be assumed as x(t) = c¢,sint + c,sin3t + c,sin5t
+ c,sin7t by linearly combining 4 odd sine terms. This is the case of selecting four
particular functions, namely, f,(t) = sin(2i-1)t for i = 1,2,3,4., and to determine the
coefficients ¢, , by application of the least-squares method.

Often some special form of curve needs to be selected to fit a given set of data,
the least-squares criterion can still be applied if mathematical transformations can
be found to convert the equation describing the curve into linear equations. This is
discussed in a section devoted to transformed least-squares curve-fit.

Another commonly applied curve-fit technique is the cubic spline method which
allows smooth cubic equations to be derived to ensure continuous slopes and cur-
vatures passing all given points. The mathematics involved in this method will be
presented.

In the following sections, we shall discuss the development of the programs
ExactFit, LeastSql, LeastSqG, and CubeSpln for the four curve-fit needs men-
tioned above.

2.2 EXACT CURVE FIT

As another example of solving a matrix equation, let us consider the problem
of finding a parabolic equation y = ¢, + ¢,X + ¢;x> which passes three given points
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(x;,yy) for i=1,2,3. This is a problem of exact curve-fit. By simple substitutions of
the three points into the parabolic equation, we can obtain:

2 .
C, +C,X, +C X =y, fori=1,2,3 (1
In matrix form, we write these equations as:

[ARC={Y} @

where {C} = [c, ¢, c;]T, {Y} = [y, ¥, ¥5]% and [A] is a three-by-three coefficient
matrix whose elements if denoted as a;; are to be calculated using the formula:

=x/! fori,j=1,2,3 3

It is easy to extend the above argument for the general case of exactly fitting N
given points by a N-1st degree polynomial y = ¢, + c,x + *** + cyx™'. The only
modification needed is to allow the indices i and j in Equations 1 and 3 to be extended
to reach a value of N. A program called ExactFit has been prepared for this need
by utilizing the subroutine GauJor to solve for the vector {C} from Equation 1 for
the general case of exactly fitting N given points. Listings for both FORTRAN and
QuickBASIC versions along with sample numerical results are presented below.

FORTRAN VERSION

C PROGRAM ExactFit - Exact-fit of N given Points with a N-l1st degree polynomial.
C Setup for N no greater than 50.

DIMENSION A(50,50),C(50) ,X(50),¥Y(50)

WRITE (*,*) 'Program ExactFit - Exact-fit of N given points by’

WRITE (%, *) ° a N-1st degree polynomial.'

WRITE (*,*) 'Input the number of points, N :

READ (*,*) N

WRITE (*,*) 'Input the coordinates (X,Y) of the points, '

WRITE (*,*) ' two numbers each time and press <Enter> key'
WRITE (*,*) ' after entering.’

DO 5 I=1,N

READ (*,*) X(I),Y{(D)

C(I)=Y(T)

Do 5 J=1,N

tn

A(I,J)=X(I)**(J-1)
CALL GauJor (A,N,50,C,D)

WRITE (*,*) 'The coefficients in Y=C(Ll}+C(2)X+.. +C(N)X** (N-1)"'
WRITE (*,*) ' are :'

WRITE (*,15) (C(I),I=1,N)

15 FORMAT (5E16.5)

STOP

END
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Sample Applications

Program ExactFit - Exact-fit of N glven points by
a N-1st degree polynomial.
Input the number of points, N
2
Input the coordinates (X,Y) of the points,
two numbers each time and press <Enter>» key
after entering.
1,2
2,2
The coefficients in Y=C(1)+C(2)X+...+C(N})X** (N-1)
are
.20000E+01 .00000E+00
Stop - Program terminated.

Program ExactFit - Exact-fit of N given points by
a N-1st degree polynomial.
Tnput the number of points, N

2
]

Input the coordinates (X,Y) of the points,
two numbers each time and press <kEnter> key
after entering.

1,2
1.5,2.5
3,4
The coefficients in Y=C(1)+C(2)X+ .. . 4C(N)X** (N-1)
are
.10000E+01 L10000E+00 LO00000E+00
Stop - Program terminated.

Program ExactFit - Exact-fit of N given points by
a N-1st degree polynomial.
Tnput the number of points, N
Input the coordinates (X,Y) of the points,
two numbers cach time and press <Enter> key

after entering.

1,1
2,5
4,4
The coefficients in Y=C(1)+C(2)X+...+C(N)X** (N-1)
are
-.60000E+01 .85000E+01 -.15000E+01
Stop ~ Program terminated.
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QuickBASIC VErsioN

‘*¥%* PROGRAM ExactFit - Exact-fit of N given points by a N-1lst degree polynomial.
' Setup for N on greater than 50.

DECLARE SUB GauJor (A(), N, C(), D)

SCREEN 2: CLEAR : CLS : KEY OFF
PRINT "Program ExactFit - Exact-fit of N given points by a N-lst degree polynomial."
PRINT
PRINT "Input the number of points, N : "; : INPUT ; """, N

DIM A(N, N), C(N), X(N), Y (N}

PRINT
PRINT "Input the coordinates of the points,
PRINT "two numbers each time"

PRINT " and press <Enter> key after entering :"
FOR I =1 TO N
INPUT ; """, X(I), ¥Y(I)

Cc(1) = Y(I)
FOR J =1 TO N
A(I, J) = X(I) * (J - 1)
NEXT J
PRINT
NEXT I
CALL GauJor{(aA(), N, €(), D)
PRINT "The coefficients in Y=C(1)+C(2)X+...+C(N)X"(N-1) are : "
FOR I =1 TO N
PRINT USING " L300 111 T Seleliir I oX & § I
NEXT I
PRINT
END

Sample Application

Program ExactFit - Exact-fit of N given points by a N-1lst degree polynomial.

Input the number of points, N

3

Input the coordinates (X,Y) of the points, two numbers each time
and press <Enter> key after entering.

1,1

2,5

3,3

The coefficients in Y=C{1l}+C(2)}X+...4C(N)X**x (N-1) are

-9.0000E+01 1.30000E+01 -3.0000E+10
Stop - Program terminated.

MATLAB Application

For handling the exact curve fit of N given points with a N-1st degree polynomial,
there is no need to convert either the FORTRAN or QuickBASIC program Exact-
Fit. The sample problems therein can be readily solved by MATLAB as follows:

>> X=[1,2]"; ¥Y=[2,2]"; A=[ones(2,1),X]; C=A\Y

C =
0
>» ¥X=[1,1.5,2]"; v=1[2,2.5,4]"; A-[ones(3,1),X,X."2]; C=A\Y
C =
1
1
0

© 2001 by CRC Press LLC



-6.0000
8.5000
-1.5000

>> X=[1,2,3]"'; Y=[1,5,3]"; A~-[ones(3,1),X,X."2]; C=A\Y

Notice that the coefficient {C} for the curve-fit polynomial is obtained by
solving [A]J{C} = {Y} where matrix [A] is formed by substituting the X values
into the x' terms for i = 0 to N-1 where N is the number of points provided.
MATLAB function ones has been used to generate the first column of [A] and
MATLAB matrix operation of C = A\Y which premultiplies {Y} by [A]! to
obtain {C}.

Also, this exact curve-fit problem can be treated as a special case of fitting N
given points by a linear combination of N selected functions which in this case
happens to be the polynomial terms of x° to x™-!, by the least-squares method. A m
file called LeastSqG.m which is discussed in the program LeastSqG can be readily
applied to treat such a exact curve-fit problem. Here, we demonstrate how Least-
SqG.m is used by MATLAB interactive operation in solving the sample problems
previously presented in the FORTRAN and QuickBASIC versions of the program
ExactFit. First, a function must be prepared to describe the ith selected function x!
as follows:

function F=FsSPoly (i, xV)
F=xv.” (1=-1);

The results of four MATLAB applications are:

>> X=[1,21]; Y=[(2,3]; C=LeastSqgG('a:FSPoly',X,Y,2,2)

A =
2 3
3 5
R
4
S
¢ =
0000
0.0000
>> X=[1,1.5,3]; Y=[2,2.5,4]; C=LeastsgG('a:FSPoly',X,Y, 3, 3)
A =
3.0000 5.5000 12.2500
5.5000 12.2500 31.3750
12.2500 31,3750 87.0625
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B.0H000
17.7500
43,6250

1.0000
1.0000
0.0000
41; ¥=[1,5,4]1; C=LeastSqgG('a:FSPoly',¥,Y,3,3

-6.0000
8.5000
-1.5000

>> X={1,2,31; Y=[1,5,3); C=least8qgG('a:FSPoly"',X,Y, 3, 3)

3 6 14
6 14 36
14 36 98
R =

-9.0000
13.0000
-3.0000

Notice the coefficient vector {C} in the curve-fit polynomial p(x) = ¢, + ¢?x +
. + cyx™ ! is solved from the matrix equation [A]{C} = {R} where {A} and {R}
are generated using the specified points based on the least squares criterion. The
solution of [A]{C} = {R} is simply implemented by MATLAB with the statement
C = A\R in the file LeastSqG.m.
To verify whether the points have really been fitted exactly, Figure 1 is presented.
It is plotted with the following MATLAB statements, adding to those already listed
above:

>> XC=[1:0.1:3]; for I=1:3, Creverse(I)=C(4-I); YC=polyval(Creverse, XC)
>> plot(XC,YC,X,Y,"'*'), xlabel('X'), ylabel ('Y ")

Notice that for application of polyval.m, MATLAB needs the coefficients of the
polynomial arranged in descending order. Since the array C contains the coefficients
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FIGURE 1. The parabolic curve passes through all of the three given points.

in ascending order, a new array called Creverse is thus created for calculation of the
curve values for 1<X<3 and with an increment of 0.1. Figure 1 shows that the
parabolic curve passes through all of the three given points.

2.3 PROGRAM LEASTSQ1 — LEAST-SQUARES LINEAR CURVE-FIT

Program LeastSql is designed for curve-fitting of a set of given data by a linear
equation based on the least-squares criterion.? If only two points are specified, a
linear equation which geometrically describes a straight line can be uniquely derived
because the line must pass the two specified points. This is the case of exact fit. (See
programs Gauss and Lagrangl for examples of exact fit.) However, the specified
data are often recorded from a certain experiment and due to inaccurate calibration
of equipment or due to environmental disturbances such as noise, heat, and so on,
these data not necessarily follow an expected behavior which may be described by
a type of predetermined equation. Under such a circumstance, a so-called forced fit
is then required. As a simple example, supposing that we expect the measured set
of three data points (X,,Y;) for i = 1,2,3 to satisfy a linear law Y = ¢, + ¢, X. If these
three points happen to fall on a straight line, then we have a case of exact fit and
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the coefficients ¢, and ¢, can be uniquely computed. If these three points are not all
on a straight line and they still need to be fitted by a linear equation Y = ¢, + ¢,X,
then they are forced to be fitted by a particular straight line based on a selected
criterion, permitting errors to exist between the data points and the line.

The least-squares curve-fit for finding a linear equation Y = ¢, + c,X best repre-
senting the set of N given points, denoted as (X,Y;) for i = 1 to N, is to minimize
the errors between the straight line and the points to be as small as possible. Since
the given points may be above, on, or below the straight line, and these errors may
cancel from each other if they are added together, we consider the sum of the squares
of these errors. Let us denote y, to be the value of Y at X; and S be the sum of the
errors denoted as e; for i = 1 to N, then we can write:

S=ef+e§+...+e§=2€f 1)

where fori=1,2,....N
e, =y, -y, =¢ +¢,X, Y, (2)

It is obvious that since X; and Y, are constants, the sum S of the errors is a
function of ¢, and c,. To find a particular set of values of ¢, and ¢, such that S reaches
a minimum, we may therefore base on calculus® and utilize the conditions dS/dc, =
0 and 9S/dc, = 0. From Equation 1, we have the partial derivatives of S as:

3S de, e de L Oe,
L oogfe e, 24 e =N [=2) e o
dc, (el dc, e dc, Feeten dc, ) Ze‘ dc,

i=1

and

dS de de de - de,
D oofe, e, 4 e - N |=2) e
de, (el dc, e dc, e tex de, ) Zle‘ dc,

From Equation 2, we note that de/dc, = 1 and de/dc, = X;. Consequently, the
two extremum conditions lead to two algebraic equations for solving the coefficients
¢, and c;:

N

L, + iXi sziYi 3)
i=1 =1

i
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and

zN:Xi c, + zN:Xf czziXiYi )
i=1 i=l1 i=1

Program LeastSq1 provided in both FORTRAN and QuickBASIC versions is
developed using the above two equations. It can be readily applied for calculating
the coefficients ¢, and c,. Two versions are listed and sample applications are
presented below.

QuickBASIC VEersioN

' * Program Least8gl - Linear Least-Squares Curve Fitting *
CLEAR : CLS : SCREEN 2: KEY OFF
W=8: H=8
PRINT " * Program LeastSgl - Fits N given points by a line; Y = mX
+ b * "
PRINT : INPUT "Enter total number of points : ", N: DIM X(N), ¥Y(N):
PRINT
PRINT "Input the X values and press <Enter> key after entering each
number. "
FOR T =1 TO N
INPUT ; X(T)
NEXT T
PRINT
PRINT "Input the Y values and press <Enter> key after entering each
number. "
FOR T =1 TO N
INPUT ; Y (T)

NEXT T
SUMX = 0
SUMXX = 0
SUMXY = O
SuMY = 0
FOR J =1 TO N
SUMX = SUMX + X(J)
SUMXX = SUMXX + X(J) *~ 2
SUMY = SUMY + Y(J)
SUMXY = SUMXY + X(J) * Y (J)
NEXT J
DELTA = SUMX * SUMX - N * SUMXX
M = (SUMY * SUMX - N * SUMXY) / DELTA
b = (SUMX * SUMXY - SUMY * SUMXX) / DELTA
PRINT
PRINT
PRINT "The results are :"
PRINT : PRINT USING " m = ##. ###E~~ My
PRINT USING " and b = ##. ####~"**"; b
PRINT
END
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Sample Application

* Program LeastSql - Fits N given points by a line: Y = aX + b *
Enter total number of points : 5

Input the X values and press <Enter> key after entering each number.
? 12 27 32 57 8

Input the Y values and press <Enter> key after entering each number.
? 22 5% 8?2 112 24

The results are
a = 3.0195E+00 and b = -1.4740E+00

FORTRAN VERSION

C * Program LeastSgl - Linear Least-Squares Curve Fitting *
C
DIMENSION X (500),Y(500)
REAL M
WRITE (*,2)
2 FORMAT(' * Program LeastSgl - Fits N given points by a line;

* 'Y = mX + b ¥ ')
WRITE (*,4)
4 FORMAT(' Enter total number of points : ')
READ (*,*) N
WRITE (*,6)
6 FORMAT(' Input the X values : ')
READ (*,*) (X(I),I=1,N)
WRITE (*,8)

8 FORMAT(' Input the ¥ values : ')
READ (*,*) (Y(I),I=1,N)
SUMX =0
SUMXX=0
SUMXY=0
SUMY =0
DO 10 J=1,N
SUMX = SUMX + X(J)
SUMXX = SUMXX + X(J) ** 2
SUMY = SUMY + Y (J)
10 SUMKXY = SUMXY + X(J) * Y (J)
DELTA = SUMX * SUMX - N * SUMXX
M = (SUMY * SUMX - N * SUMXY) / DELTA

b = (SUMX * SUMXY - SUMY * SUMXX) / DELTA
WRITE (*,*) 'The results are :'
WRITE (*,15) M
15 FORMAT (' m= ' ,E12.5)
WRITE (*,20) b
20 FORMAT(' and b
END

',E12.5)
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Sample Application

* Program LeastSql - Fits N given points by a line; ¥ = m¥ + b *
Enter total number of points :
5
Input the X values :
1,2,3,5,8
Input the Y values :
2,5,8,11,24
The results are :
m .30185E+01
and b -.14740E+01

MATLAB APPLICATION

A m file in MATLAB called polyfit.m can be applied to fit a set of given points
(X,,Y,) fori=1to N by a linear equation Y = C,X + C, based on the least-squares
criterion. The function polyfit has three arguments, the first and second arguments
are the X and Y coordinate arrays of the given points, and the third argument specifies
to what degree the fitted polynomial is required. For linear fit, the third argument
should be set equal to 1. The following shows how the results obtained for the sample
problem used in the FORTRAN and QuickBASIC program LeastSql:

>> X = [1,2,3,5,8]; Y= [2,5,8,11,24]; A = polyfit(X,Y,1)
C = 3.0195 - 1.4740

If the third argument for the function polyfit is changed (from 1) to 2, 3, and
4, we also can obtain the least-squares fits of the five given points with a quadratic,
cubic, and quartic polynomials, respectively. When the third argument is set equal
to 4, we then have the case of exact curve-fit of five points by a fourth-order
polynomial. Readers are referred to the program ExactFit for more discussions.

Also, it is of interest to know whether one may select an arbitrary set of
functions and linearly combine them for least-squares fit, instead of the unbroken
set of polynomial terms X° X!, X2, ..., XN, Program LeastSqG to be presented
in the next section will discuss such generalized least-squares curve-fit. But before
we do that, let us first look into a situation where program LeastLQ1 can be
applied for a given set of data after some mathematical transformations are
employed to modify the data.

Transformed Least-Squares Curve-Fit

There are occasions when we know in advance that a given set of data supposed
to fall on a curve described by exponential equations of the type:
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y=b.e™" Q)
or

y=c,xe? (6)

To determine the coefficients b, and b,, or, ¢, and c, based on the least-squares
criterion, Equation 5 or 6 need to be first transformed into a linear form. To do so,
let us first consider Equation 5 and take natural logarithm of both sides. It gives:

{ny=€nb+£{n e =¢n b, +b,x @)
If we introduce new variable z, and new coefficients a, and a, such that:
z=¢ny, a,=fnb, and a,=b, (8,9,10)
Then Equation 7 becomes:
z=a, +a,Xx (11

Hence, if we need to determine the coefficients b, and b, for Equation 2.8 based
on N pairs of (x;,y;), for i= 1 to N, values and on the least-squares criterion, we
simply generate N z values according to Equation 2.11 and then use the N (x,,z;)
values as input for the program LeastSql and expect the program to calculate a, and
a,. Equations 9 and 10 suggest that b, is to have the value of a, while b, should be
equal to e raised to the a, power, or, EXP(a,) with EXP being the exponential function
available in the FORTRAN or QuickBASIC library.

Equation 6 can be treated in a similar manner by taking logarithms of both sides
to obtain:

CHX

{ny=fnc+fnx+fne™ =Cnc+{nx+c,x
or

€ny—€nx:€nX:€ncl+czx (12)
X
If we introduce new variable z, and new coefficients a, and a, such that:

z=fn(y/x), a,=fnc, and a,=c, (13,14,15)
Then, Equation 12 becomes Equation 11 and a, and a, can be obtained by the
program LeastSql using the data set of (x,y/X,) values.
As a numerical example, consider the case of a set of nine stress-versus-strain
(o vs. €) data collected from a stretching test of a long bar: (.265,1025), (.4,1400),
(.5,1710), (.7,2080), (.95,2425), (1.36,2760), (2.08,3005), (2.45,2850), and
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(2.94,2675) where the units for the strains and stresses are in microinch x 10% and
Ib/in?, respectively. When program LeastSql is applied for the modified data of
(e,0/€), the coefficients for the linear fit are a, = 15.288 and a, = -537.71. Conse-
quently, according to Equations 13 and 14, and realizing that x and y are now o and
€, respectively, we have arrived at o = 4.3615 x 10%e3377!. The derived curve and
the given points are plotted in Figure 2 which shows the curve passes the origin as
it should.
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FIGURE 2. The curve passes the origin as it should.
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2.4 PROGRAM LEASTSQG — GENERALIZED
LEAST-SQUARES CURVEFIT

Program LeastSqG is designed for curve-fitting of a set of given data by a linear
combination of a set of selected functions based on the least-squares criterion.?

Let us consider N points whose coordinates are (X,,Y,) for k=1 to N and let
the M selected function be f,(X) to f,,(X) and the equation determined by the least-
squares curve-fit be:

Y(X)=af (X)+a,f,(X)+...+a,f,(X)= iajfj(X) (1)

=

The least-squares curve-fit for finding the coefficients ¢, ,, is to minimize the
errors between the computed Y values based on Equation 1 and the given Y values
at all X,’s for k=1 to N. Let us denote y, to be the value of Y calculated at X,
using Equation 1 and S be the sum of the errors denoted as e, for k = 1 to N. Since
the y, could either be greater or less than Y,, these errors e,’s may cancel from each
other if they are added together. We therefore consider the sum of the squares of
these errors and write:

N
S=elz+e§+...+efq=26i ()
k=1
where for k= 1,2,....N
M
e =y, - Yo=| D af(x,)|-, 3)

=1

It is obvious that since X, and Y, are constants, the sum S of the errors is a
function of a, ,, . To find a particular set of values of a, , ,, such that S reaches a
minimum, we may therefore base on calculus® and utilize the conditions dS/da; = 0
fori=1to M. From Equation 2, we can have the partial derivatives of S with respect
to a’s, fori=1to M, as:

oS _ de, de,
aai_z('a+2aa+ .te J22k8a

From Equation 3, we note that de,/da, = f;(X,). Consequently, the M extremum
conditions, dS/da, = 0 for i = 1 to M, lead to M algebraic equations for solving the
coefficients a, ;. That is, for i=1 to M:

pI DIATERINS SN “
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If we express Equation 4 in matrix notation, it has the simple form:
[CKA}={R} (5)

where [C] is a MxM square coefficient matrix, and {A} and {R} are Mx1 column
matrices (vectors). { A} contains the unknown coefficients a, ,, ,, needed in Equation 1.
If we denote the elements in [C] and {R} as ¢; and r;, respectively, Equation 5
indicates that these elements are to be calculated using the formulas, fori=1,2,...,M:

= Zfi(xk)fj(xk) ©

and
L= Y E(X)Y, (7

The above derivation appears to be too mathematical; a few examples of actual
curve-fit will clarify the procedure involved. As a first example, consider the case
of selecting two (M = 2) functions f;(X) = 1 and f,(X) = X to fit three given points
(N=3), (X,,Y) =(,1), (X,,Y,) =(2.6,2), and (X;,Y5) = (2.8,2). Equations 6 and 7
then provide the following:

3
c11 = E f1 (}S‘()f1 (Xk) = fl (Xl)f1 (Xl)+f1 (}{z)f1 (Xz)+f1 (}{3)f1 (}%) = 1X1+41x1+1x1 = 3
k=1
5 ;
€1, = ¥ £ RO (X)) = £ (KDE, (K IHE) (X0, (X,)+6) (X)) £, (X)) = 1xl+1x2.6+1x2.8=6.4
k=1
3
Cp1 T Y LRI =, =64
k=1
3
c22 = Z f2 ()S()f2 ()&) = f2 (X1)£2 ()(1)+f2 (XZ)fZ ()(2)+f2 ()(3)52 ()%) = 1x1+2.6x2_5+2.8x2.8=15.6
k=1
and
3
rl = E f1 ()(k)Yk = f1 (KL)Y1+f1 (XZ)Y2+f1 ()(3)Y3 = I1x1+1x2+1x2 = 5
k=1
3
r2 = Z f2 ()S:)Yk = fz (}(1)Y1+f2 ()(2)Y2+f2 ()(3)Y3 = 1x1+2.6x2+2.8x2 = 11.8
k=1

Hence, the system of two linear algebraic equations for finding a, and a, for the

straight-line equation is:
3 64 1la | [ 5
6.4 156]|a,| |11.8
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The solution can be obtained by application of Cramer’s Rule to be a, = 0.42466
and a, = 0.58219. More examples will be given after we discuss how computer
programs can be written to compute [C] and {R} and then solve for {A}.

Program LeastSqG provided in both FORTRAN and QuickBASIC versions
is developed using the above two equations. It can be readily applied for calculating
the coefficients c, , . Both QucikBASIC and FORTRAN versions are listed and
sample applications are presented below.

QuickBASIC VErsioN

' * Program LeastS8qG - General Least-Squares Curve Fitting *
DECLARE SUB FS (I, X, F)
CLEAR : CLS : KEY OFF: SCREEN 2: W = 8: h = 8
PRINT "Program LeastSqG - Least-Squares curve-fit of N given points
by a linear "

PRINT " combination of M chosen functions"”
INPUT "Enter total number of chosen functions, M (<10)"; M
INPUT "Enter the number of (X,Y) points, N : ", N

25 LOCATE 23,5: PRINT "Have you edited the subroutine FS for the
selected function? "
LOCATE 24,5

INPUT ; "Enter Y if already done; otherwise BREAK the program and
edit! ", AS
IF A$ = "Y" THEN 35 ELSE LINE (0,22*h)-(639,24*h-1),0,BF: GOTO 25

35 DIM X (N) ,Y(N)
LOCATE 5,1: PRINT "Input the X values: Press <Enter> key after
each number is entered."
FOR T = 1 TO N: INPUT ; X(T): NEXT T
PRINT "Input the Y values: Press <Enter> key after each number is
entered."
FOR T = 1 TO N: INPUT ; Y(T): NEXT T
DIM A{M, M), C(M), FV(M, N) !
Generate matrix [A]
FOR I = 1 TO M: C(I) = 0
FOR K=1 TO N: CALL FS(I,X(K),FT): C(I)=C(I})+FT*Y(K): FV(I,K)=FT:
NEXT K: NEXT I
FOR I =1 TO M
FORJ =1 TOM : A(I, J})=0
FOR K=1 TO N: A(I,J)=A(I,J)+FV(I,K)*FV(J,K): NEXT K
NEXT J: NEXT I: GOSUB 360
PRINT: PRINT: PRINT "The coefficients, <{(i}), in the ";
PRINT "equation ¥=c(l)F(l)+c(2)F(2)+...+c(M)F(M) are

FOR T=1 TO M: PRINT USING " c(#)=##. ####~~"~ ":T,C(T): NEXT T:
PRINT

END
360 ' Solves AX=C by Gauss-Jordan Elimination X and C share same

memory space.
FOR I=1 TO M: IF I=M AND A(I,I)=0 THEN 435

IF I < M AND A(I, I) = 0 THEN 385

IF I < M THEN 390 ELSE C(M)=C{(M)/A(M,M): A(M,M)=1: GOTO 410
390 FOR J=I+1 TO M: A(I,J)=A(I,J)/A(I,I): NEXT J: C(I)=C(I)/A(I,I):
GOTO 410
395 FOR J = I + 1 TO M: IF A(J, I) = 0 THEN 405

FOR K=I TO M: T=A(I,K): A(I,K)=A(J,K): A(J,K)=T: NEXT K

T=C(I): C(I) = C(J): C(J) = T: GOTO 380
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405 NEXT J
410 FOR K = 1 TO M: IF K = I THEN 425
IF A(K, I) = 0 THEN 425
C(K)=C(K)-A(K,I)*C(I)
FOR J=I+1 TOC M: A(K,J)=A(K,J)-A(K,I)*A(I,J): NEXT J
425 NEXT K
430 NEXT I: RETURN
435 PRINT : PRINT "Matrix A is singular!"”
END
SUB FS8 (I, X, FVALUE)
ON I GOTC 100,200,300,400
100 FVALUE = X : GOTO 999
200 FVALUE = X * 2 : GOTO 999
300 FAVLUE = SIN(X): GOTO 999
400 FVALUE = COS(X): GOTO 999
999 END SUB

Sample Applications

When four functions are selected as those listed in SUB FS, an interactive
application of the program LeastSqG QuickBASIC version using the input data
entered through keyboard has resulted in a screen display of:

Program LeastSgG - Least-Squares curve-fit of N given points by a linear
combination of M chosen functions

Enter total number of chosen functions, M (<10) ? 4

Enter the number of (X,Y) points, N : 6

Input the X values: Press <Enter> key after each number is entered.
? 17 2?2 3?7 47 57 6
Input the Y values: Press <Enter> key after each number is entered.

2 27 47 72 11? 23?7 45

The coefficients, c(i), in the equation Y=c(l)F(l)+c(2)F(2)+...+c(M)F (M) are
c(l)=~2.5435E+01
c(2)= 4.9436E+00
c(3)= 8.0342E-01
c(4)=-9.9120E+00

If three sinusoidal functions, sin(7x/20), sin(3wx/20), and sin(57x/20) were
selected and replacing those listed in SUB FS, another interactive application of the
program LeastSqG QuickBASIC version is shown below.

Have you edited the subroutine FS for the selected functions?
Enter Y if already done; otherwise BREAK the program and edit! Y

Press any key to continue

Program LeastSgG - Least-Squares curve-fit of N given points by a linear
combination of M chosen functions

Enter total number of chosen functions, M (<10) ? 3

Enter the number of (X,Y) peoints, N : 5

Input the X values: Press <Enter> key after each number is entered.

7 1.47 3.27 4.87 B8? 10

Input the Y values: Press <Enter> key after each number is entered.

? 2,257 157 26.25? 337 35

The coefficients, c(i), in the equation Y=c(1)F(1)+c(2)F(2)+...+c(M)F(M) are
c(l)= 4.8732E+01
c(2)= 3.329%E+00
c(3)= 1.0738E+01
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FORTRAN VERSION

C * Program LeastSqG - General Least-Squares Curve Fitting *
C
DIMENSION A(10,10) ,C(10) ,FV(10,10) ,R(10) ,X(100) ,Y(100)
WRITE (*,2)
2 FORMAT (' Program LeastSqG - Least-Squares curve-fit of N ',
'given points by a linear'/
' combination of M chosen functions')
WRITE (*,4)
4 FORMAT (' Enter total number of chosen functions, M (<10)')
READ (*,*) M
WRITE (*,6)
6 FORMAT (' Enter the number of (X,Y) points, N : ')
READ (*,*) N
WRITE (*,8)
8 FORMAT (' Have you edited the subroutine FS for the selected',

* ' function?'/
* ' Press <Enter> if already done; otherwise BREAK the ',
* 'program and edit!’)

WRITE (*,10)

10 FORMAT (' Input the X values: ')
READ (*,*) (X(I),I=1,N)
WRITE (*,12)

12 FORMAT (' Input the Y values: ')
READ (*,*) (Y(I),I=1,N)

aQq

Generate matrix [A] and {R}

DO 25 I=1,M
R(I) =0
DO 25 K=1,N
CALL FS(I,X(K), FT)
R(I)=R(I)+FT*Y (K)
25 FV(I,K)=FT
DO 30 I=1,M
DO 30 J=1,M
A(I, J) =0
DO 30 K=1,N
30 A(I, J) = A(I, J) + FV(I, K) * FV(J, K)
CALL GAUSS(A,M,10,R)
WRITE (*,b35)
35 FORMAT (' The coefficients, c(i), in the equation',

* ' Y=c(1)F(1)+c(2)F(2)+. . .+c(M)F(M) are : ')
WRITE (*,40) (I ,R(I), I=1,6M)

40 FORMAT (' c(',I2,') = ',E12.5)
END

SUBROUTINE FS(I,X,FVALUE)
GO TO (100, 200, 300, 400),I
100 FVALUE = X
RETURN
200 FVALUE = X**2
RETURN
300 FAVLUE = SIN(X)
RETURN
400 FVALUE
RETURN
END

I

COS (X)
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Sample Application

By selecting the four functions listed in Subroutine FS, an interactive application
of the program LeastSqG using the input data given below has resulted in a screen
display of:

Program LeastSqG - Least-Squares curve-fit of N given points by a linear
combination of M chosen functions
Enter total number of chosen functions, M (<10}
4
Enter the number of (X,Y) points, N :
6
Have you edited the subroutine FS for the selected functions?
Pree <Enter> if already done; otherwise BREAK the program and edit!
Input the X wvalues:
1,2,3,4,5,6
Input the Y values:
2,4,7,11,23,45
The coefficients, c(i), in the equation Y=c(L)F(1)+c{(2)F(2)+.. .+c(M)F (M) are :

a( 1) = -.25435E+02
c( 2) =  .49436E+01
c( 3) = .B0O341E+00
c( 4) = -.99118E+01

MATLAB APPLICATION

A LeastSqG.m file can be created and added to MATLAB m files which will
take N sets of X and Y points and fitted by a linear combination of M selected
functions in the least-squares sense. The selected functions can be specified in
another m file called FS.m (using the same name as in the FORTRAN and Quick-
BASIC versions). First, let us look at a version of LeastSqG.m:

function {Cl=Least8gG(funfcn,X,¥,M,N)
A=zeros (M,M) ; R=zZeros(M,1)
for i=1:M
for j=1:M
for k=1:N
A(i,j)=A(i,])+feval (funfcn,i,X(k)).*feval (funfcn, j,X(k));
end
end
end
for i=1:M
for k=1:N
R(i)=R(i)+¥ (k) .*feval (funfen,i,X(k));
end
end
A,R,C=A\R;

Notice that the coefficients C’s is obtained by solving [A]{C} = {R} as in the
text. For MATLAB, a simple matrix multiplication of the inverse of [A] to and on
the left of the vector {R}. Complete execution of LeastSqG.m will be indicated by
a display of the matrix [A], vector {R}, and the solution vector {C}. The expression
feval(funfcn,i,X(k)) in the above program is to evaluate the ith function at X(k)
defined in a function file to be specified when LeastSqG.m is applied which is to
be illustrated next.
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Consider the case of given 5 (X,Y) points (N = 5) which are (1.4,2.25), (3.2,15),
(4.8,26.25), (8,33), and (10,35). And, the selected functions are sin(wX/20),
sin(3wX/20), and sin(5wX/20). That is, M = 3. The supporting function FS.m is
simply:

function F=FS(i,xv)
F=sin((2.%*i-1) .*xv. (pi./20);

Having prepared this file FS.m on a disk which is in drive A, we can now apply
LeastSqG.m interactively as follows:

>>X =[1.4,3.2,4.8,8,10];Y =[2.25,15,26.25,33,35]; C = LeastSqG('A:FS',X,Y,3,5)

The results shown on screen are:

-0.4171
3.3109
-0.3202

1.0752
-0.3202
2.4849

2.0528
L4171
1.0752

-3

If four functions X, X2, sin(X), and cos(X) are selected, we may change the

FS.m file to:

function F=FS (i, xVv)
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.0714
.8215
L3922

L9251

.1926
.4670

if

elseif
elseilf
elseif
end

i==1,
i==2,
i==3,
1i==4,

F=xv;
F=xv."2
F=sin (xv)
F=cos (xv)



Same as for the FORTRAN and QuickBASIC versions, if we are given six
(X,Y) points, (1,2), (2,4), (3,7), (4,11), (5,23), and (6,45), MATLAB application of
LeastSqG.m will be:
>> X=[1,2,3,4,5,6]; Y=[2,4,7,11,23,45]; C-LeastSqG('A:FS',X,Y,4,6)

The results are:

A= R = C =
1.0e+003 * 1.0e+003 * -4.7576
2.1116
0.0910 0.4410 -0.0064 0.0013 0.4600 5.7657
0.4410 2.2750 -0.0404 0.0212 2.4520 -0.9869
-0.0064 -0.0404 0.0212 -0.0001 ~0.0366
0.0013 0.0212 -0.0001 0.0029 0.0350

Notice that the values in [A] and {R} are to be multiplied by the factor 1.0e +
003 as indicated. For saving space, [A], {R}, and {C} are listed side-by-side when
actually they are displayed from top-to-bottom on screen. To further utilize the
capability of MATLAB, the obtained {C} values are checked to plot the fitted curve
against the provided six (X,Y) points. The following additional statements are
entered in order to have a screen display as illustrated in Figure 3:

45

39

25

28

15

18

[s+]
-

FIGURE 3. The “*’ argument in the second plot statement requests that the character * is
to be used for plotting the given points,

© 2001 by CRC Press LLC



>> XC=[1:0.2:06]; YC=zeros(l,26);
>> for 1=1:2¢6
for k=1:4
YC(1)=YC (1) +feval ("A:FS8",k,XC(1)) .*C(k);
end
end
>> hold; plot(XC,YC); plot(X,Y,'*")

The statement XC = [1:0.2:6] generates a vector of XC containing value from
1 to 6 with an increment of 0.2. The command “hold” enables the first plot of XC
vs. YC which is the resulting least-squares fitted curve, to be held on screen until
the given points (X,Y) are superimposed. The *’ argument in the second plot
statement requests that the character * is to be used for plotting the given points, as
illustrated in Figure 3.

Next, another example is given to show how MATLAB statements can be applied
directly with defining a m function, such as FS which describes the selected set of
functions for least-squares curve fit. Consider the problem of least-squares fit of the
points (1,2), (3,5), and (4,13) by the linear combination Y = C,f,(X) + C,f,(X) where
f,(X) = X-1 and f,(X) = X2. An interactive application of MATLAB may go as follows:

>> X=[1,3,4]; Y=[2,5,13]; Tl=X-ones(1,3); T2=X."2;
>> A(1,1)=T1*T1'; A(1l,2)=T1*T2'; A(2,1)=A(1,2); A(2,2)=T2*T2";

>> R(1)=Y*T1'; R(2)=Y*T2'; C=RA\R';
>> A,R',C
A =
13 66
66 338
R' —
4
2!:[
C =
-7.0576
2.1316

>>XC=1:0.1:4;YC=C(1)* (XC-ones (1,31))+C(2) *XC."2;
>»plot (XC, Y0, X, Y, ")

The resulting curve is plotted in Figure 4 using 31 points, (XC,YC), calculated
based on the equation Y = —7.0526(X~1) + 2.1316X? for X values ranging from 1
to 4. The three given points, (X,Y), are superimposed on the graph using ‘*’
character. Notice from the above statements, the coefficients C(1) and C(2) are solved
from the matrix equation [A]{C} = {R} where the elements in [A] are generated
using interactively entered statement and so are the elements of {R}. MATLAB
matrix operations such as transposition, subtraction, multiplication, and inversion
are all involved. Also, notice that here no use of MATLAB ‘hold’ as for generating
Figure 1, is necessary if X, Y, XC, and YC are all used as arguments in calling the
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FIGURE 4. The curve is plotted using 31 points, (XC,YC), calculated based on the equation
Y = -7.0526(X-1) + 2.1316X? for X values ranging from 1 to 4.

plot function. The statement XC = 1:0.1:4 generates a XC row matrix having ele-
ments starting from a value equal to 1, equally incremented by 0.1 until a value of
4 is reached.

MATHEMATICA APPLICATIONS

Mathematica has a function called Fit which least-squares fits a given set of
(x,y) points by a linear combination of a number of selected functions. As the first
example of interactive application, let us find the best straight line which gives the
least squared errors for fitting a set of five points. This is the case of two selected
functions f,(x) = 1 and f,(x) = X. the interactive application goes as follows:

In[1]: = Fit[{{1,2},{2,5},{3,8},{5,11},{8,24}}, {1, x}, x]
Out[1]: = —1.47403 + 3.01948 x

Notice that Fit has three arguments: first argument specifies the data set, second
argument lists the selected function, and the third argument is the variable for the
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derived equation. In case that three points are given and the two selected functions
are f,(x) = x—1 and f,(x) = x%, then the interactive operation goes as follows:
In[2]: = Fit[{{1,2},{3,5},{4,13}}, {x-1, x"2}, x]
Out[2]: = =7.05263 (-1 + x) + 2.13158 x

Two other examples previously presented in the MATLAB applications can also
be considered and the results are:

In[3]: = (Fit[{{1,2}, {24}, {3,7}, {4,11}, {5,23}, {6,45}},
{x, x2, Sin[x], Cos[x]}, x])
Out[3]: = —4.75756 x + 2.11159 x2 - 0.986915 Cos[x] + 5.76573 Sin[x]
and
In[4]: = (Fit[{{1.4, 2.25}, {3.2, 15}, {4.8, 26.25}, {8, 33}, {10, 35}},
{Sin[Pi*x/20], Sin[3*Pi*x/20], Sin[5*Pi*x/20]}, x])

Out[4]:=35.9251 Sin[ﬁ]— 1.19261 Sin|:3 Pix
20 20

]— 3.46705 Sin[s Pi X]
20

All of the results obtained here are in agreement with those presented earlier.

2.5 PROGRAM CUBESPLN — CURVE FITTING
WITH CUBIC SPLINE

If a set of N given points (X;,Y;) fori=1, 2,...,N is to be fitted with a polynomial
of N-1 degree passing these points exactly, the polynomial curve will have many
fluctuations between data points as the number of points, N, increases. A popular
method for avoiding such over-fluctuation is to fit every two adjacent points with a
cubic equation and to impose continuity conditions at the point shared by two
neighboring cubic equations. This is like using a draftsman’s spline attempting to
pass through all of the N given points. It is known as cubic-spline curve fit. For a
typical interval of X, say X to X, ,, the cubic equation can be written as:

Y=aX +bX" +cX+d, €]

where a;, b, ¢;, and d; are unknown coefficients. If there are N—1 intervals and each
interval is fitted by a cubic equation, the total number of unknown coefficients is
equal to 4(N—1). They are to be determined by the following conditions:

1. Each curve passes two specified points. The first and last specified points
are used once by the first and N-Ist curves, respectively, whereas all
interior points are used twice by the two cubic curves meeting there. This
gives 2 + 2(N-2), or, 2N-2 conditions.
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2. Every two adjacent cubic curves should have equal slope (first derivative
with respect to X) at the interior point which they share. This gives N-2
conditions.

(@)

3. For further smoothness of the curve fit, every two adjacent cubic curves
should have equal curvature (second derivative with respect to X) at the
interior point which they share. This gives N-2 conditions.

4. Atthe end points, X, and Xy, the nature spline requires that the curvatures
be equal to zero. This gives 2 conditions.

Instead of solving the coefficients in Equation 1, the usual approach is to apply
the above-listed conditions for finding the curvatures, Y” at the interior points, that

is for i =2,3,...,N-1 since (Y”), = (Y”)y = 0. To do so, we notice that if Y is a cubic
polynomial of X, Y” is then linear in X and can be expressed as:

Y”=AX+B A3)

If this is used to fit the ith interval, for which the increment in X is here denoted
as H,= X, , ,—X;, we may replace the unknown coefficients A and B with the
curvatures at X; and X;, ;, (Y”), and (Y”),,, by solving the two equations:

Y/=AX,+B and Y/ =AX,, +B 4.5)

By using the Cramer’s rule, it is easy to obtain:

Yl _ Y./l X Y./l _ Yl/
A=t i and B=Y"- M 6,7)
X=X X=X
Consequently, Equation 3 can be written as:
. Yill Yill
Y =—H(X,, —X)+?+_1(X—Xi) ®)

i i

Equation 8 can be integrated successively to obtain the expressions for Y’ and
Y as:

’ - i” Yi”
S A R g
and
\'ed 3 Y”
Y=t (xm—x)ﬁﬁ(x—xif+CIX+C2 (10)

1 1
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The integration constants C; and C, can be determined by the conditions that at
X, Y=Y,and at X;, ., Y =Y, ,. Based on Equation 10, the two conditions lead to:

1

Y.” Y,”
Y:E‘Hf+ClXi+C2 and Y, = ‘6”Hi2+C1Xi+l+C2 (11,12)

i i+ T
Again, Cramer’s rule can be applied to obtain:

(Yi”_ Y"J:' )Hi _ Y1 — Yi+l (13)

! 6 H.

1

and

C. =— (XiHYi”_ XiYilJ:l )Hi _ XiYi+1 _ Xi+1Yi (14)
? 6 H. H.

1 1

Substituting C, and C, into Equations 11 and 12 and rearranging into terms
involving the unknown curvatures, the expressions for the cubic curve are:

6 H. 6

1

Y= Yi”[(x”‘ “X) H,(X,,, - X)] +m[(x “X) H,(X - Xi)]

+Y, [XM — XJ+ YH{X —X; J (15)

and

2
Y/ — Y”[I_Ii _ (Xi+l - X) }_’_ Y”

2
‘|6~ 2H M[(X_Xi) —Hi]+Y”‘_Yi (16)

2H, 6 H,

1

Equation 15 indicates that the cubic curve for the ith interval is completely
defined if in addition to the specified values of Y, and Y, , |, the curvatures at X; and
X1, (Y”), and (Y”),, , respectively, also can be found. To find all of the curvatures
at the interior points X, through Xy_,, we apply the remaining unused conditions
mentioned in (2). That is, matching the slopes of two adjacent cubic curves at these
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interior points. To match the slope at X, first we need to have the slope equation
for the preceding interval, that is from X,_, to X, for which the increment is denoted
as H,_ ;. From Equation 16, we can easily write out that slope equation as:

Y =Y” ij1 _ (Xl - X)2 +Y” (X_ )<i—1)2 _i + Yi - Yi—l
o6 2H, "l 2H,, 6 H

i-1

a7

i-1

Using Equations 16 and 17 and matching the slopes at the interior point X; and
after collecting terms, we obtain:

Y , -Y —Y.
H Y + 2(Hi—l + Hi)Yi” +HY], = 6( 1;1 %Y HYH J (18)

i-1 i

This equation can be applied for all interior points, that is, at X = X, for i =
2,3,...,N-1. Hence, we have N-2 equations for solving the N-2 unknown curvatures,
(Y”), fori=2,3,...,N-1 when the X and Y coordinates of N + 1 points are specified
for a cubic-spline curve fit. Upon substituting the calculated curvatures into Equation
15, we obtain the desired cubic polynomial for each interval of X.

If the N given points, (X,,Y;) for i= 1,2,...,N, has a periodic pattern for every
increment of X -X,, we can change the above formation for the open case to suit
this particular need by requiring that the points be specified with Yy =Y, and that
curvatures also should be continuous at the first and last points. That is to remove
the 4th rule, and also one condition each for the 2nd and 3rd rules described in (2).
Equation 18 is to be used for i = 1,2,...,N to obtain N equations for solving the N
curvatures. For obtaining the first and last equations, we utilize the fact that since
Y and its derivatives are periodic, in addition to Yy =Y,, (Y")y= (Y”),, Hy=H,,
we also have Yy, 1 =Y, Yo=Yy s (Y)yi 1= (Y, (Yo = (Y")y, and Hy = Hy;.

A program called CubeSpIn has been prepared to handle both the nonperiodic
and periodic cases. It formulates the matrix equation [A]{Y”} = {C} for solving the
curvatures at X; for i= 1,2,...,N based on Equation 18. A Gaussian elimination
scheme is needed by this subroutine for obtaining the solutions of Y”. Program
CubeSpIn also has a block of statements for plotting of the spline curves. This
subroutine is listed below.

QuickBASIC VErsioN

Program CubeSpln - Cubic-Spline Curve Fit of N equally spaced points,
(X(I),Y(I)) for I=1 through N.

N, (X(I),¥Y(I)) for I=1 through N, and KK are inputs.

KK=1- Open ends, Y(N) .NE.Y(1l): KK=2- Periodic, Y(N)=Y(1l).

CLS : KEY OFF: SCREEN 2: H= 8: W= 8: ASPR =1': N = 5: KK = 1
DIM A(N, N), C(N), X(N), Y(N)
FOR I = 1 TO N: READ X(I): NEXT I
FOR I = 1 TO N: READ Y(I): NEXT I
DATA 1.,2.,3.,4.,5., 2.,4.,7.,8.,11.
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' First, solve for the curvatures.
FOR J = 1 TO N: A(1l, J) = 0: A(N, J) = 0: NEXT J
IF XK = 1 THEN A(l, 1) = 1: A(N, N) = 1: C(1) = 0: C(N) = 0: GOTO 260

IF KK = 2 THEN 230 ELSE 250
230 A(l, 1) = 2: A(1, 2) =1
A(l, N - 1) =1: A(1, N) = 2
A(N, 1) =1
AN, Ny =-1
C(l)y = 6 * (Y(2) - Y(1) + Y(N - 1) - Y(N))
C(N) = 0: GOTO 260
250 PRINT "Error in specifying KK.": GOTO 610
260 FOR I = 2 TON - 1
FOR J =1 TO N
IF J=1I -1 THEN A(X, J) = X(I ) - X{I - 1) . GOTO 320
IFJ=1 THEN A(I, J) = (X(I+1) - X(I - 1)) * 2: GOTO 320
IF J =1 + 1 THEN A(I, J) = X(I+l) - X(I) . GOTO 320
A(I, Jd) =0
320 NEXT J
C(I) = 6 * ((Y(I+1)-Y(I))/(X(I+1)-X(I)) + (Y(I-1)-Y(I))/(X(I)-X(I-1)))
NEXT I
GOSUB 620 'Solve for (Y")'s using Gaudor
365
FOR I = 1 TO N: PRINT C(I); : NEXT I: PRINT

! Next, plot the spline curve from X(1) to X(N).

400 W1 = O : W2 = 6 : W3 =0 : W4 = 12
V1l = 10.5 * W: V2 = V1 + 60 * W: V4 = 20.5 * H: V3 = V4 - 18 * H
DEF FNXF (X) = V1 + (X - W1) * (V2 - Vi) / (W2 - W1)
DEF FNYF (Y) = V4 + (Y - W3) * (V3 - V4) / (W4 - W3)
CLS : LINE {FNXF (6) , FNYF (0 ))-(FNXF(0), FNYF(0))
LINE - (FNXF(0), FNYF(12))
FORI =1 TON

LINE (FNXF(X(I) ), FNYF(Y(I)+.2))~ (FNXF(X(I) ), FNYF(Y(I)-.2))
LINE (FNXF(X(I)-.05), FNYF(Y(I) )) - (FNXF (X (I)}+.05), FNYF(Y(I) ))
NEXT I

480 FOR I = 1 TO 6
LINE (FNXF(I Y, V4) - (FNXF (I Y, va-3)
LINE ( V1l, FNYF(2*I -« V1+W, FNYF(2%I ))
NEXT I

512 FOR I = 1 TO 7
LOCATE 22, V1 / W+ (I - 1) * 10 - 1 : PRINT I - 1
LOCATE V4 / H - 3 *+ I + 3.1, VI / W - 3: PRINT USING "##";, 2 * (I - 1)
NEXT I

519 LOCATE 23, 41: PRINT "X": LOCATE 12, 5: PRINT "Y"
PSET (FNXF(X (1)), FNYF(Y(1)))
NP = 21: XT = X(1)
FOR I = 2 TO N
DD = X(I) - X(I - 1): DX = DD / (NP - 1)
Hl = C(I - 1) / 6 / DD: H2 = C(I) / (6 * DD)
H3 = Y(I - 1) /DD - C{(I - 1) *DD / 6
H4 = Y(I) /DD - C(I) * DD / 6
FOR J = 2 TO NP
XT = XT + DX
F = HL* ((X(I)-XT)"3)+H2*% ((XT-X(I-1))"3)+H3* (X (I) -XT)+H4* (XT-X(I-1))
LINE - (FNXF (XT), FNYF(F))
NEXT J
NEXT I

610 END

620 ' GauJdor.Sub - scolves a matrix equation A(N,N)X(N)=C(N)
' by Gauss-Jordan elimination method.
' X and C share same storage space.
FOR I = 1 TO N

IF A(I, I) = O THEN 660 'Normalization
650 FOR J = I + 1 TON
A(I, J) = A(I, ) / A(I, I)
NEXT J

C(I) = C(I) / A(I, I): GOTO 630
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660 FORJ =1+ 1 TON
IF A{(J, I) = 0 THEN 680 'Pivoting
FOR K= I TO N
T = A(I, K)
A(I, K) = A(J, K)
A(J, K}y =T
NEXT K
T = C(1)
C(I) = C(J)
c) =T
GOTO 650
680 NEXT J
630 FOR K =1 TO N
IF K = I THEN 720 'Elimination
IF A(K, I) = O THEN 720
C(K) = C(K) - A(K, I) * C(I)
FORJ=1+1TON
A(K, J) = A(K, J) - A(K, I) * A(I, J)
NEXT J
720 NEXT K
NEXT I
RETURN

Sample Application

When program CubeSpln is run, it gives a plot of the cubic spline curves as
shown in Figure 5. The given points are marked with + symbols. Between every two
adjacent points, a third-order polynomial is derived. There are two different third-
order polynomials for the left and right sides of every in-between points, at which
the slopes and curvatures determined by the two third-order polynomials are both
continuous.

MATLAB APPLICATION

MATLAB has a function file called spline.m which can be applied to perform
the curve fit of cubic spline. The function has three arguments: the first and second
arguments are for the coordinates of the data points for which a cubic spline curve
fit is to be obtained, and the third argument should be an array containing a more
finely spaced abscissa at which the curve ordinates should be calculated for plotting
the spline curve. Let us redo the problem for which Figure 5 has been obtained. The
MATLAB application and the resulting display are as follows:

>> ¥=[1,2,3,4,5)1; ¥=[2,4,7,8,11}; XC=[1:0.2:5}; YC=spline(X,Y,XC)

Columns 1 through 7
2.0000 2.0920 2.37¢0 2.8140 3.3680 4.0000 4.6720

Columns 8 through 14
5.3460 5.8%40 £.5480 T.0000 7.3160 7.52380 TLER20

Columns L5 through 21
7.8240 3.0000 8.2560 8.6380 9.1920 9.9640 L1.00Q0

>> plot (X,Y,'*',XC,YC)
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FIGURE 5. When program CubeSpln is run, it gives a plot of the cubic spline curves.

The plot of the spline curve using XC and YC data superimposed with the given
5 (X,Y) points marked by the * character is shown in Figure 6 which is identical to
Figure 5 except different in the ranges of the axes.

For dealing with data sets, more features of plot.m of MATLAB can be utilized.
Figure 7 shows how different data sets can be marked with different characters, axes
can be labeled, and various text can be added. The interactive MATLAB commands
entered are:

> X =[1,2,3,41; Y =[2,4,7,13]); Xl=10.5 1.2 2.5 23.7); Yi={3 ¢ 5 11];
X2=[3.0 3.6 4.2 5.11; YZ=(3 & 8 11};

s oplot (M, Y, "*', KL, YL, T+, K2, Y2, )

»>» xlabel ("X'), ylabel('Y')

S>> text(0.7,12,'%X,¥ - *')

>> text(0.7,11,'XKL, Yl - +")

>> text(0.7,10,'X2,Y2 - .")

Notice the commands xlabel, ylabel, and text are adding labels for the x and y
axes, and text, respectively. The specific content string of label or text is to be spelled
out inside the two single quotation signs. The first two arguments for text are the
coordinates, at which the left lower corner of the first character of that string.

© 2001 by CRC Press LLC



11 T T T T T T T

18 | -

FIGURE 6. The plot of the spline curve using XC and YC data superimposed with the given
5 (X,Y) points marked by the * character is identical to Figure 5 except different in the ranges
of the axes.
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FIGURE 7. How different data sets can be marked with different characters, axes can be
labeled, and various text can be added.
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MATHEMATICA APPLICATIONS

Mathematica has an interpolation function which fits a collection of specified
points by a polynomial. The command InterpolationOrder specifies the order of
polynomial and the default order is 3. Here are some examples of applications and
plots.

Input[1]: =

x={1,2,3,4,5}

Output[1] =
{1,2,3,4,5}

Input[2]: =
y=1{2,4,7.8,11}

Output[2] =
{2,4,7,8,11}

Input[3]: =

Plot[Evaluate[Interpolation[y]][x], {x,1,5},
Frame->True, AspectRatio->1]

Output[3] =

10

FIGURE 8.
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Evaluate calculates the values of the fitted polynomial within the specified
interval. In this case, the y values are interpolated using the cubic polynomial.

To add more features to a plot, Mathematica has commands Text allowing a
string of characters to be placed at a desired location, and FrameLabel allowing
labels to be added to the axes. In fact, Figure 8 is not the result of Inpuz[3] but the
addition of the five + markers with the statement

Input[4]: =

Show[%,Graphics[Table[Text[**”, {x[[i]]y[[ilI}],{i,1,5}11]

Output[4] =

—Graphics—

% refers to the previous output and %% refers to the next-to-the-last output,
and so on. Show and Graphics enable additional graphics to be shown. Table lists
a series of entries specified by the running index variable which in this case is I
having a starting value of 1 and incremented by 1 (omitted), and ending at a value
equal to 5. Notice that the four * markers are not exactly located at the coordinates
specified, for the reason that the character itself is not centered but offsets like a
superscript.

As another example, consider the plot shown in Figure 9 which is resulted from
of the following statements:

Input[1]: =

X = {1’2’374}

Output[1] =
{17 2’ 3’ 4}

Input[2]: =
Y={2,4,7,13}

Output[2] =
{27 4’ 7’ 13}

Input[3]: =
X1=1{0.5,1.2,2.5,3.7}

Output[3] =
{0.5,1.2,2.5,3.7}
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Input[4]: =
Y1={3,6,5,11}

Output[4] =
{3,6,5,11}

Input[5]: =
X2={3.0,3.6,42,5.1}

Output[5] =
{3.0,3.6,4.2,5.1}

Input[6]: =
Y2=1{3,6,8,11}

Output[6] =
{3,6,8,11}

Input[7]: =
g1 = Show[Graphics[Table[ Text[“*” {X[[i]], Y[[i]] }1.{i,1,5}],
Table[Text[“ + ,{X1[[i]],Y1[[i]1}1,{i,1,5}],
Table[Text[“.”,{X2[[i]],Y2[[i]1}1,{i,1,5} 111

Output[7] =

—Graphics—

Input[8]: =
g2 = Show[g1, Frame->True, AspectRatio->1,
FrameLabel->{“X",“Y”’}]

Output[8] =

—Graphics—

Input[9]: =

Show[g2,Graphics[Text[“X-Y — *”,{0.7,12},{-1,0}],
Text[“X1-Y1 —+ 7,{0.7,11},{-1,0}1,
Text[“X2-Y2 — .”,{0.7,10}1,{-1,0}111
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Output[9] =

12¢ X~Y - *
X1-Y1 - + +
10 X2~Y2 - .
gl
*
> 6 +
+
4 *
+
2} »
0
0 1 2 3 4 S
X
FIGURE 9.

The two intermediate plots designated as gl and g2 are actually displayed on
screen but not presented here. Only the final plot showing all of the ingredients is
presented in Figure 9. Giving plot names facilitates the later referral; a better arrange-
ment than using the % option. In Figure 9, it is also illustrated that the label for the
vertical axis is rotated by 90 degrees.

Mathematica has a package called SplineFit can also be called into service for
the need of spline curve-fit. For creating Figure 9, we may enter the request as
follows:

Input[1]: = <<NumericalMath" SplineFit®

Input[2]: = XYS = {{1,2}.{2,4},{3,7},{4.8},{5,11}};
Input[3]: = Spline = SplineFit[XYS, Cubic]
Output[3] = SplineFunction[Cubic, {0.,4.}, <>]

Input[4]: = ParametricPlot[Spline[x], {x,0,4}, Frame->True, AspectRatio->1]
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Output[4] = —Graphics—
Input[5]: = Show[%,Graphics[Table[Text[“X”,{ XYS[[i]]}].{i,1,5}]]]
Output[5] = —Graphics—

In Input[1], << loads the specified package “SplineFit . Input[2] illustrates how
the coordinates of points can be entered as pairs and ; can be used to suppress the
display of the output. “Cubic” spline fit is requested in Input[3] and in Input[5] the
ParametricPlot command is applied so that the coordinates of the points on the cubic
spline curves are generated using a third parameter. Input[5] also demonstrates how
a matrix should be called in a looping situation.

Notice that two plots for Output[4] and Output[5] are not presented here, for
the reason that Figure 9 already shows all of the needed details. However, it should
be mentioned that use of “X” as the character in Text for marking the five XYS
points in Input[5] will enable it to be centered at the coordinates specified instead
of being upwardly offset as is the case of using the character “*” in Figure 9.

2.6 PROBLEMS

Exact Curve-Fit

1. Modify the program ExactFit so that the given points (1,3), (3,8), and
(4,23) can be exact-fitted by the equation y = ¢,x + ¢,x? + c;x*

2. Modify the program ExactFit so that the given points (0,0.2), (2,0.5),
(5,-0.4), and (7,-0.2) can be exact-fitted by the equation y = c,sinx +
C,81n2x + c5sin3x + c,sin4dx.

LeastSQ1

1. Given five points (1,1), (2,3), (3,2), (4,5), and (5,4), calculate the coeffi-
cients ¢, and c, in the linear equation y = ¢, + c,x which fits the five points
by the least-squares method.

2. For a given set of data (1,-2), (2,0), (3,1), and (4,3), two equations have
been suggested to fit these points. They are Y= X-2 and Y = (-X? +
7X-10)/2. Based on the least-squares criterion, which equation should be
chosen to provide a better fit? Explain why?

3. During a tensile-strength test of a metallic material the following data
(X, Yy fori=1,2,...,7 where X and Y represent strain (extension per unit
length) and stress (force per unit area), respectively, have been collected:

| .265 .395 .695 .955 1.35 2.05 2.45 (x1073)
| 1.03 1.41 1.71 2.09 2.42 2.76 3.01 (x102)

X
Y
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10.
11.
12.
13.

14.

15.
16.

Fit these data by the least-squares method with an equation Y =
b, XExp(b,X) and calculate the values of the coefficients b, and b,. (Note:
m(Y/X) = (n(b,) + b,X)

Apply polyfit of MATLAB to the data given in Problem 1 and fit them
linearly. Compare the answer with that of Problem 1.

Same as Problem 4 except the data are to be fitted by a quadratic equation.
Same as Problem 4 except the data are to be fitted by a cubic equation.

Same as Problem 4 except the data are to be fitted by a quartic equation.
Use the results of Problems 4 through 7 and enter MATLAB statements
to compare their errors.

Apply polyfit of MATLAB to the data given in Problem 3 and fit them
linearly. Compare the answer with that of Problem 3.

Same as Problem 9 except the data are to be fitted by a quadratic equation.
Same as Problem 9 except the data are to be fitted by a cubic equation.

Same as Problem 9 except the data are to be fitted by a quartic equation.
Use the results of Problems 9 through 12 and enter MATLAB statements
to compare their errors.

Save the results of Problems 4 through 7 and generating the four curves
determined by the least-squares method. Obtain a composite graph of
these four curves superimposed with the given points marked using the
character * by application of plot.

Same as Problem 14 but for the curves determined by Problems 9 through 12.
Try Mathematica to obtain and compare results for the above problems.

LEasTSQG

1.

Given four points (1,0.5), (2.5,0.88), (3.2,1.35), and (4.5,2.76), they are
to be least-squares fitted by a linear combination of two selected functions,
f,(x) = e* and fy(x) = e, in the form of f(x) = ¢,f;(x) + ¢,f,(x). Find c,
and c,.

For a given set of 10 points, (x;y; for i= 1,2,...,10, the least-squares
method has been applied to fit these data by two students. Student A
selects 3 functions f,(x) = x, f,(x) = x3, and f;(x) = x> to obtain the coef-
ficients a,, a,, and a, for the expressiony = a,x + a,x> + a;x>. Student B
selects 3 other functions f;(x) = sinx, f,(x) = sin3x, and f;(x) = sin5x to
obtain the coefficients b,, b,, and b, for the expression y = b;sinx + b,sin3x
+ bysinSx. Write a program to calculate the least-squares errors E, and
Ej, for the curve-fit approaches taken by the students A and B, respectively.

. Apply the least-squares method to curve-fit the following three given

points by a linear combination of two selected functions f,(x) = x and
f,(x) = x3, namely, y = ¢,X + c,x*

X
yl—l 0

Find c, and c, by use of Cramer’s Rule.
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4. Given eight data points (X;,Y;) for i= 1,2,...,8 as listed, fit them by the
least-squares method with the equation Y = a, + a,X + a,X2. Find a, ; by
applying the computer program LeastSqG.

Xl 1 2 3 4 5 6 7 8
Y| 1.13 1.45 1.76 2.19 2.43 2.79 3.51 4.88

5. A set of three points are provided as listed: (1,0.2), (2,0.5), and (3,0.6).
These points are to be fitted by application of the least-squares method
using a linear combination of (a) two functions x and x2, or (b) two other
functions x° and x3. Which fit will be better, a or b? Back up your answer
with detailed calculations.

6. Given three points (1,2), (3,5), and (4,13), two selected functions f,(x) =
x—1 and f,(x) = x* are to be linearly combined to fit these points by the
equation y = a,f;(x) + a,f,(x) = a;(x-1) + a,x. Derive two equations
needed for solving a, and a, by use of the Least-Squares method.

7. Given 7 points of which the coordinates are X(i) and Y(i) fori=1to 7,
a least-squares fit of these points with a linear combination of 3 selected
functions f,(X) = X, £,(X) = sin2X, and f;(X) = e in the form of Y(X) =
C(Df,(X) + CQ),(X) + C(3)f5(X) has been conducted and the coefficients
C(1) to C(3) have been found. Complete the following segment of FOR-
TRAN program to calculate the total error E which is the sum of the
squares of the differences between Y(X(i)) and Y(i) fori=1to 7.

DIMENSION X(7),Y(7),C(3)

DATA X,Y,C/(17 real numbers separated by,)/
insert statements for

< - - - calculation of E involving

C,X,Y,andf, f,, and f;

WRITE (*,*) E

STOP

END

8. For a given set of data (1,-2), (2,0), (3,1), and (4,3), two equations have
been suggested to fit these points. They are Y = X-2 and Y = (-X? +
7X-10)/2. Based on the least-squares criterion, which equation should be
chosen to provide a better fit? Explain why.

9. Given 12 points of which the coordinates are X(i) and Y(i) fori=1to 7,
a least-squares fit of these points with a linear combination of 4 selected
functions f;(X) = X, £,(X) = sin2X, f5(X) = cos3X, and f,(X) = eX in the
form of Y(X) = C(1f(X) + C)E,(X) + C(A)f3(X) + C(4)f,(X) has been
conducted and the coefficients C(1) to C(4) have been found. Complete
the following segment of FORTRAN program to calculate the total error
E which is the sum of the squares of the differences between Y (X(i)) and
Y(i) fori=1to 12, using a FUNCTION subprogram F(I,X) which evaluate
the Ith selected function at a specified X value fori=1 to 4.
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DIMENSION X(12),Y(12),C(4)
DATA X,Y,C/(28 real numbers separated by,)/
insert statements for
< - - - calculation of E involving
C, X,Y,andf, f,, and f;
WRITE (*,*) E
STOP
END

10. Any way one can solve the above-listed problem by application of MAT-
LAB? Compare the computed results obtained by QuickBASIC, FOR-
TRAN, and MATLAB approaches.

11. Try Mathematica and compare results for the above problems.

CusIC SPLINE

1. Presently, program CubeSpln is not interactive. Expand its capability to
allow interactive input of the number of points, N, and coordinates (X,,Y,)
for i =1 to N. Also, user should be able to specify the KK value so that
both periodic or nonperiodic data points can be fitted. Call this program
CubeSpln.X and rerun the case used in Sample Application.

2. Change the program CubeSpln slightly to allow a sixth point to be con-
sidered. Add a sixth point whose Y value is equal to that of the first point
then run it as a periodic case by changing KK equal to 2. The resulting
plot for X(6) = 5.5 should be as shown below.

e

Y=
«n
[= o8
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Use the program CubeSpIn.X to run Problem 2.

4. Apply spline.m of MATLAB to fit the points (1,2), (2,4), (3,7), and (4,13)
and then plot the curve by using plot.m. Mark the points by the character *.

5. Apply spline.m of MATLAB to fit the points (0.5,3), (1.2,6), (2.5,5), and
(3.7,11) and then plot the curve by using plot.m. Mark the points by the
character + .

6. Apply spline.m of MATLAB to fit the points (3,3), (3.6,6), (4.2,8), and
(5.1,11) and then plot the curve by using plot.m.

7. Combine the curves obtained in Problems 4 to 6 into a composite graph

by using solid, broken, and center lines which in use of plot.m require to

specify with *-’, ‘---’, and ‘-’, respectively. The resulting composite

graph should look like the figure below.

i

18 +

8. Use text command of MATLAB to add texts ‘Problem 4’, ‘Problem 5°,
and ‘Problem 6’ near the respective curves already drawn in Problem 7.
9. The temperature data in °F, collected during a period of seven days are (2,75),
(3,80), (4,86), (5,92), (6,81), and (7,90). Cubic-spline fit these data, plot the
curve, and label the horizontal axis with ‘Days’ and vertical axis with ‘Tem-
perature, in Fahrenheit’ by use of xlabel and ylabel commands of MATLAB.
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10. Add to the graph obtained for Problem 9 by marking the data points with
the character * and also a text ‘Cubic Spline of Temperature Data’ at an
appropriate location not touching the spline curve.
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3 Roots of Polynomials and
Transcendental Equations

3.1 INTRODUCTION

In the preceding chapter, we derive equations which fit a given of data either exactly,
or, by using a criterion such as the least-squares method. Once such equations have
been obtained in the form of y = C(x) when the data are two-dimensional, or, z =
S(x,y) when the data are three-dimensional. It is next of common interest to find
where the curve C(x) intercepts the x-axis, or, where the surface S(x,y) intercepts
with the x-y plane. Mathematically, these are the problems of finding the roots of
the equations C(x) = 0 and S(x,y) = 0, respectively. The equation to be solved could
be a polynomial of the form P(x) = a; + a,x + ... + ax™ + ... + ay, ;xN which is
of Nth order, or, a transcendental equation such as C(x) = a,sinX + a,sin2x + a,sin3x.

As it is well known, a polynomial of Nth order should have N roots which could
be real, or, complex conjugate pair if the coefficients of the polynomial are all real.
Geometrically speaking, only those real roots really pass the x-axis. For a transcen-
dental equation, there may be infinite many roots. In this chapter, we shall introduce
computational methods for finding the roots of polynomials and transcendental
equations. Beginning with the very primitive approach of incremental and half-
interval searches, the approximate location of a particular root is to be located. More
refined, systematic methods such as the linear interpolation and Newton-Raphson
methods are then followed to determine the more precise location of the root. A
program called FindRoot incorporating the four methods is to be presented for
interactive solution of a particular root of a given polynomial or transcendental
equation when the upper and lower bounds of the root are provided.

Also discussed is a method called Successive Substitution. A transcendental
equation derived from analysis of a four-bar linkage problem is used to demonstrate
how roots are to be found by application of this method. Another transcendental
equation has been derived for the unit-step response analysis of a mechanical vibra-
tion system and its roots solved by application of the Newton-Raphson method to
illustrate how the design specifications are checked in the time domain.

Since the Newton-Raphson method for solving F(x) = 0 which can be a poly-
nomial, or, transcendental equation of one variable is based on the Taylor’s series
involving the derivatives of F(x), it can be extended to the solution of two-equations
F,(x,y) = 0 and F,(x,y) = 0 by application of Taylor’s series involving partial deriv-
atives of both F; and F, with respect to x and y. A program called NewRaphG has
been developed for this purpose. Also, this generalized Newton-Raphson method
allows the quadratic factors of a higher order polynomial to be iteratively and contin-
uously extracted and their quadratic roots solved by the so-called Bairstow method.
For that, a program called Bairstow is made available for interactive application.
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Both QuickBASIC and FORTRAN versions for the above-mentioned programs
are presented. Both the application of the roots m-file of MATLAB in place of the
program Bairstow and direct conversion of the program FindRoot into MATLAB
version are also presented. The Mathematica’s function NSolve is introduced in
place of the program Bairstow if the user prefers. Also the linear interpolation
method used in the program FindRoot has been translated into Mathematica
version. In fact. Mathematica has its own FindRoot based on the Newton-Raphson
method.

3.2 ITERATIVE METHODS AND PROGRAM FINDROOT

Program FindRoot is developed for interactive selection of an iterative method
among the four made available: (1) Incremental Search, (2) Bisection Search, (3)
Linear Interpolation, and (4) Newton-Raphson Iteration. Polynomials are often
encountered in engineering analyses such as the characteristic equations in vibra-
tional and buckling problems. The roots of a polynomial are related to some impor-
tant physical properties of the systems being analyzed, such as the frequencies of
vibration or buckling loads. A nth degree polynomial can be expressed as:

P(x)=a, +a,x+ax +...+a,x"" +a x"

n+l (1)

k-1 _
ax =0

k=1

For n= 1,2,3, there are formulas readily available in standard mathematical
handbooks' for finding the roots. But for large n values, computer methods are then
necessary to help find the roots of a given polynomial. The methods to be discussed
here are simple and direct and are applicable to not only polynomials but also
transcendental equations such as 5 + 7cosx — cos60° — cos(60° — x) = 0 related to a
linkage design problem? or x = 40000/{1-0.35sec[40(x/107)°3]} arisen from buck-
ling study of slender rods.3

INCREMENTAL SEARCH

For convenience of discussion, let us consider a cubic equation:
P(x)=1+2x+3x>+4x>=0 )

To find a root of P(x), we first observe that P(x = —e0)<0, P(x = 0) = 1, and P(x =
—o0)>(). This indicates that the P(x) curve must cross the x axis, possibly once or an
odd number of times. Also, the curve may remain above the x-axis or cross it an even
number of times. To further narrowing down the range on the x-axis, in which the root
is located, we can begin to check the sign of P(x) at x = —10 and search toward the
origin using an increment of x equal to 2. That is, we may construct a list such as:
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X | -10 -8 6 -4 -2 0
)

P(x | - - - - - +

Since P(x) changes sign from x = -2 to x = 0, this incremental search can be
continued using an increment of x equal to 0.2 and the left bound x =-10 by replaced
by x = -2 to obtain:

x | -1.8 -1.6 eee 0.8 -0.6
)

P(x | - - - - +

The search continues as follows:

X -0.78 -0.76 o o o -0.62 -0.60
P(x) - - - - +

X -0.618 -0.616 o o o -0.606 -0.604
P (x) - - - - +

X -0.6058
P (x) +

If only three significant figures accuracy is required, then x = 0.606 is the root
and it has taken 23 incremental search steps to arrive at this answer. If better accuracy
is required, the root should then be sought between x = —0.6060 and x = —0.6058.

Program FindRoot prepared both is QuickBASIC and FORTRAN has one of
the options using the above-explained incremental search method, it also has other
methods of finding the roots of polynomials and transcendental equations to be
introduced next.

BISECTION SEARCH

The above example of incremental search shows that if we search from left to
right of the x-axis for the root of 4x3 + 3x> + 2x + 1 = 0 between x = -2 and x = 0,
it would be longer than if we search from right to left because the root is near x =
0. Rather than using a fixed incremental in the incremental search method, the
bisectional method uses the mid-point of the two bounds of x in search of the root.
It involves the testing of the signs of the polynomial at the bounds of the root and
replacing the bounds. The two search methods follow the same procedure. So, the
bisection method would go as follows:

X -10 0 -5 -2.5 -1.25 -0.625 -0.3125
P (x) - + - - - - +

X -0.46875 -0.546875 -0.5859375 -0.6054688
P(x) + + + +
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X -0.6152344 -0.6103516 -0.6079102 -0.6066895
P (x) - - - -

X -0.6060792 -0.6057741 -0.6059266
P (x) - + -2.68817E-04

If we require only three significant figures accuracy, then —0.606 can be consid-
ered as the root after having taken 18 bisection search steps.

LINEAR INTERPOLATION

Notice that both the incremental and bisection search methods make no use of
the values of the polynomials at the guessed x values. For example, at x = —10 and
x = 1, the polynomial P(x) has values equal to —3719 and 1, respectively. Since P(x =
1) has a smaller value than P(x = —10), we would certainly expect the root to be
closer to x = 1 than to x = —10. The linear interpolation makes use of the values of
P(x) at the bounds and calculates a new guessing value of the root using the following
formulas derived from the relationship between two similar triangles:

(x—xL)/[—P(xL)]= (xR —x)/P(xR) 3)

where x; and x; are the left and right bounds of the root, which in this case are
equal to —10 and 1, respectively. Based on Equation 3 and P(x;) =-3719 and P(x) =
1, we can have x = —0.002688 and P(x) = 0.9946. Since P(x)>0, we can therefore
replace x; = 1 with x; = 0.002688. Linear interpolation involves the continuous use
of Equation 3 and updating of the bounds.

NEwTON-RAPHSON ITERATIVE METHOD

Linear interpolation method uses the value of the function, for which the root
is being sought; Newton-Raphson method goes one step farther by involving with
the derivative of the function as well. For example, the polynomial P(x) = 4x3 + 3x2
+ 2x + 1 = 0 has its first-derivative expression P'(x) = 12x%> + 6x + 2. If we guess
the root of P(x) to be x = x, and P(x,) is not equal to zero, the adjustment of x,,
calling Ax, can be obtained by application of the Taylor’s series:

P(x, +Ax)=P(x, ) + [P’(xg) /1!]Ax + [P”(xg) /2!](Ax)2 »

Since the intention is to find an adjustment Ax which should make P(x, + Ax)
equal to zero and Ax itself should be small enough to allow higher order of Ax to
be dropped from the above expression. As a consequence, we can have 0 = P(x,) +
P'(x,)Ax, or

Ax==P(x,)/Px,) “)
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Equation 4 is to be continuously used to make new guess, (x,)
the root, until P(x = (X,),.,) is negligibly small.

The major shortcoming of this method is that during the iteration, if the slope
at the guessing point becomes too small, Equation 4 may lead to a very large Dx
so that the X, may fall outside the known bounds of the root. However, this method
has the advantage of extending the iterative procedure to solving multiple equations
of multiple variables (see program NewRaphG).

An interactive program called FindRoot has been developed in both QuickBA-
SIC and FORTRAN languages with all four methods discussed above. User can
select any one of theses methods, edits the equation to be solved, specifies the bounds
of the root, and gives the accuracy tolerance for termination of the root finding. The
programs are listed below along with sample applications.

=X, + Ax, of

new

QuickBASIC VErsioN

Program FindRoot - Finds roots of polynomial and transcendental equations
using incremental and bisection search, linear
' interpolation, or Newton-Raphson iteration.

CLS : PRINT " Program FindRoot - Finds roots of polynomial or transcendental equations."
PRINT : PRINT "Four options available : "
PRINT " (1) Incremental Search, (2) Bisection Search,"
PRINT " (3) Linear Interpolation, and”
PRINT " (4) Newton-Raphson Iteration.™

DEF fnx (X) = 4 * x ~ 3 + 3 * x "~ 2+ 2 * x+ 1
DEF fnd (x) = 12 * x *~ 2 + 6 * x + 2
INPUT "Select a method, */3/4 : ", ms
INPUT "Have you defined F(x) by editing DEF fnx(x)? Enter ¥Y/N : ", 6 A$
IF A$ <> "Y" THEN END
IF ms <> 4 THEN 5

INPUT "Have you defined F' (x) by editing DEF fnd(x)? Enter Y/N : ", A$§
IF A§$ <> "Y" THEN END

5 INPUT "Enter the lower and upper bounds of the root : ", xl1, xr
INPUT "How small should F(X) be for termination : ", epsilon
PRINT SPC(3): "Trial #"; SPC(14): "X"; SPC(11); "F(X)"
nt = 1 : ON ms GOTO 10, 20, 30, 40

10 fl = fnx(x1l)

15 dx = (xr-x1)/10: x =xl+dx : GOTO 50

20 fr = fnx(xr}

25 x = .5 * (X1 + Xxr) : GOTO 50

30 f1 = fnx(xl) : fr = fnx(xr)

35 ® = (xr*fl-x1l*fr)/(fl-fr): GOTO 50

40 x = x1: fv = fnx(x) : fpv = fnd(x)

45 x = x - fv / fpv : GOTO 50

50 fv = fnx({x)
PRINT USING " #B44h LI 222 2k #4_BBH4~ 0 e, x, £V

IF (ABS(fv) < epsilon) THEN 300
nt = nt + 1: ON ms GOTO 110, 120, 130, 140

110 IF (fl1 * fv < ©0') THEN xXxr = x: X1 = x - dx: GOTO 15 ELSE x=x+dx: GOTO 50
120 1IF (fr * fv >= 0!) THEN xr = x: fr = fv : GOTO 25 ELSE x1=x : GOTO 25
130 IF (fr * fv >= 0') THEN xr = x: fr = fv : GOTO 35

X1 = x: f1 = fv : GOTO 35

140 fpv = fnd(x): GOTO 45
300 END

Sample Application

All four methods have been applied for searching the roots of the equation
x>=sin(x)-1 = 0 in the intervals (—1,-0.5) and (1,1.5). The negative root equal to
—0.63673 was found after 27, 15, 5, and 3 iterations and the positive root equal to 1.4096
after 29, 15, 4, and 4 iterations by the incremental search, bisection search, linear
interpolation, and Newton-Raphson methods, respectively. An accuracy tolerance of
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1.E-5 was used for all cases. For solving this transcendental equation, Newton-
Raphson therefore is the best method.

FORTRAN VERSION

C Program FindReoot - Finds roots of polynomial and transcendental

(o] equations using incremental and bisection search,
C linear interpolation, or Newton-Raphson iteration.
CHARACTER*1 AS
F (X) = 4 % x %% 3 4 3 % x %% 2 4 2 % x + 1

FP(X) = 12 * 3 ** 2 4+ 6 * x + 2
WRITE (*,1)
1 FORMAT(' Program FindRoot - Finds roots of polynomial or'

* ' transcendental equations.'’)

WRITE (*,*) ' Four options available : '

WRITE (*,*) ' (1) Incremental Search,’

WRITE (*,*) ' (2) Bisection Search,'

WRITE (*,*) {3) Linear Interpolation, and'
WRITE (*, *) ° (4) Newton-Raphson Iteration.’

WRITE (*,*) ' Select a method, %/3/4 : '
READ (*,*) ms
WRITE (*,3)
3 FORMAT (' Have you defined F(x) by editing? Enter Y/N :')
READ (*,4) AS
4 FORMAT (Al)

IF (AS.NE.'Y') GOTO 900
IF (ms.NE.4) GOTO 5
WRITE (*,*) ' Have you defined d[F(x)]/dx by editing? Enter Y/N :’
READ (*,4) AS
IF (AS.NE.'Y') GOTO 900

5 WRITE (*,*) ' Enter the lower and upper bounds of the root
READ (*,*) x1, xr
WRITE (*,*) ' How small should F(X) be for termination :°'
READ (*,*) epsilon
WRITE (*,*) ' Trial # X F(X)"
nt =1
GOTO (10, 20, 30, 40) ,ms

10 £1 = f(x1)

15 dx = (xr - x1) / 10

x = x1 + dx

GOTO 50

20 fr = f£(xr)

25 x = .5 * (x1 + Xr)
GOTO 50

30 £f1 = f(x1)
fr = f(xr)

35 x = (xr * f1 - x1 * fr) / (flL - fr)
GOTO 50

40 x = x1
ftv = £(x)
fpv= fp(x)

45 x = x - fv / fpv
GOTO 50

50 fv = £(x)
WRITE (*,52) nt, x, fv

52 FORMAT (I10,2E15.4)
IF (ABS(fv) .LT.epsilon) GOTO $00
nt = nt + 1
GOTO (110, 120, 130, 140),ms

110 IF ((f1 * fv) .LT. 0) GOTO 115

X = x + dx
GOTO 50
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115 xr = X
xl = x - dx
GOTO 15
120 IF ((fr * fv) .GE.0.) GOTO 125
xl = x
GOTO 25
125 Xr = X
fr = fv
GOTO 25
130 IF ((fr * fv) .GE.0.) GOTO 135
xl = x
fl = fv
GOTO 35
135 xr = x
fr = fv
GOTO 35
140 fpv = fp(x)
GOTO 45
900 END

Sample Application

The interactive question-and-answer process in solving the polynomial 4x3 +
3x2 + 2x + 1 = 0 using the Newton-Raphson method and the subsequent display on
screen of the iteration goes as follows:

Program Findroot - Finds roots of polynomial or transcendental equations.
Four options available
(1) Incremental Search,
(2) Bisection Search,
(3) Linear Interpolation, and
(4) Newton-Raphson Iteration.
Sclect a method »/3/4 "
4
Have you defined F(x) by editing? Enter Y/N

Y
Have you defined d[F(x)]/dx by editing? Enter Y/N
Y
Enter the lower and upper bounds of the roots
-2,0
How small should F(x) be for termination?
1l.e-5
Trial # X F(X)
1 -.1395E+01 -.6B06E+01
2 -.9938E+00 -.1951E+401
3 -.7465E+00 -.4852E+00
4 -.6312E+00 -.7308E-01
5 -.6068E+00 -.2668BE-02
6 -.605BE+00 ~.3815E-05

Notice that in the FORTRAN program FindRoot, the statement functions F(X)
and FP(X) are defined for calculating the values of the given function and its
derivative at a specified X value. Also, a character variable AS is declared through
a CHARACTER*N with N being equal to 1 in this case when AS can have only
one character as opposed to the general case of having N characters.
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MATLAB APPLICATION

A FindRoot.m file can be created and added to MATLAB m files for the purpose
of finding a root of a polynomial or transcendental equation. In this file, the four
methods discussed in the FORTRAN or QuickBASIC versions can all be incorpo-
rated. Since some methods require that the left and right bounds, x, and x, be
provided, the m file listed below includes as arguments these bounds along with the
tolerance and the limited number of iterations:

function FindRoot (FofX ,DFDX,x1l,xr,Tol NTlimit)

% Finds a root of polynomial or transcendental equation, F(X).

% Four options available : ms=1, Incremental Search,

% ms=2, Bisection Search,

% ms=3, Linear Interpolation, and

% ms=4, Newton-Raphson Iteration.

% Root is bounded by xl1 and Xr.

% Limits to NTlimit times or function wvalue < Teol.
ms=input (' Choose a method by entering */3/4 : ')

nt = 1; ExitFlag=0:; Newxlxr=1; fl=feval (FofX,6 xl) ; fr=feval (FofX,6xr);, x=xl;
while nt<NTlimit

if ms==1, if Newxlxr==1, dx=(xr-x1)/10; x=xl+dx; Newxlxr=0:
end
elseif ms==2, x=.5%(x1+xr):

elseif ms , x = (xr * £1 - x1 * fr) / (f1 - fr):
elseif ms=—4, x = X - feval (FofX,x)/ feval (DFDX,x):
end
fv = feval (FofX,x) & ntxandfx=[nt,x, fv]
if abs(fv) < Tol, ExitFlag=1l; break
elseif ms==1, if fl*fv<0, xr=x; xl=x-dx; fl=feval (FofX, 6 xl)
Newxlxr=1

else x = X + dx;

end
elseif ms=—2, if fr*fv>=0, xr=x; fr=fv;
else xl=x;
end

elseif ms==3, if fr*fv>=0, xr=x; fr = fv:
else x1 = x; fl = fv;
end
elseif ms==4, fpv = feval (DFDX, X);
end
if ExitFlag==1, break
else nt=nt+l;
end
end
if ExitFlag=—0, error('The selected method is not converging'')
end

Notice that the equation for which a root is to be found should be defined in a
mile file called FofX.m, and that if the Newton-Raphson method, i.e., option 4, is
to be used, then the first derivative of this equation should also be defined in a m
file called DFDX.m. We next present four examples demonstrating when all four
methods are employed for solving a root of the polynomial F(x) = 4x3 + 3x2 + 2x
+ 1 = 0 between the bounds x = —1 and x = 0 using a tolerance of 10-5. In addition
to FindRoot.m file, two supporting m files for this case are:
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function FP=DFDX (X)
FP=12.*X."24+6.*X+2;
function F=FofX (X)
F=4 *X . "3+3.*%X."2+2.%X+1;

The four sample solutions are (some printout have been shortened for saving
spaces:

>>FindRoot ("A:FofX", "A:DKDX', -1,0,1.c-5, 50}

Choose a method by entering »/3/4 : 1

ms =
]
ntxandfx -

1.0000 =0.9000 ~1.2860
2.0000 -0.3000 ~0.7280
3.0000 -0.7000 -0.3020
4.0000 -0.6000 a.0160
5.0000 -0.6300 —0.2657
6.0000 ~0.6800 ~0.2305%
7.0000 -0.6700 ~0.1964
8.0000 -0.6600 -0.1632
9.0000 ~0.6500 ~0.1330
10.0000 ~0.6400 -0.05%98
11.0000 ~0.6300 -0.0695
12.0000 -0.6200 ~0.0401
13.0000 ~0.6100 ~0.0116
14,0000 -0.6000 0.0160
15.0000 ~0.6090 -0.0088
16.0000 —-0.6080 -0.0060
17.0000 —-0.6070 -0.0032
18.0000 -0.6060 -0.0005
19.0000 -0.6000 0.0023
20.0000 ~0.6059 -0.0002
21.0000 -0.605 0.0001
22.0000 -0.6059 =0.0002
23.0000 -0.6059 -0.0001
24,0000 -0.6059 ~-0.0001
25,0000 ~0.6059 -0.000]
26.0000 -0.6059 ~0.0001
27.0000 ~0.6059 —0.0000
28.0000 -0.6058 -0.0000

>>FindRool {"A:FotX", "A:DFDX',-1,0,1.e-5,50)

Choose a method by entering %/3/4 : 2
ms =

2

ntxandfx -

1.0000 -0.5000 0.2500
2.0000 -0.7500 ~0.5000
3.0000 ~0.6250 -0.0547
4.0000 -0.5625 0.1123
5.0000 -0.5938 0.0328
6.0000 -0.6094 -0.0099
7.0000 ~0.6016 0.0117
8.0000 -0.6055 0.0010
9.0000 -0.6074 -0.0044
10.0000 ~0.6064 ~0.0017
11.0000 -0.6060 —0.0004
12.0000 -0.6057 0.0003
13.0000 -0.6058 =0.,0000
14.0000 -0.6058 Q,0002
15.0000 -0,6058 0.0001
16.0000 -0.6058 g.oo000
17.0000 -0.6058 0.0000
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>>FindRoot (*A:FofX', "A:DFLX',-1,0,1.e-5,50)

Choose a method by entering %/3/4 : 3

ms =
3
ntxandfx =
1.0000 -0.3333 0.5185%
2.0000 -0.4706 0.3063
3.0000 -0.5409 0.1629
4.,0000 -0.5755 0.0802
5.0000 -0.5819 0.0379
&.0000 -0.5994 0.017%
7.0000 -0.6028 0.0080
§.0000 -0.,6045 0.0037
9.0000 -0.6052 0.0017
10.0000 -0.6056 0.0008
11.0000 -0.6057 0.0003
12.0000 -0.6058 0.0002
13,0000 -0.6058 0.0007
14.0000 -0.6058 0.0000
15,0000 -0.6058 Q.0000
16.0000 -0.6058 3.0000

>>FindRoot ("A:FotfX', "A:DFDX',-1,0,1.e-5,50)

Choose a method by entering %/3/4 : 4
ms =
4

ntxandfx =

1.0000 ~0.7500 -0.5000

2.0000 -D.6324 -0.0765

3.0000 -0.6069 -0.0029

4.0000 -0.6058 -0.0000

Notice that incremental search, half-interval search, interpolation, and Newton-
Raphson methods take 28, 17, 16, and 4 iterations to arrive at the root x = —0.6058,
respectively. The last method therefore is the best, but is only for this polynomial
and not necessary so for a general case.

Method of Successive Substitution

As a closing remark, another method called successive substitution is sometimes
a simple way of finding a root of a transcendental equation, such as for solving the
angle in a four-bar linkage problem shown in Figure 1. Knowing the lengths L,
Lgc amd L, and the angle of the driving link AB, the angle of the driven link CD,
can be found by guessing an initial value of y® and then continuously upgraded
using the equation:

() — oog! % L, gzcoso—L,+ COS(OL - Y(k))] ©)

BC

Y

where the superscript k serves as an iteration counter set equal to zero initially. For
o changing from 0 to 360°, it is often required in study of such mechanism to find
the change in 7. This is left as a homework for the reader to exercise.
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FIGURE 1. Successive substitution sometimes is a simple way of finding a root of a tran-
scendental equation, such as for solving the angle yin a four-bar linkage problem.

MATHEMATICA APPLICATIONS

To illustrate how Mathematica can be applied to find a root of F(x) = 1 + 2x
+ 3x2 + 4x3 = 0 in the interval x = [x],xr] = [-1,0], the linear interpolation is used
below but similar arrangements could be made when the incremental, or, bisection
search, or, Newton-Raphson method is selected instead.

Input[1]: = FIx_]: = 1. + 2%x + 3%xA2 + 4¥xA3

Input[2]: = x1 = —1; xr = 0; fl = F[xI]; fr = F[xr]; fx = fl;

Input[3]: = Print[“x] = “x1,” xr = “xr,” F(x]1) = “fl,” F(xr) = “,fr]
Output[3]: = x1 = -1 xr = 0 F(xl) = -2. F(xr) = 1.

Input[4]: = (While[Abs[fx]>0.00001, x = (xr*fl-xI*fr)/(fl-fr);fx = F[x];

Print[“x = “,N[x,5],” F(x) = “,N[fx,5]];
If[fx*fl<0, xr = x;fr = fx;, x1 = x;fl = fx;]])

Output[4]: = x = —0.33333 F(x) = 0.51852

x =-0.47059 F(x) = 0.30633

x =-0.54091 F(x) = 0.1629

x =-0.57548 F(x) = 0.080224
x =-0.59185 F(x) = 0.037883
x =-0.59944 F(x) = 0.017521
x =-0.60292 F(x) = 0.0080245
x =-0.60451 F(x) = 0.0036586
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x =-0.60523 F(x) = 0.0016646

x =—-0.60556 F(x) = 0.00075666
x =-0.60571 F(x) = 0.00034379
x =-0.60577 F(x) = 0.00015618
x =—-0.60580 F(x) = 0.000070940
x =—-0.60582 F(x) = 0.000032222
x =—-0.60582 F(x) = 0.000014635
x =-0.60583 F(x) = 6.6473x10-¢

Notice that 16 iterations are required to achieve the accuracy that the value of
[F(x)l should be no greater than 0.00001. In Input[1], the equation being solved is
defined in F[x]. 1. is entered instead of an integer 1 so that all computed F(x) values
when printed will be in decimal form instead of in fractional form as indicated in
Output[3]. In Input[4], a pair of parentheses are added to allow long statements be
entered using many lines and broken and listed with better clarity. Also, N[exp,n]
is applied to request that the value of expression, exp, be handled with n significant
figures. The command If is also employed in Input[4]. It should be used in the form
of If[condition, GS1, GS2], which implements the statements in the group GS1 or
in the group GS2 when the condition is true or false, respectively. Abs computes
the absolute value of an expression specified inside the pair of brackets.

3.3 PROGRAM NEWRAPHG — GENERALIZED
NEWTON-RAPHSON ITERATIVE METHOD

Newton-Raphson method* has been discussed in the program FindRoot in iterative
solution of polynomials and transcendental equation. Here, for an extended discus-
sion of this method for solving a set of specified equation, we reintroduce this method
in greater detail. This method is based on Taylor’s series.’ Let us start again with
the case of one equation of one variable. Let F(X) = 0 be the equation for which a
root X, is to be found. If this root is known to be in the neighborhood of X,, then
based on Taylor’s series expansion we may write:

F(X,)=F(X, )+ F(X,)AX + F/(X, ) (AX)’ /2!+... (1)

where:
AX=X - Xg 2)

and the prime in Equation 1 represents differentiation with respect to X. Since X,
is a root of F(X) = 0, therefore F(X,) = 0. And if X, is sufficiently close to X, AX
is small and the terms involving (AX)? and higher powers of AX in Equation 1 can
be neglected. It leads to:

X, =X, - [F(Xg) /F(Xg)] 3)
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This result suggests that if we use a projected root value according to Equation 3
as next guess, an iterative process can then be continued until the condition F(X,) =
0 is, if not exactly, almost satisfied.

The Newton-Raphson iterative procedure is developed on the above mentioned
concept by using the formula:

X0 =X —F(xW) /P (x) @

g
where k is an iteration counter. By providing an initial guess, X, Equation 4 is to

be repeatedly applied until F(X®) is almost equal to zero which by using a tolearance
can be tested with the condition:

F(x)

<e &)
As an example, consider the case of:

F(X)=X’-6X*+11X-6=0 (6)
for which

F(X)=3X*>-12X+11 7

If we make an initial guess of X% = 1.75 and set a tolerance of = 0.00001, the
Newton-Raphson iteration will proceed as follows:

Trial No. X F(X)
0 1.7500 0.23438
1 2.0572 -0.05701
2 1.9825 0.01753
3 2.0008 -0.00085
4 2.0001 -0.00011
5 2.0000 0.00001

Program FindRoot has a fourth option for Newton-Raphson iteration of a root
for a specified equation of one variable. The results tabulated above are obtained by
the program FindRoot.

TRANSCENDENTAL EQUATIONS

Not only for polynomials, Newton-Raphson iterative method can also be applied
for finding roots of transcendental equations. To introduce a transcendental equation,
let us consider the problem of a moving vehicle which is schematically represented
by a mass m in Figure 2. The leaf-spring and shock absorber are modelled by k and
c, respectively.
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FIGURE 2. Mechanical vibration system with one degree-of-freedom.

If the vehicle is suddenly disturbed by a lift or drop of one of its supporting
boundaries by one unit (mathematically, that is a unit-step disturbance), it can be
shown? that the elevation change in time of the mass, here designated as X(t), is
described by the equation:

X(t)=1- alExp(—azt)sin(a3t + a4) ®)

where:
a, =(k/m)*/a, a,=c/2m, (9,10)
a, =(4km—02)0‘5/2m, and a, =tan_'(33/a2) (11,12)

Equation 8 is a transcendental equation.

In actual design of a vehicle, it is necessary to know the lengths of time that are
required for the vehicle to respond to the unit-step disturbance and reaching to the
amounts equal to 10, 50, and 90 percent of the disturbance. Such calculations are
needed to ascertain the delay time, rise time, and other items among the design
specifications shown in Figure 3. If one wants to know when the vehicle will rise
up to 50 percent of a unit-step disturbance, then it is a problem of finding a root,
t = t, which satisfies the equation:

X(t,) =1- alEXp(—aztr)sin(a3tr + 34) =05
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FIGURE 3. Design specifications in time domain: overshoot x,, delay time tg, rise time t,
and settlement time t,.

Or, the problem can be mathematically stated as solving for t, from the following
transcendental equation by knowing the constants a, ,:

alExp(—azt)sin(a3t + a4) -0.5=0

As an example, let a, = 1, a, = 0.2 sec”!, a; = 1 sec”!, and a, = 1.37 radian then
the transcendental equation is:

e *'sin(t+1.37)-0.5=0 (13)

To find a root t, for Equation 3, we select an initial guess t© = 0.5 and apply
the fourth option of the program FindRoot. The results are listed below. It indicates
that the mass reaches 50% of the unit-step disturbance in approximately 1.1 seconds.

Program FindRoot - Finds roots of pelynomial or transcendental equations.
Four options available :
(1) Incremental Search, (2) Bisection Search,
(3) Linear Interpolation, and
(4) Newton-Raphson Iteration.
Select a methods, 1/2/3/4 : 4
Have you defined F(x) by editing DEF fnx(x)? Enter ¥Y/N :@ Y
Have you defined F'(x) by editing DEF fnd{(x)? Enter Y/N : Y
Enter the lower and upper bounds of the root : 1,2
How small should F(x) be for termination : 1l.e-7

Trial # X F(X)
1 1.1011E+00 -1.4545E~03
2 1.0991E+00 -3.8743E-07
3 1.0991E+00 -5.9605E-03
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An associated problem of the mechanical vibration problem is to find the mag-
nitude and time of overshoot when the mass reaches the farthest point as illustrated
in Figure 1. Instead of Equation 13, for calculation of overshoot we examine the
equation:

X(t)=1-e*'sin(t +1.37) (14)

To determine the maximum of X(t), we differentiate Equation 14 with respect
to t to derive the expression for the first derivative of X(t). That is:

dX (t)/dt = e™*[.2sin(t +1.37) — cos(t +1.37)] (15)

The magnitude and time of maximum X(t) can then be determined by setting
Equation 15 equal to zero. In so doing, the fourth option of the program FindRoot
is again applied using the bounds t, = 1 and t, = 2 to find that X, is equal to 1.523
or overshoot is equal to 53% and occurs at t= 3.145 seconds. See Figure 2 for
definitions of these design specifications.

ExTENDED NEWTON-RAPHSON METHOD

The iterative method of Newton-Raphson for solving a either polynomial or
transcendental equation of one variable can be extended into solution of multiple
equations of multiple variables. Consider the case of two equations of two variables,
u(x,y) = 0 and v(x,y) = 0. Let (x,.y,) be a guessing solution of these two equations.
In that neighborhood, the Taylor’s series for f(x,y) and g(x,y) are:

u(Xr,yr) = u(xg,yg)+ uvx(xg,yg)Ax +u,y(xg,yg)Ay+ (16)
and

V(Xr,yr) = V(xg,yg)+ Vﬁx(xg,yg)Ax + Vy(xg,yg)Ay +... 17)

where u,=du/dx and v =0dv/dy, and the root location (x,y,) is predicted using the
adjustments Ax and Ay. That is,

X, =X, +Ax and y =y, +Ay (18,19)
Since it is hoped that u(x,y,) and v(x,y,) would both be equal to zero,

Equations 16 and 17 therefore can be expressed, after dropping the higher order
terms of Ax and Ay, in the forms of:

u’x(xg,yg)Ax+u,y(xg,yg)Ay=—u(xg,yg) (20)

and

V’x(xg,yg)Ax+V’y(xg,yg)Ay:—V(Xg,yg) 21
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Cramer’s rule can then be applied to obtain Ax and Ay as

AX = (—uv_y +vu )/(U,XV’Y - u’yV’X) (22)
and

Ay = (+quX -vu, )/(u’xv,y - u’yv,x) (23)

where u, v, and their derivatives are to be evaluated at (X,,y,). Equations 22 and 23
are to be continuously applied to adjust the guessing values of (x,y,) until both
u(x,y,) and v(x,y,) are negligibly small.

Program NewRaphG has been developed by use of the iterative equations 22
and 23. Both QuickBASIC and FORTRAN versions of this program are listed
below along with a sample application of solving the intercepts of two ellipses,
f(x,y) = (x/3)? + (y/4)>-1 and g(x,y) = (x/4)> + (y/3)>1.

QuickBASIC VErsioN

* * DPROGRAM NewRaphG - Newton-Raphson's method applied for two-equations, two-unknowns case.
DECLARE SUB FandDFs (X, ¥, F, G, FX, FY, GX, GY}

CLEAR @ CLS : E = .00001: N = 100

PRINT "Program NewRaphG - Solves two-equations, two-variables problems”

PRINT " by Newton-Raphson iteration.”

INPUT "Have you defined the equations by editing the subroutine FandDfs? Enter Y/N: ",
A

IF A$ = "Y' THEN 100 ELSE END
100 INPUT "Enter initial guess, (X0,¥Y0) :", X0, YO

INPUT "Enter the accuracy tolerance : ", E

INPUT "Enter the number of iterations allowed : ", N

PRINT SPC(9); "Iteration # X Y F(X) F(Y)"

X = X0: Y = YO
FOR T =1 TO N
PRINT SPC(19); : PRINT USING "## ## ###4~""*"; T, X;
PRINT USING " H#¥. ####°°°"  ## #8847 " ## #8448, ¥, F, G
CALL FandDFs(X, Y, F, G, FX, FY, GX, GY)
IF ABS(F) + ABS(G) < E THEN END
DM = FX * GY - FY * GX: X =X + (G * FY - F * GY) / DM: Y =Y + (F * GX - G * FX) / DM
NEXT T
370 PRINT : PRINT "Iteration has failed after N trials !": END

SUB FandDFs (X, Y, F, G, FX, FY, GH, GY)

F=(X/3 "2+ (Y /4 ~2-1
G=(X/4) "2+ (XY /3 "~2-1
FX = 2 * (X / 3) / 3

FY =2 * (Y / 4) / 4

GXx =2 % (X /4 /4

GY =2 * (Y / 3) /3

END SUB

FORTRAN VERSION

C PROGRAM NewRaphG - Newton-Raphson's method applied for solving
C two-equations, two-unknowns case.
Character*l AS
WRITE (*,5)
5 FORMAT (' Program NewRaphG - Solves tweo-equations, two-variables',
* ' problems' /20X, 'by Newton-Raphson iteration. ')
WRITE (*,10)
10 FORMAT (' Have you defined the equations by editing the',
* ' subroutine FandDfs? Enter Y/N: ')
READ (*,15) AS
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15 FORMAT (Al)
IF (AS.NE.'Y') GOTO 900
WRITE (*,*) 'Enter initial guess, (X0,YO)
READ (*,*) X0, YO
WRITE (*,*) 'Enter the accuracy tolerance
READ (*,*) E
WRITE (*,*) ’'Enter the number of iterations allowed :@ '
READ (*,*) N
WRITE (*,20)

20 FORMAT (1X,' Iteration # X Y .,
* "F(X,Y) G(X,¥) ")
X = X0
Y = YO

DO 50 IT =1, N
CALL FandDFs(X,Y,F,G,FX,FY,GX,GY)
WRITE (*,25) IT,X,Y,F,G
25 FORMAT (BX,I12,4E15.4)
IF ((ABS(F)+ABS(G)) .LT.E) GOTO 900
DM = FX * GY - FY * GX
X=X+ (6 * FY - F * GY) / DM
50 Y =Y + (F * GX - G * FX) / DM
55 WRITE (*,*) 'Iteration has failed after N trials !’
900 END

SUBROUTINE FandDFs (X, Y, F, G, FX, FY, GX, GY)

F=(X/ 3) % 24+ (Y / 4) ** 2 -1
G = (X / 4) ** 2 + (Y / 3) *»* 2 -1
FX = 2 * (X / 3) / 3

FY =2 * (Y / 4) / 4

GX =2 * (X / 4) / 4

GY = 2 * (Y / 3) / 3

RETURN

END

Sample Application

Program NewRaphG - Sclves two-equations, two-variables problems.
by Newton-Raphson iteration.
Have you defined the equations by editing the subroutine FandDfs? Enter Y/N:
Y
Enter initial gquesses, (X0,YO0)

-2,2

Enter the accuracy tolerance

1l.e-5

Enter the number of iterations allowed

100

Iteration # X Y F((X,Y) G(X,Y)

1 - .2000E+01 .2000E+01 - .3056E+00 -.3056E+00
2 —.2440E+01 .2440E+01 .3361E-01 .3361E-01
3 -.2400E+01 .2400E+01 .2733E-03 .2733E-03
4 ~.2400E+01 .2400E+01 .5960E-07 .5960E-07

MATLAB APPLICATIONS

Here, we provide a m file called NewRaphG.m as a companion of the FOR-
TRAN and QuickBASIC versions:
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function X=NewRaphG (Functns,Derivatf, 6 N,X0,6TOL,NTlimit)
% Solves N simultaneous equations defined in Functns and their first-
% derivative functions in Derivatf near the neighborhood {XO0}.
% Generalized Newton-Raphson method is used to iterate NTlimit time
% or when the sum of the absolute values of the functions < TOL.
NT=1; FS=0; ExitFlag=0; FXS=feval (Functns,N,6XO0);
for i=1:N
FS=FS+abs (FXS (1)) ;
end
NT, ¥Xvalues=[X0]',6 SumOfFsA
while FS>TOL
NT=NT+1; DS=feval (Derivatf N, X0);
X=X0-DS\FXS; FXS=feval (Functns,N,6X);
FS=0; for i=1:N
FS=FS+abs (FXS(i))
end
X0=X; NT,Xvalues=[X]', SumOfFsA=FS3
if NT==NTlimit, ExitFlag=1; break

end
end
if ExitFlag==1, error('Iteration fails after NTlimit trials.')
end

For using this function, the problem to be solved needs to be defined by creating
two m files, in which the equations involved and the expressions for their first
derivatives should be spelled out. In case of solving the sample problem used in
FORTRAN and QuickBASIC versions, first we may define the equation as:

function FXS=Functns (N, X)
for i=1:N
if i==1, FXS(i,1)=(X(1,1)/3).%2+(X(2,1)/4)."2-1;
elseif i==2, FXS(i,1)=(X(1,1)/4).%2+(X(2,1)/3).%2-1;
end
end

Next, the expressions for their first derivatives may then be written as:

function DFDXS=derivatf (N, X)
for i=1:N
if i==1, for 3j=1:N
if j==1, DFDXS (i, J)=2*X(1,1)/3/3;
elseif j==2, DFDXS(i,j)=2%X(2,1)/4/4;
end
end
elseif i==2, for j=1:N
if j==1, DFDXS(i,]j)=2*X(1,1)/4/4;
elseif j==2, DFDXS(i,j)=2*X(2,1)/3/3;
end
end
end
end
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To solve this problem, the interactive application of MATLAB proceeds as
follows (some displays have been rearranged for saving spaces):

>> X0=[-2,2]"'; X=NewRaphG('a:Functns',6 'a:Derivatf’,2,X0,1.e-5,20)

NT = Xvalues = SumOfFsA =
1 -2 2 0.6111
2 -2.4400 2.4400 0.0672
3 -2.4003 2.4003 5.464%9e-004
4 -2.4000 2.4000 3.7361e-008
X =
-2.4000
2.4000

Notice that the initial values are taken as X(1) = -2 and X(2) = 2, a tolerance
of 105 and the iteration is limited to 20 trials. The solutions are found after four
Newton-Raphson trials when the sum of the absolute values of the two equations is
equal to 3.7361x1078.

MATHEMATICA APPLICATIONS

Mathematica applies the Newton’s method in its function FindRoot which can
be applied for solving a polynomial, or, transcendental equation, and also for multiple
equations. We illustrate its applications by using the examples discussed earlier.
First, the root near X = 1.75 for a third-order polynomial is found:

In[1]: = FindRoot[{ X"3-6%X"2 + 11*¥*X-6 = = 0}, {X,1.75}]

Out[1] = {X -> 2.}

The solution is X = 2. The second example is for finding a root near T = 0.5 for
a transcendental equation described inside the first pair of braces:

In[2]: = FindRoot[{ Exp[-.2*T]*Sin[T + 1.37] = = 0.5},{T,0.5}]

Out[2] = {T -> 1.09911}

For solving two simultaneous transcendental equations, two examples are pre-

sented below. The first is to find one of the intercepts of two ellipses and the second
is to find one of the intercepts of a circle of radius equal to 2 and a sine curve.

In[3]: = (FindRoot[{(X/3)"2 + (Y/4)"2 = = L,(X/4)"2 + (Y/3)"2 == 1},
{X,-2}, {Y.2}]

Out[3] = {X ->-24,Y -> 24}

In[4]: = FindRoot[{x = = Sqrt[4y"2],y = = Sin[2*x]},{x,1.95},{y,~0.6}]

Out[4] = {x -> 1.90272, y -> -0.616155}
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3.4 PROGRAM BAIRSTOW — BAIRSTOW’S METHOD FOR
FINDING POLYNOMIAL ROOTS

Program Bairstow is developed for finding the roots of polynomials based on the
Newton-Raphson’s iterative method for two variables (see program NewRaphG).
Let a nth-order polynomial be denoted as:
P(x)=x"+ax""+a,x" P+, +a ,x +ay x+ay €))
Notice that the highest term xN has a coefficient equal to 1; otherwise the entire
equation must be normalized by dividing by that coefficient. The Bairstow’s method
consists of first selecting a trial divider D(x) = x> + d;x + d,, and to obtain the
quotient Q(x) = xN2 + q;xN7 + quxN-* + eee + g X% + qn_3X + qn, and a remainder
R(x) = r;x + r,. The objective is to continuously adjust the values of d, and d, until
both values of r, and r, are sufficiently small. It is apparent that both r, and r, are
dependent of d,; and d,. Taylor’s series expansions of r, and r, can be written as:

r(d, +Ad,.d, +Ad, ) =1,(d,.d,) +1,, (d;.d,)Ad,

()
+1,, (d,,d,)Ad, +...
and
r,(d, +Ad,.d, +Ad,) =1,(d,.d,) +1,, (d,,d,)Ad,
3)
+1,,,(d;d,)Ad, ...
where
N4 =0r/0d, 1, =odr,/dd,
and so on.

The adjustments Ad, and Ad, are to be calculated so as to make the left-hand
side of Equations 2 and 3 both equal to zero and these adjustments are expected to
be small enough (if the guessed values of d, and d, values are sufficiently close to
those which make both r, and r, equal to zero) so that the second and higher derivative
terms in Equations 2 and 3 can be dropped. This leads to:

I (d,.d,)Ad, + rl’dz(dl,dz)Ad2 =-1(d,.d,) 4)
and

Ly (d,.d,)Ad, +1, ,(d,.d,)Ad, =-r,(d,.d,) (5)
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Cramer’s rule can then be applied to obtain Ad, and Ad, as:

Ad, = (_rlrz,cl2 Thh,, )/(rl,der,dz - rl,dzrz,dl) 6

and

Ad, = (_rlrz,cl1 Thh, )/(rl,d]rz,d2 _rl,dzrz,dl) )

where 1|, 1,, and their partial derivatives are to be evaluated at (d,,d,). Equations 6
and 7 are to be continuously applied to adjust the guessing values of (d,,d,) until
both 1,(d,,d,) and r,(d,,d,) are negligibly small.

To calculate the adjustments Ad, and Ad, based on Equations 6 and 7, we need
to find the partial derivatives dr,/dd,, dr,/dd,, dr,/dd,, and dr,/dd,. These derivatives
are, however, depend on the d, and d,, and the coefficients q’s in the quotient Q(x).
This can be shown by actually carried out the division of P(x) by D(x). The results
are:

q,=a,—-d, and gq,=a,—-qd, —d, (8,9)
and
q,=a,—q, d —q, ,d,, for k=34,. ,N-2 (10)
It can also be shown that the coefficients in the remainder R(x) are:

L =ay, —qy,d; —qy,d, and 1 =ag-qy,d, (11,12)

We notice that Equations 11 and 12 can be included in Equation 10 if k is
extended to N and if the remainder is redefined as:

R(x) = (x+d, )ay_ +ay (13)

That is, r, is renamed as qy_, and r, is equal to d,qy_; + qn- AS a consequence,
we need to replace r, and r, in Equations 6 and 7 by qy_, and qy. For calculation of
the adjustments Ad, and Ad,, Equation 10 should be used for gy ; and gy and to
derive their partial derivatives respect to d, and d,. Since all q’s are functions of d,
and d,, to derive the partial derivatives of the last two q’s we must find the partial
derivatives for all q’s starting with q,. From Equations 8 to 10, we can have:

dq,/dd, =—1, dq,/ad, =0, (14,15)
dq,/9d, =(-9q,/dd,)d, —q, =d, —q,. (16)
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aqz/adz = —(8q1/ad2)q1 -1=- a7

and fork=34,....N
dq,/ad, =—(dq,_,/0d,)d, —q,_, —(dq,_,/9d,)d, (18)

aqk+1/adz = _(aqk/adz )dl s P (aqk—l/ad2 )dz (19)
It can be concluded from the above results that:
dq,,,/0d, =0q, /od, for k=12,. ,N-1 (20)

Now, we can summarize the procedure of Bairstow’s method for factorizing a
quadratic equation from an Nth-order polynomial as follows: (Some changes of
variables are made in the computer programs to be presented next, such as q’s are
changed to b’s, d, and d, are changed to u and v, respectively, and c’s are introduced
to represent the derivatives of q’s.)

(1) Specify the values of N, a, through ay, and a tolerance e.

(2) Assume an initial guessing values for d, and d, for the divider D(x).

(3) Calculate the coefficients q, through qy_, for the quotient Q(x) using
Equations 8 to 10.

(4) Also use Equation 10 to calculate the coefficients qy_; and qy for the
remainder R(x).

(5) Test the absolute values of qy_, and qy. If they are both less than e, two
root of P(x) are to be calculated by use of the quadratic formulas. The
order of P(x), N, is to be reduced by 2, and q, through qy_, are to become
a, through a,_,, respectively, and return to Step 2. This looping continues
until the quotient Q(x) is of order two or one, for which the root(s) easily
can be calculated.

(6) If the absolute value of either qy_, or qy is greater than €, calculate the
partial derivatives of g, with respect to d,, ¢’s using Equations 14, 16, and
18 for k = 3.4,...,N. The derivatives of q, with respect to d, are already
available due to Equation 20.

(7) Use Equations 6 and 7 to calculate the adjustments Ad, and Ad,, noticing
that r; and r, are to be replaced by qy_, and qy, respectively. The iteration
is resumed by returning to Step 3.

Both QuickBASIC and FORTRAN versions of the program Bairstow coded
following the steps described above are to be presented next.
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QuickBASIC VEersioN

' * Program BAIRSTOW - Applies Bairstow's method for finding polynomial roots
SCREEN 2: CLS : CLEAR : KEY OFF : PRINT "* Program BAIRSTOW *" : PRINT
PRINT " - Sclving polynomial roots by quadratic factorization.": PRINT

PRINT : INPUT "Order of the polynomial”"; N : NPl =N + 1

DIM A(N), ALlL(NPl), C(NP1l), D(2), Q(NP1) : PRINT

PRINT "Enter the coefficients of the polynomial starting from the"

PRINT " highest order."

PRINT " Press <Enter> key after entering a number.”
FOR I = 1 TO NP1: INPUT ; Al(I): NEXT I
FOR I = 1 TO N: A(I) = Al(I + 1) / Al(l): NEXT I

PRINT "Enter the initial guesses of d(l) and d(2), and Epsilon, e.g.,":

ITERATIONS"

INPUT " .005,.005,.00001 : "; D10, D20, Epsilon
PRINT : PRINT "The Roots are :"
PRINT : PRINT " REAL PART IMAGINARY PART
160 IF N > 1 THEN 175
PReal = -A(1l) : PImag = 0: I =1
PRINT USING “###### 588884 #0444 SR04 #8804, PReal, PImag;
PRINT USING " ##########44#"; I: GOTO 385
175 IF N > 2 THEN 240

D(1) = A(1): D(2) = A(2): I =1

190 PReal = -D(1) / 2: R =D((1l) ~ 2 - 4 * D(2)

IF R > 0 THEN 215
195 R = ~-R: PImag = SQR(R) / 2

PRINT USING "H###########  #HEE  HHEHHH4A4E #4844, PReal, PImag;

PRINT USING " H####448#844" I

N =N - 1: PImag = —-PImag
PRINT USING "HH#H#HHH##ERE ###EE  SHAH4H84H #4884 PReal, PImag;
PRINT USING " H#####4#8444"; 1. GOTO 230
215 PImag = SQR(R) / 2

PRINT USING "H##4H##H#448 884 #H44E  HHSHH48888 #4448 PReal+PImag,0;

PRINT USING " H####SH8HEME; I N =N - 1

PRINT USING “H####HB#HS#E . HHHHE  HHAASHBERE . ##H##1"  PReal-PImag,0;

PRINT USING " #####4#488888 . T

230 N =N - 1: IF N <= 0 THEN 385
FOR K = 1 TO N: A(K) = Q(K): NEXT K: GOTO 160
240 D(1l) = D10: D(2) = D20

! * Limit iteration to 200 trials *

FOR I = 1 TO 200: Q(1) = A(1l) - D(1): Q(2)=A(2)-0(1)*D(1)-D(2)

FOR K 3 TO N: Q(K) = A(K)-Q(K-1)*D(1)-Q(K-2)*D(2):
C(1l) = Q(1) - D(1): C(2) = Q(2) - C(1) * D(1) - D(2)
FOR K=3 TO N- 1: C(K) = Q(K)-C(K-1)*D(1)~-C(K-2)*D(2):
IF N > 3 THEN 305

NEXT K

NEXT K

Determ = C(N - 1) - C(N - 2) "~ 2: IF Determ <> 0 THEN 295

290 PRINT : PRINT "Denominator is zero!": GOTO 3B5
285 DD1L = (Q(N) - Q(N - 1) * C(N - 2)) / Determ
DD2 = (C(N-1) *Q (N-1) -C(N-2) *Q(N)) /Determ: GOTO 320

305 Determ = C(N-1)*C(N-3)-C(N-2)"2: IF Determ = O THEN 290
DDl = (Q(N) * C(N - 3) - Q(N - 1) * C(N - 2)) / Determ
DD2 = (C(N - 1) * Q(N - 1) - C(N - 2) * Q(N)) / Determ

320 D(1) = D(1) + DD1: D(2) = D(2) + DD2: S = ABS(DD1) + ABS(DD2)

IF S < Epsilon THEN 190
IF I <= 1 THEN S0 = 8: GOTO 370
340 IF I <> 50 OR S < SO THEN 355
PRINT : PRINT "The process is diverging!”
PRINT "d(l)= ";D(1l):"d(2)= ";D(2),;"Deltad(l) = ",DD1l;
PRINT "Delta d4(2) = ";DD2: GOTO 385
355 IF I <> 100 THEN 370
PRINT : PRINT "The process is slow in converging!"

PRINT "d(1)= ": D(1); "d(2)= ": D(2): "Delta d(1) = ";
PRINT "Delta d(2) = ": DD2
370 NEXT I
PRINT : PRINT "Iteration is terminated after 200 trials."
PRINT "d{1l)= ";D(1);"d(2)=":;D(2) ;"Delta 4(1) =":DDl;
PRINT "Delta d(2) = ";DD2
385 END
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Sample Application

As an example, the polynomial P(x) = x*5x3 + 13x>19x + 10 = 0 is solved by
application of the QuickBASIC version of the program Bairstow. The response on
screen is:

Enter the order of the polynomial

4

Enter the coefficients of the polynomial starting from the highest
order and press Enter key after entering each number.

1

-5

13

-19

10

The roots are

REAL PART IMAGINARY PART ITERATIONS
2.00000 .00000 7
1.00000 .00000 7
1.00000 2.00000 1
1.00000 -2.00000 1

The quotient in this case is a quadratic equation:
Q(x) =[x —(1+2i)][x - (1-2i)] = (x — 1) = (2i)* =x* —2x +5=0.
FORTRAN VERsION

C * Program Bairstow - Applies Bairstow' s method for finding polynomial roots
DIMENSION A(100) ,A1(101),C(101),D(2),Q(98)
WRITE (*,3)
3 FORMAT (1X, 'Enter the order of the polynomial')
READ (*,*) N
NP1=N+1
WRITE (*,5)
5 FORMAT (1X, 'Enter the coefficients of the polynomial starting',
*' from the highest order'/5X,' and press Enter key after ',
*'entering each number. ')
Do 7 I=1,NPl

7 READ (*,*) Al(I)
Do 9 I=1,N

9 A(I)=Al(I+1)/Al1(1)
WRITE (*,10)

10 FORMAT (1X, 'Enter the initial guesses of d(1) and d(2)',
* ' and Epsilon, e.g.,.005,.005,.00001:")

READ (*,*) D10,D20,Epsilon
WRITE (*,11)

11 FORMAT(1X, 'The Roots are :'//' REAL PART IMAGINARY ',
*' PART ITERATIONS')
165 IF (N.GT.1) GOTO 180
PReal=-A(1)
PImag=0.
1=1

WRITE (*,170) PReal,PImag,I
170 FORMAT (F17.5,F18.5,7X,17)
GOTO 390
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180 IF (N.GT.2) GO TO 245
D(1)=A(1)
D(2)=A(2)
i=1
190 PReal=-D(1)/2.
R=D (1) **2-4.*D(2)
IF (R.GT.0.) GO TO 220
R=-R
PImag=SQRT (R) /2.
WRITE (*,170) PReal,PImag,I
N=N-1
Plmag=-PImag
WRITE (*,170) PReal,PImag,I
GOTO 235
220 PImag=SQRT(R) /2.
TR=PReal+PImag
TI=0.
WRITE (*,170) TR,TI,T
N=N-1
TR=PReal-PImag
WRITE (*,170) TR,TI,I
235 N=N-1
IF ((N.LT.0).OR.(N.EQ.0)) GO TO 390
DO 242 K=1,N
242 A (K)=Q(K)
GOTO 165
245 D(1)=D10
D(2)=D20
[} * Limit iteration to 200 trials *
DO 375 I=1,200
Q(1)=A(1)-D(1)
Q(2)=A(2)-Q(1)*D(1) -D(2)
DO 272 K=3,N
272 Q(K)=A(K) -Q(K-1) *D (1) -Q(K-2) *D (2)
C(1)=Q(1)-D(1)
C(2)=Q(2)-C(1) *D(1) -D(2)

NM1i=N-1
DO 282 K=3,nM1
282 C(K)=Q(K) -C(K-1) *D (1) -C(K-2) *D(2)

IF (N.GT.3) GO TO 310
Determ=C (N-1) ~-C(N-2)} **2

IF (Determ.NE.O0.) GO TO 300

285 WRITE (*,288)

298 FORMAT (/5X, 'Denominator is zero.!')
GOTO 3980

300 DD1=(Q(N) -Q(N-1) *C(N-2) ) /Determ
DD2=(C(N~1) *Q(N-1) -C(N-2) *Q(N) ) /Determ
GOTO 325

310 Determ=C{(N-1) *C(N-3) -C(N-2) **2

IF (Determ.EQ.0.) GO TO 295

DD1=(Q (N} *C{N-3) ~Q(N~-1) *C(N-2) ) /Determ

DD2=(C(N-1) *Q(N-1) -C(N-2) *Q(N)) /Determ
325 D(1)=D(1)+DD1

D(2)=D(2)+DD2

S=ABS (DD1) +ABS (DD2)

IF (S.LT.Epsilon) GO TO 190

IF (I.GT.1) GO TO 345

80=8
GO TO 375
345 IF ((I.NE.50).0OR.(S.LT.S0)} GO TO 360
WRITE (*,352)
352 FORMAT (/5X, 'The process is not converging!')
GO TO 390
360 IF (I.NE.100) GO TO 375
WRITE (*,368)
368 FORMAT (/5X, 'The process is slow in converging!')
375 CONTINUE

WRITE (*,382)
382 FORMAT (/5X, ' Iteration is terminated after 200 trials.')
390 END
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Sample Application

Consider the polynomial P(x) = x3 + 2x? + 3x + 4 = 0. When the FORTRAN
version of the program Bairstow is run, the response on screen is:

Enter the order of the polynomial :

3

Enter the coefficients of the polynomial starting from the highest
order and press Enter key after entering each number.

W N

The roots are :

REAL PART IMAGINARY PART ITERATIONS
-.17469 1.54687 31
-.17469 -1.54687 31

-1.65063 .00000 1

When the ITERATIONS column indicates 1, it signals that the quotient is of
order one or two. In this case, the quotient is Q(x) = x + 1.65063. In fact, no iteration
has been performed for solving Q(x).

MATLAB APrPLICATION

MATLAB has a file called roots.m which can be applied to find the roots of a
polynomial p(x) = 0. To do so, the coefficients of an nth-order p(x) should be ordered
in descending powers of x into a row matrix of order n + 1. For example, to solve
p(x) = x3 + 2x% + 3x + 4 = 0, we enter:

>> p= [1,2,3,4]; x= roots(p)

and obtain a screen display

X =
-1.6506
-0.1747 + 1.54691
-0.1747 - 1.54691

As a second example of solving x*-5x* + 13x>-19x + 10 = 0, MATLAB inter-
active entries indicated by the leading >> signs and the resulting display are:

>> p=[1,-5,13,-19,10]

p:
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>> x=roots (p)

X =

1.0000 + 2.00001
1.0000 - 2.00001
2.0000
1.0000

Comparing the two examples, we notice that by placing ; after a statement
suppresses the display of the computed value(s). The elements of the first p matrix
(a single row) is not displayed!

It is of interest to introduce the plot capability of MATLAB by use of the results
presented above which involve a polynomial P(x) and its roots. From graphical
viewpoint, the roots are where the polynomial curve crossing the x-axis. MATLAB
has a plot.m file which can be readily applied here. Let us again consider the
polynomial P(x) = x#5x3 + 13x>719x + 10 = 0 and plot it for 0<x<3. For adequate
smoothness of the curve, an increment of x equal to 0.1 can be selected for plotting.
The interactive MATLAB commands entered for obtaining Figure 4 are:

>> p=[1,-5,13,-19,10]; x=[0:0.1:3]; y=polyval (p,x);
>> plot(x,y), hold
>> XL=[0 3]; YL=[0 0]; plot(XL,YL)

Notice that another m file polyval of MATLAB has been employed above. The
statement y = polyval(p,x) generates a array of y values using the polynomial defined
by the coefficient vector p and calculated at the values specified in the x array. The
hold statement put the current plot “on hold” so that an additional horizontal line
connecting the two points defined in the XL and YL arrays can be superimposed.
The first plot statement draws the curve and axes and tic marks while the second
plot statement draws the horizontal line.

The horizontal line drawn at y = 0 help to show the intercepts of the polynomial
curve and the x-axis, by observation near x = 1 and x = 2 which confirm the result
found by the MATLAB file roots.m.

MATHEMATICA APPLICATIONS

For finding the polynomial roots, Mathematica’s function NSolve can be
applied readily.
Keyboard input (and then press shift and Enter keys)

NSolve[x"3 + 2x"2 + 3x + 4 = = 0,x]

The Mathematica response is:

Input[1]: =
NSolve[x"3 + 2x"2 + 3x + 4 = = 0,x]
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FIGURE 4.

Output[1] =

{{X ->—1.65063}, {x ->—-0.174685 — 1.54687 I},
(X ->—0.174685 — 1.54687 1}}

Keyboard input (and then press Shift and Enter keys)
NSolve[x"4-5x"3 + 13x"2-19x + 10 = = 0,x]

The Mathematica response is:
Input[2]: =
NSolve[x"4-5x"3 + 13x"2-19x + 10 = = 0,x]

Output[2] =
{{x>1.-2.1}, {x>-1+2.1}, {x> 1.}, {x >2.}}
To show the locations of the roots of a polynomial, Mathematica’s function
Plot can be applied to draw the polynomial. The following statements (Keyboard

input will hereon be omitted since it is always repeated in the Input response) enable
Figure 5 to be generated:
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Input[3]: =

Plot[x"4-5x"3 + 13x"2-19x + 10,{x,0,3},
Frame->True, AspectRatio->1]

Output[3] =

o

[\V]

0 0.5 1 1.5 2 2.5 3
FIGURE 5.

Notice that {x,0,3} specifies the range of x for plotting, Frame->True requests that
the plot be framed, and AspectRatio-> requests that the scales in horizontal and vertical
directions be equal. The graph clearly shows that there are two roots at x = 1 and x = 2.

3.5 PROBLEMS

FinoRooT

1. A root of F(x) = 3x-2e%* = (0 is known to exist between x = 1 and x = 2.
Calculate the guessed locations of this root twice by application of the
linear interpolation method.

2. A root is known to exist between x = 0 and x = 1 for the polynomial
P(x) = x34.5x% + 5.75x—1.875 = 0 because P(x = 0) = —1.875 and P(x =
1) = 3.75. What will be the next two guessed root values if linear inter-
polation method is used? Show details of your calculation.

3. A root is known to exist between x = 1 and x = 2 for the polynomial x?
+ 0.5x% + 3x-9=0.

Based on the linear interpolation method, make two successive guesses
of the location of the root. Show details of the calculations.
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4. For finding a root of the polynomial x3-8.9x>-21.94x + 128.576 = 0 within
the bounds x = 0 and x = 4, the linear interpolation method is to be
applied. Show only the details involved in computation of rwo successive
trial guesses of the root.

5. Use the Newton-Raphson iterative method to find the root of 2X3-5 =0
between X =1 and X = 2.

6. Complex roots of a polynomial can be calculated by application of the
program FindRoot simply by treating the variable X in the polynomial
F(X) as a complex variable. Using a complex number which has a real
part and an imaginary part as an initial guess for X to evaluate F(X) and
its derivatives, both values will also be complex. The Newton-Raphson
iterative process is to be continued until both the real and imaginary parts
of F(X) are sufficiently small. According to this outline, modify program
FindRoot to generate a new program NewRaphC for determining a
complex root for the polynomial X* + 5X? + 4= 0.

7. In solving eigenvalue problems (see programs CharacEq and Eigen-
ODE), the characteristic equation of an engineering system is in the form
of a polynomial. Physically, the roots of this polynomial may have the
meaning of frequency, or, buckling load, or others. In the program Eigen-
ODE, a vibrational problem leads to a characteristic equation of A\3-50
A2+ 600 \ — 1000 = 0. Apply the program FindRoot to find a root between
A equal to 1 and 2 accurate to three significant figures. This root represents
the lowest frequency squared.

8. Apply the Newton-Raphson method to find a root of the polynomial f(x) =
3x3 + 2x>—x-30 = 0 by first guessing it to be equal to 3.0. Carry out two
iterative steps by hand calculation to obtain the adjustments that need to
be made in guessing the value of this root.

9. Apply the program FindRoot to solve Problem 8 given above.

10. Apply the linear interpolation method to find a root of the polynomial
f(x) = 3x3 + 2x2>-x-30 = 0 between x = 1 and x = 3. Carry out two iterative
steps by hand calculation to obtain the new bounds.

12. The well known secant formula for column bucking? relating the average
unit load P/A to the eccentricity ratio ec/r? is:

P/A=0,,, /{1+(ec/r*)seq|(L/r)(P/EA) " 2]}

where G, is the proportional limit of the column, L/r is the slenderness
ratio, and E is Young’s modulus of elasticity. Solve the above transcen-
dental equation by using 6,,, = 620 MPa and E = 190 GPa to find P/A
for ec/r? = 0.1 and L/r = 20.

13. Solve the friction factor f from the Colebrook and White equation® for
the flow in a pipe (1/f)"? = 1.74-0.868{(2K/D) + [18.7/Re(f)"?]} where
Re is the Reynold’s number and K/D is the relative roughness parameter.
Plot a curve of f vs. Re, and compare the result with the Moody’s diagram.

14. Find the first five positive solution of the equation XJ,(X)-2J,(X)= 0
where J, and J, are the Bessel functions of order O and 1, respectively.’
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15.

16.
17.
18.

19.

20.
21.
22.
23.
24.

Write a program SucceSub for implementing the successive substitution
method and apply it to Equation 5 for solving the angle y for o changing
from 0° to 360° in equal increment of 15°.

Apply the program SucceSub to solve Problem 1.

Apply the program SucceSub to solve Problem 12.

Rise time is defined as the time required for the response X(t) to increase
its value from 0.1 to 0.9, referring to Equation 8 and Figure 1. For a
second-order system with a, =1, a,=0.2sec”!,a;=1sec”!,and a, = 1.37
radians, use Equation 8 to calculate the rise time of the response X(t) by
applying the computer program FindRoot.

Write a m file for MATLAB and name it FindRoot.m and then apply it
for solving Problem 12.

Apply FindRoot.m for solving Problem 14.

Apply FindRoot.m for solving Problem 18.

Apply Mathematica to solve Problem 12.

Apply Mathematica to solve Problem 14.

Apply Mathematica to solve Problem 18.

NewRAPHG

1.

Shown below are two ellipses which have been drawn using the equations:
x ) 2 <’ 2 7\2
() ) = e (G5 (5] =
28 24 9.5 32

)4
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where the coordinate axes x" and y’ are the result of rotating the x and y
axes by a counterclockwise rotation of = 30°. The new coordinates can
be expressed in term of x and y coordinates as:

x’=xcosO+ysin® and y =-xsinB+ycos6

Use an appropriate pair of values for x, and y, as initial guesses for
iterative solution of the location of the point P which the two ellipses
intercept in the fourth quadrant by application of the program NewRaphG.

2. The circle described by the equation x? + y? = 22 and the sinusoidal curve
described by the equation y = sin2x intercepted at two places as shown
below. This drawing obtained using the MATLAB command
axis(‘square’) actually is having a square border when it is shown on
screen but distorted when it is printed because the printer has a different
aspect ratio. Apply the Newton-Raphson iterative method to find the
intercept of these two curves near (x,y) = (2,- 0.5).

yssqrt(4-x"2) and y=sin2x
3 : ; ; :
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3. Apply program NewRaphG for finding a root near X = 0.4 and Y = 0.6
from the equations SinXSinY + 5X-7Y =-0.77015 and e*'*X-X?Y + 3Y =
2.42627. The solutions should be accurate up to 5 significant digits.

4. If one searches near x = 2 and y = 3 for a root of the equations f(x,y) =
(x=1)y + 2x¥(y—1)>-35 and g(x,y) = x>-2x%y + 3xy? + y*-65 what should
be the adjustments of x and y based on the Newton-Raphson method?

5. Write a MATLAB m file and call it NewRaph2.m and then apply it to
solve Problems 1 to 4.

6. Apply Mathematica to solve Problems 1 to 4.

BAIRsTOW

1. Is x>=x + 1 a factor of 4x*-3x3 + 2x?>-x + 5? If not, calculate the adjust-
ments for u and v which are equal to —1 and 1, respectively, based on the
Bairstow’s method.

2. Apply plot.m of MATLAB to obtain a plot of P(x) = x6 + x>-8x* + 14x?
+ 13x2-111x + 90 = 0 vs. x for —-4<x<3 as shown below.

258 ; : ; 0 ;
288 + -
158 » -
188 -
sar 1
-8 \
-/
S 2 3
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3. Find the roots of P(x) = x® + x>-8x* + 14x* + 13x>-111x + 90 = 0 by
application of the program Bairstow. Are the real roots graphically ver-
ified in the plot shown in Problem 27?

4. Apply root.m of MATLAB to find the roots of P(x) = x° + x>-8x* + 14x3
+ 13x2 111x + 90 = 0.

5. Apply the program Bairstow to solve the characteristic equations derived
by the program CharacEq: (1) M3-15 A>-18\ = 0, (2) N*-18\% + 109\
—222 =0, and (3) N-12\2 + 47\ —60 = 0.

6. Apply the program Bairstow to solve for the characteristic equations
derived for the program EigenODE.Stb:

N —36\+243=0,

X —96)% — 2560\ — 16384 =0,

A —200X° +13125A0% —312500A +1953125 =0,
and

X —360X" +46656° —2612736)7 +5.878656x107 A — 3.62791x10% = 0

7. Apply roots.m of MATLAB to find the roots of the polynomials given
in Problem 5 and then graphically verify the locations of these roots by
plotting the polynomial curves using plot.m.

Repeat Problem 7 except for those polynomials given in Problem 6.

9. Apply NSolve of Mathematica to solve Problems 2 to 6.

®
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4 Finite Differences,
Interpolation, and
Numerical Differentiation

4.1 INTRODUCTION

Linear interpolation is discussed in the preceding chapter as a method for finding a
particular root of a polynomial, or, transcendental equation when the upper and
lower bounds of the interval for search are provided. To continue the discussion of
the general topic of interpolations which not necessarily linear could be quadratic
(parabolic, cubic, quartic, and so on, we in this chapter present methods for this
general need of interpolation in engineering analyses by treating not only equations
but also a set of N tabulated data, (x,,y;) for i = 1-N. Finite difference table will be
introduced and constructed for the equally-spaced data, that is X,—X; = X;—X, = ... =
Xn-Xn_;- This table can be utilized as a forward-difference, backward- difference, or,
central-difference table depending on how its is applied for the interpolation use.

Taylor’s series and a shifting operator are to be used in derivation of the
interpolation formulas in terms of the forward-difference, backward-difference, and
central-difference operators. A program DiffTabl has been developed for printing
out a difference table of a set of equally-spaced data.

Differentiation operator will also be introduced for the derivation of the numer-
ical differentiation needs. When a set of equally-spaced data, (x,,y;) for i = 1-N, are
given, formulas in terms of the forward-difference, backward-difference, and central-
difference operators are derived for the need of calculating the value of dy/dx at a
listed x value or unlisted. If x is not equal to one of the X, interpolation and
differentiation have to be done combinedly through a modification of the Taylor’s
series expansion.

For curve-fit by polynomials and for interpolation, applications of the versatile
Lagrangian interpolation formula are also discussed. A program called Lagrangl
is made available for this need.

QuickBASIC, FORTRAN, and MATLAB versions of the above-mentioned
programs are to be provided. Application of the Mathematica’s function Interpo-
lating Polynomial in place of Lagrangl is demonstrated.

In solution of the problems governed by a system of ordinary differential equa-
tions with either some initial and/or boundary conditions specified, the finite differ-
ences will be applied. In Chapter 6, such method for finding the approximate answer
to the problem is discussed. Accuracy of such approximate solution will depend on
the increment of the independent variable, stepsize, adopted and on which approx-
imate method is employed.
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Because numerical differentiation is highly inaccurate, whenever possible
numerical integration should be preferred over numerical differentiation. In case that
one needs to find the velocity of a certain motion study and has the option of
collecting the displacement or acceleration data, then the acceleration data should
be taken not the displacement data. The reason is that one has the choice of applying
numerical differentiation to the displacement data or numerical integration to the
acceleration data to obtain the velocity results. The numerical integration which is
the topic of Chapter 5 has the smoothing effect and hence is more accurate! Graph-
ically, differentiation is of a local evaluation of determining the slope at a selected
point on a curve which could be the result of fitting a number of data points discussed
in Chapter 3 while integration is of a global evaluation of finding the area under the
curve between two specified limits of the independent variable. For a set of three
given points fitted linearly by two linear segments and quadratically by a parabola,
the slope at the mid-point could have very different slope values while the areas
under the linear segments and under the parabola would not differ too significantly.
Hence, it is worthy of emphasizing that learning the computational methods is easier
when compared to making decision of which method is best to solve the problem
at hand.

4.2 PROGRAM DIFFTABL — APPLICATIONS
OF FINITE-DIFFERENCE TABLE

Program DiffTabl has been developed for the need of constructing a table of finite
differences of a given set of N two-dimensional points, (x;,y;) for i = 1-N. The x
values are assumed to be equally spaced, i.e., , X,—X; = X5—X, = *** = X-Xn_; = h, h
being called the increment, or, stepsize. This so-called difference table can be applied
for interpolation of the y value for a specified, unlisted x value inside the range of
X = X, and x = Xy (extrapolation if outside the range), and differentiation. Table 1
shows a typical difference table.

The symbol A used in Table 1 is called Forward Difference Operator. If we refer
the numbers listed in the x and y columns as x, to X, and y, to y,, respectively, the
first number listed under Ay, 1.9495, is obtained from the calculation of y,~y, and
is identified as Ay,. The last number listed in the Ay column, 5.3015, is equal to
y¢—Ys and referred to as Ays. Or, we may write the general formula as, fori=1to 5,

Ayi =Yin 7Y (1)

Ay, is called the first forward difference of y at x;. The higher order forward
differences listed in Table 1 are obtained by extended application of Equation 1.
That is,

Ay, = A(ym - yi) =AY —AY T Y 2V Y, 2
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TABLE 1
Difference Table (y = 1 to 2x + 3x2 to 4x3 + 5x%).

X y Ay A?y Ady Aty A’y
1.1 4.4265
1.9495
12 63760 0.637
2.5865 0.126
13 89625 0.763 0.012
3.3495 0.138 0.000
14 12.3120 0.901 0.012
4.2505 0.150
15 165625 1.051
5.3015
1.6 21.8640

A3yi =N (yi+l - yi) = Azyi+1 - A2yi
= (yi+3 =2y, +yi+1)_(yi+2 =2y, +yi) 3)
=Yis3 =i H3Vi Y

and so on. We shall show later how the third through seven columns of Table 1 can
be interpreted differently when the backward and central difference operators are
introduced. First, we will demonstrate how Table 1 can be applied for interpolation
of the y value at an unlisted x value, say y(x = 1.24). To do that, the shifting operator,
E, needs to be introduced. The definition of E is such that:

Eyi =Yin 4)

That is, if E is operating on y,, the y value is shifted down to the next provided
y value. Interpolation is a problem of not shifting a full step but a fractional step.
For the need of finding y at x = 1.24, the x value falls between x, = 1.2 and x; =
1.3. Since the stepsize, h, is equal to 0.1, a full shift from y, = 6.3760 would lead
to y; which is equal to 8.9625. We expect the value of y(x = 1.24) to be between y,
and y,. Instead of E'y,, the value of E%%y, is to be calculated by shifting only 40%.

To find the meaning of E%?, or, more generally E* for O<r<1, we substitute
Equation 4 into Equation 1 to obtain:

Ay; =y, —y, =By, -y, =(E-Dy,

A=E-1, or, E=1+A (5,6)
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By application of binomial expansion, we can then have:
E‘:(1+A)r:2(rk)Ak )

k=0

where the binomial coefficients are defined as:

r(r—1)...fr—(k-1
(=1 ana (=" ) ®

We can now use Equation 7 to obtain:

y(x=124)=E*y(x=12)=E"y, =(1+4)"y,

4(0.4-1)

= [1 +04A+° AN+ .]y2 ©))

= (1+04A—1.124° +0.064A’ - 0.0416A* +0.022952A° )y,

Equation 9 can be applied for linear interpolation if up to the Ay, terms are
adopted; for parabolic interpolation if up to the A%y, terms are adopted; and so on.
Since Table 1 has up to the fifth order forward differences available but the last
column contains a zero value, Equation 9 can therefore be effectively up to the
fourth-order forward-difference interpolation. The numerical results of y(x = 1.24)
using linear, parabolic, cubic, and fourth-order are 7.4106, 7.3190, 7.3279, and
7.3274, respectively. Since we know y = 1-2x + 3x>-4x3 + 5x*, the exact value of
y(x = 1.24) is equal to 7.3274.

An explanation for discrepancies in all of these four attempts of interpolations,
relative to the exact value, is provided in a homework exercise given in the Problems
set.

BACKWARD-DIFFERENCE OPERATOR

Notice that the first numbers listed in columns three through seven in Table 1
are the five forward differences of y,, and that only four forward differences (the
second numbers in columns three through six) of y, are available. Lesser and lesser
forward differences are available for later y’s until there is only Ays for ys. That is
to say, to interpolate y(x) for an x value between x5 = 1.5 and x, = 1.6, Equation 9
can only be used up to the Ay, term. To remedy this situation and to make most use
of the provided set of 6 (x,y) data, it is appropriate at this time to introduce the
backward-difference operator, V, which is defined as:

Vyi =Y~ Y (10)
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By combining Equations 1, 7, and 10, we notice that:

VYin =Y~y =4y, (11)
and
VY =Y =y = (1 - E_l)ym (12)
So,
V=1-E or, E'=1-V (13,14)

Equation 12 is an important result because it indicates that the last numbers
listed in columns three through seven of Table 1 are the first through five backward
differences of y4. If we could derive an interpolation formula in terms of V, there
are up to fifth-order backward difference of y, available. Toward that end, let us
consider the need of interpolating the value of y(x = 1.56). This y value can be
reached by shifting backward by 0.4 step from x = 1.6 since the stepsize for Table 1
is h=0.1. By using Equation 14 and noticing Equations 7 and 8, we can have:

y(x=1.56)=E*'y(x=1.6) = E %y, = (1-V)"'y,

0.4(0.4-1)

= [l +0.4(-V)+ L2

(-V) +.. .:|y6

=(1-0.4V-0.12V* - 0.064V’ - 0.0416V* - 0.02295V" )y, (15)

One can then apply Equation 15 to obtain the interpolated y(x = 1.56) values
using up to the fifth order backward differences. This is left as a homework exercise
given in the Problems set.

CENTRAL-DIFFERENCE OPERATOR

For the interest of completeness and later application in numerical solution of
ordinary differential equations, we also introduce the central difference operator, 8.
When it is operating on y;, the definition is:

h h
dy, = y(xi +§)—y(xi —5) (16)

The first-order central difference is seldom used and the second-order central
difference is frequently applied, which is:

&y, = zs[y(xi + 121)]— s[y(xi —;‘)] = y(x; +h)—=2y(x,)+y(x; —h)

=Y —2¥ Yy

a7

© 2001 by CRC Press LLC



DIFFERENTIATION OPERATOR

Another important operator that needs to be introduced in connection with the
application of difference table is the differentiation operator, D, which is defined as:

(18)

As it is our intention to apply an available difference table for numerical differ-
entiation at one of the listed x values, or, at an unlisted x value, by using either the
forward or backward differences of y values. For example, we may want to find Dy
at x = 1.2, or, at x = 1.24. To derive an expression for D in terms of A, we recall
the Taylor’s series of a function y(x = a + h) near the neighborhood of x = a for a
small increment of h:

, ” O(a)
y(a+h)=y(a)+ yl(’a)h+ yz('a) W 4. +2 .'(a) hi+... (19)
! ! il
where y¥ is the jth derivative with respect to x. Using the notation of differentiation
operator D and the shifting operator E, the above expression can be written as:

2n2 ini
Ey(a)=y(a)+ th}:(a) + h D;(a) ...+ h D"y(a) +...
! ! ]! (20)
=[1+hD+h’D* +...+ WD +.. ]y(a) ="y(a)
or,
E=e¢™ and D:ﬁEnE 1)

In order to use the difference table for numerical differentiation, we substitute
Equation 6 into Equation 21 to obtain:

D= %En(l LA) (22)

By substituting the logarithmic function in Equation 21 with an infinite series!
and applying the D operator for y,, the result is:

1 1, 1. )
Dy = |[A-—A+-A-..|. 23
Y h( > 3 Y (23)

Hence, to find Dy(x = 1.2) by using the finite differences in Table 1, Equation
23 can be applied to obtain:
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Dy - L 2.5865—o.5xo.763+10.138—10.012 =2248
201 3 4

Notice that the above result is when up to the fourth-order forward differences
of y, are all utilized. Linear, parabolic, and cubic numerical differentiations at x =
1.2 could also be calculated by taking only one, two, and three terms inside the
parentheses of the above expression. The respective results are 25.865, 22.05, and
22.51. Since y(x) = 1-2x + 3x%>4x3? + 5x* and y'(x) = -2 + 6x—12x2 + 20x3, the exact
value of y(x = 1.2) = -2 + 7.2-17.28 + 34.56 = 22.48 indicates that the fourth-order
calculation is the best.

When Dy; is needed for x; near the end of x list, it is better to express D in terms
of the backward-difference operation V, which based on Equations 14 and 21 is:

DY(Xi) = %((n By, = %[ﬂn(l - V)il]}’i

(24)

— 2 3 4
:J(—V—le—lW—...)y, LY £ A A A V.
h 2 3 " h 2 3 4 '

The shifting operator E and differentiation operator D can be combined to derive
formulas for numerical differentiation of y(x) at x values unlisted in the difference
table either in terms of forward-difference operator or backward-difference. First,
let recall Equations 7 and 23 and apply them to find y'(x = x; + rh) in terms of the
forward-difference operator as follows:

y'(x; +rh)= %DE‘yi = %/@n(l +A)1+A)'y,

2 3 —
BN S S [P L A 25)
h 23 2 ‘

_ 2_ 3_ 2 _
1(A+2r2 e, 30 =6r42 5 20 -9 +1Ir 3A4+”‘in

h 6 12

Similarly, y'(x;-th) can be expressed in terms of backward-differential operator, as:

, 1 _r 1 r
y'(x;—rh)= HDE y, = E[—En(l—V)](l—V) Y,
2 3 _
=1 V+V—+V—+... 1—rV+MV2+... V. (26)
h 2 3 2 !
_ 2 _ 3 _ 2 _
:l V_2r 1V2+3r 6r+2v3_2r Or +11r 3V4+... v
h 2 6 12 !
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It should be particularly pointed out that in using Equation 26 for finding y'(x)
where x;_<x<X;, I is to be calculated as (x;-x)/h and not as (x-x;_,)/h. For example,
in using Table 1, to calculate y'(x = 1.56) based on Equation 26 r should be equal
to (1.6-1.56)/0.1 = 0.4 and not equal to (1.56—1.5)/0.1 = 0.6, and i equal to 6 not 5
because in Table 1 x,= 1.6 and x5 = 1.5.

Program DiffTabl has been prepared for interactive interpolation and differen-
tiation using a difference table such as Table 1. User can interactively specify the
data points and where the interpolation or differentiation is to be calculated and also
up to what order of finite differences should the computation be performed. Both
QuickBASIC and FORTRAN versions of the program are made available. Listings
are given below along with some sample applications. At present, the highest order
of finite difference allowed is the fourth.

QuickBASIC VEersioN

Program DiffTabl - Generates and applies Differences Table for interpolation and
t differentiation.
CLEAR : CLS : DIM C(4), YandDY (100, 5)
PRINT " Program DiffTabl - Generates differences table up to fourth- order difference"
PRINT based on N pairs of data points, (Xi,Yi).
PRINT : INPUT "Input number of data points, N (>4) : ", N
PRINT "Input X values and press <Enter> key after entering each number :"
FOR I = 1 TO n: INPUT : x{I): NEXT I: PRINT
PRINT "Input Y values and press <Enter> key after entering each number :"
FOR I = 1 TO n: INPUT ; YandDY(I, 1): NEXT I: PRINT
FOR IC = 2 TO § 'Calculate finite differences
FOR IR=1 TO N-IC+1l: YandDY{IR,IC)=YandDY(IR+1l,6IC-1)-YandDY (IR, IC-1): NEXT IR
NEXT IC: DX = X(2) - X(1)

cLs
PRINT : PRINT " I Xi Yi DYi D2Yi D3Yi D4Yi": PRINT
PRINT USING "##"; 1; : PRINT USING "####. ####8"; X (1), YandDY(1l, 1)

PRINT USING " ###4 _BH###" ; YandDY(1l, 2)

PRINT USING "##"; 2; : PRINT USING "####. #####“- X(2), YandDY (2, 1):

PRINT USING "#H###3HSSHHEEHE  HAS4H" ; YandDY (1, 3)

PRINT USING " #844. HH##4" ; YandDY (2, 2):

PRINT USING " #ERE . HHHEH0 ; YandDY (1, 4)

FOR I = 3 TON - 2
PRINT USING "##";I;: PRINT USING "####. #####":X(I) ,YandDY( I,1):

PRINT USING " #4444 #4444 YandDY(I-1,3),YandDY(I-2,5)
PRINT USING " L2208 2.2 2.1 N YandDY( I,2);
PRINT USING " #EHE. HHR ; YandDY (I-1,4): NEXT I

PRINT USING "##"; N-1; : PRINT USING "H###4 #####" X(N 1, YandDY(N -1, 1);

PRINT USING “#######4888444 SaRie : YandDY(N - 2, 3)

PRINT USING " H#E . #iH# ; YandDY(N - 1, 2)

PRINT USING "##"; N; : PRINT USING "#### _#####" ; X{N), YandDY(N, 1): PRINT

100 PRINT "Want to interpolate or find the derivative of Y(X) for a given X value, "
INPUT " or end the program? Enter I/D/E : ", A$: IF A$ = "E" THEN END
INPUT "Input X value where interpolation or derivative is to be calculated : ", XG
INPUT "Enter F/B for using Forward or Backward differnece @ " 6 M$§

FOR K = 1 TO N: IF (XG > X(K)) THEN 225 ELSE I = K - 1
IF I > 0 THEN 210 ELSE I = 1: PRINT "** Extrapolation ! **"

210 IF M$ = "F" THEN 220 ELSE R = (X{I+1) - XG) / (X(I+1) - X(I}): GOTO 230
220 R = (XG - X(I)) / (X(I + 1) - X(I)): GOTO 230
225 NEXT K: I = N - 1: PRINT "** Extrapolation ! **": GOTO 210
230 INPUT "Input the highest order of finite differences required : ", 10
IF A$ = "I" THEN 235
IF A$ <> "D" THEN END
IFR=1 THEN I =TI + 1: GOTO 231
IFR=0 THEN I = I + 1: GOTO 231
C(l1) = 1: €(2) = R- .5: C(3)=R*"2/2-R+1!/3: C(4)=R"3/6-.75*R"2+11*R/12-.25
IF M$="B" THEN 233
FX = 0: FOR K=1 TO IO: FX=FX+C(K)*YandDY(I, K + 1): NEXT K: GOTO 234
231 IF M$="B" THEN 232 'Backward Differentiaticn
FX = 0: FOR K=1 TO IO 'Forward Differentiation
IF I > N - K THEN 420
SIGN = (-1) "~ (K + 1): FX = FX + SIGN * YandDY(I, K + 1) / K

NEXT K: GOTO 234
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232 FX = 0: FOR K=1 TO I0 : IF (I -~ K) < 1 THEN 420
FX = FX + YandDY(I - K, K + 1) / K: NEXT K: GOTO 234
233 FX = 0: FOR K=1 TO I0: IF I + 1 - K < 1 THEN 420
FX = FX + (-1)"(K+1)*C(K)*YandDY(I + 1 - K, K + 1): NEXT K
234 FX = FX/DX: PRINT : PRINT "The calculated d¥/dX = ", FX: PRINT : GOTO 100
235 IF M$= "B" THEN 335
FX = YandDY (I, 1): FOR K =1 TO IO ‘Forward Interpolate
IF I > (N - K) THEN 420
GOSUB 405

FX = FX + BC * YandDY(I, K + 1)
NEXT K: GOTO 400
335 I = I+1: IF I> N THEN I =N 'Backward Interpolate
FX= YandDY(I, 1): FOR K =1 TO IO
IF (I - K) < 1 THEN 420

GOSUB 405
FX = FX + (~1)"K*BC * YandDY(I - K, K + 1): NEXT K
400 PRINT : PRINT "Answer is : Y(X) = "; FX: PRINT : GOTC 100
405 ! Sub. Binomial Coefficient of (R)XK=R(R-1)...(R-K+1l) /K!
410 BC = 1: FOR IT = 1 TO K: BC = BC * (R - IT + 1) / IT: NEXT IT: RETURN
420 PRINT "Improper request (order too high); reenter input data!": END

Sample Application

Program DiffTabl - Generates differences table up to fourth-order differemce
based on N pairs of data points, (Xi, ¥i).

Input number of data points, N (>4) : 6

Input X values and press <Enter> key after entering each number

2 1.1? 1.2? 1.3? 1.42 1.5? 1.6

Input Y values and press <Enter> key after entering each number

7 4.42657? 6.37607 8.96257 12.3127 16.56257 21.864

1 1.10000 4.42650

1.94950

2 1.20000 6.37600 0.63700
2.58650 0.12600

El 1.30000 8.96250 0.76300 0.01200
3.34950 0.13B00

4 1.40000 12.31200 0.90100 0.01200
4.25050 0.15000

5 1.50000 16.56250 1.05100
5.30150

6 1.60000 21.86400

Wwant to interpclate or find the derivative of Y(X) for a given X value,
or end the program? Enter I/D/E : D
Input X value where interpolation or derivative is to be calculated : 1.24
Enter F/B for using Forward or Backward difference : F
Input the highest order of finite differences required : 4
The calculated dY/dX = 25.12127

Want to interpolate or find the derivative of Y(X) for a given X value,
or end the program? Enter I/D/E : E

FORTRAN VERSION

(o4 Program DiffTabl - Generates and applies Differences Table for
o4 interpolation and differentiation.
DIMENSION C(4) ,X(100) ,Y(100),YandDY(100,5)
Character*l AS MS
WRITE (*,2)
2 FORMAT (' Program DiffTabl - Generates differences table up to’
' fourth-order difference'/19X,' based on N pairs of ',
* ' data points, (Xi,Yi).')
WRITE (*,*) 'Input number of data points, N (>4) : '
READ (%, *) N
WRITE (*,4)
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4 FORMAT (' Input X values and press <Enter> key after entering’,
* ' each number :')
DO 6 I=1,N
6 READ (* *) X(I)
WRITE (*,8)
8 FORMAT (' Input Y values and press <Enter> key after entering',
* ' each number :')
DO 10 I=1,N
10 READ (* *) YandDY(I,1l)
Cc Calculate finite differences
DO 20 IC=2,5
DO 20 IR=1,N-IC+1
20 YandDY (IR,IC)=YandDY (IR+1,IC-1)-YandDY(IR,IC-1)
DX=X(2) -X (1)
WRITE (*,625)
25 FORMAT (' I Xi Yi DYi D2Yi D3Yi',
* ' D4Yi')
WRITE (*,27) 1,X(1),YandDY(1,1)
27 FORMAT (I2,2F10.5,2F20.5)
WRITE (*,30) YandDY(1l,62)
30 FORMAT (12X,2F20.5)
WRITE (*,27) 2,X(2),YandDY(2,1),YandDY (1, 3)
WRITE (*,30) YandDY(2,2),YandDY(1,4)
DO 35 I=3,N-2
WRITE (*,27) I,X(I),YandDY(I,1l),YandD¥(I-1,63),YandDY(I-2,5)
35 WRITE (*,30) YandDY(I,2),YandDY(I-1,64)
WRITE (*,27) N-1,X(N-1),YandDY(N-1,1),YandDY(N-2, 3)
WRITE (*,30) YandDY(N-1,2)
WRITE (*,27) N,X(N),YandDY(N,1)
37 WRITE (*,40)
40 FORMAT (/' Want to interpolate or find the derivative of Y(X) for'
* ' a given X value,'/' or end the program?’,
* ' Enter I/D/E : ')
READ (*,45) AS
45 FORMAT (Al)
IF (AS.EQ.'E’') GOTO 450
WRITE (*,47)
47 FORMAT (' Input X value where interpolation or derivative is to',
* ' be calculated : ')
READ (*,*) XG
WRITE (*,50)
50 FORMAT (' Enter F/B for using Forward or Backward differnece :')
READ (*,45) Ms
DO 125 K=1,N
IF (XG.GT.X(K)) GOTO 125
I=K-1
IF (I.GT.0) GOTO 210
I=1
GOTO 150
125 CONTINUE
I=N-1
150 WRITE (*,*) '** Extrapolation ! **!
210 IF (MS.EQ.'F') GOTO 220
R=(X(I+1) -XG) / (X (I+1) -X(I))
GOTO 230
220 R=(XG-X(I})/(X(I+1)-X(I))
230 WRITE (*,232)
232 FORMAT(' Input the highest order of finite differences’
* ' required :')
READ (*,*) IO
IF (AS.EQ.'I') GOTO 285
IF (AS.NE.'D') GOTO 450
IF ((R.NE.1.) .AND.(R.NE.0.)) GOTO 234
I=I+1
GOTO 237

© 2001 by CRC Press LLC



234 C(1)=1
C(2)=R-.5
C(3)=R**2/2-R+1./3
C(4)=R**3/6-.75*R**2+11*R/12~.25
IF (MS.EQ.'B') GOTO 255

C Differentiation using Forward Differences
C (1) with interpolation
FX=0

DO 235 K=1,I0
235 FX=FX+C (K) *YandDY (I ,K+1)

GOTO 265
237 IF (MS.EQ.'B') GOTO 245
o4 (2) without interpolation
FX=0

DO 240 K=1,10
IF (I.GT.N-K) GOTO 420
SIGN=(-1) ** (K+1)

240 FX=FX+SIGN*YandDY (I, K+1) /K

GOTO 265
C Differentiation using Backward Differences
(o4 (1) without interpolation
245 FX=0

DO 250 K=1,I0
IF ((I-K).LT.1l) GOTO 420
250 FX=FX+YandDY (I-K,K+1) /K

GOTO 265
C (2) with interpolation
255 FX=0

DO 260 K=1,I0
IF ((I+1-K).LT.1) GOTO 420
260 FH=FX+(-1)** (K+1) *C(K) *YandDY (I+1-K,K+1)
265 FX=FX/DX
WRITE (*,270) FX

GOTO 37
270 FORMAT (/' The calculated dY/dX = ',E12.5)
285 IF (MS.EQ. 'B') GOTO 335
C Interpolation using Forward Differences

FX=YandDY (I, 1)
DO 290 K=1,1I0
IF (I.GT.(N-K)) GOTO 420
CALL BinoCoef (R,K,BC)
280 FX=FX+BC*YandDY (I K+1)
GOTO 400
(o} Interpolation using Backwrad Differences
335 I=I+1
IF (I.GT.N) I=N
FX=YandDY (I, 1)
DO 340 K=1,I0
IF ((I-K).LT.1) GOTO 420
CALL BinoCoef (R,K,BC)
340 FX=FX+ (-1) **K*BC*YandDY (I-K,K+1)
400 WRITE (*,405) FX
GOTO 37
405 FORMAT (/' Answer is : Y(X) = ',E12.5)
420 WRITE (*,425)
425 FORMAT (/' Improper request (order too high); reenter input',

* ' data'’)
450 END
SUBROUTINE BinoCoef (R,K,BC)
c Binomial Coefficient of (R)K=R(R-1)...(R-K+1) /K!
410 BC=1

DO 415 IT=1,K
415 BC=BC* (R-IT+1)/IT

RETURN

END
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Sample Application

Using the input data and difference table as for the QuickBASIC version, the
interactive application of the FORTRAN version gives a sample run as follows:

Program DiffTabl - Generates differences table up to fourth-order differemce
based on N pairs of data peinkts, (Xi,Yi).

Input number of data points, W (>4) : 6

Input X values and press <Enter> key after entering each number
? 1.1?2 1.2? 1.3? 1.47 1.5? 1.6

Input Y values and press <Enter> key after entering each number
2 4.42657 6.3760? 8.9625? 12.312? 16.56257 21.864

1 1.10000 4.42650

1.94950

2 1.20000 6.37600 0.63700
2.58650 0.12600

3 1.30000 8.96250 0.76300 0.01200
3.34950 0.13800

4 1.40000 12.31200 0.90100 0.01200
4.25050 0.15000

5 1.50000 16.56250 1.05100
5.30150

6 1.60000 21.86400

Want to interpolate or find the derivative of Y(X) for a given X value,
or end the program? Enter I/D/E : I
Input X value where interpolation or derivative is to be calculated : 1.24
Enter F/B for using Forward or Backward difference : F
Input the highest order of finite differences required : 4

Answer is @ Y(X) = .73274E+01

Want to interpolate or find the derivative of Y(X) for a given X value,
or end the program? Enter I/D/E : I
Input X value where interpolation or derivative is to be calculated : 1.56
Enter F/B for using Forward or Backward difference : B
Input the highest order of finite differences required : 4

Answer is : Y(X) = .19607E+02

Want to interpolate or find the derivative of Y(X) for a given X value,
or end the program? Enter I/D/E : D
Input X value where interpolation or derivative is to be calculated : 1.56
Enter F/B for using Forward or Backward difference : B
Input the highest order of finite differences required : 4

The calculated 4dY/dxX = .54085E+02

Want to interpolate or find the derivative of Y(X) for a given X value,
or end the program? Enter I/D/E : E

MATLAB APrPLICATION

A file DiffTabl.m can be created and added to MATLAB m files for printing
out the difference table. This file may be written as:

function DiffTabl (X,Y)
N=length(X); DY¥=zeros(N-1,N-1);
for I=1:N-1
if I==1, for j=1:N-1
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DY (1,3)=Y(3+1)-Y(3);
end
DY(1,1:N-1)

else for j=1:N-I
DY(i,Jj)=DY(I-1,3+1)-D¥(I-1,73):
end
DY(i,1:N-I)

end

end;

This m file then can be applied as illustrated by the following examples:

>> X=[1,2,3,4,5]; ¥=[2,4,7,11,24}; format compact, DiffTabl (X,Y)

ans =
2 3 4 13
ans =
1 1 9
ans =
0 8
ans =
8
>> ¥X=[1,2,3,4,5,6,7]; ¥Y=[2,5,7,10,22,35,48]); DiffTabl (X,Y)
ans =
3 2 3 12 13 13
ans =
-1 1 S 1 0
ans =
2 8 -8 -1
ans =
6 -16 7
ans =
-22 23
ans =
45

The statement format compact requests the results to be displayed without
unnecessary line spaces on screen.

It is appropriate at this time to demonstrate how some graphic capability of
MATLAB can be effectively utilized here in connection with the difference table.
First, the calculation of the first derivatives can be graphically interpreted as the
slope of the linear segments connecting the given points as shown in Figure 1 which
is obtained with the following interactively entered statements:

>> X=[1.1:0.1:1.6]; Y=[4.4265, 6.3760,8.9625,12.312,16.5625,21.864];

>> plot(X,¥,'-',X,Y,'*"), xlabel('X-axis'), ylabel('Y-axis')

>> text(1.2,15, 'Linearly Connected Data Points')
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FIGURE 1. The calculation of the first derivatives can be graphically interpreted as the slope
of the linear segments connecting the given points.

The first, X =, statement creates an array having 6 elements whose values start
at 1.1 and ends at 1.6 and have a uniform increment of 0.1. In the plot statement,
the character — inside the first set of single quotation signs requests that the given
set of points specified by the coordinates arrays X and Y are to be connected by
solid lines while the character * inside the second set of single quotation signs is
for marking those points.

It also is appropriate at this time to introduce the bar graph feature of MATLAB
when we consider data set and difference table. Figure 2 is presented to show the
use of bar and num2str commands of MATLAB. The bar command plots a series
of vertical bars based on a set of coordinates arrays X and Y where X values must
be equally spaced. The num2str command converts a numerical value into a string,
it often facilitates the display of numerical values in conjunction with the text
command. The following interactively entered statements have enabled Figure 2 to
be displayed:

>> X=[1:1:5]; ¥Y=[2,4,7,11,24]; bar(X,Y)
>> for I=1:5
text(i,Y(I),num2str(Y(I)))

end
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Notice that the first two arguments for text are where the text string should be
placed whereas the third argument converts the value of Y(I) to be printed as a string.
The for-end loop allows all Y values to be placed at proper heights.

MATHEMATICA APPLICATIONS

To produce a plot similar to Figure 3 in the program DiffTabl by application of
Mathematica, we may enter statements and obtain the following:

Input[1]: = X = Table[i,{i,1.1,1.6,0.1}; Y = Exp[X];
Input[2]: = g1 = Show[Graphics[Line[Table[{ X[[i]],Y[[i]]}.{i,1,6}111]

Input[3]: = g2 = Show[gl, Frame->True, AspectRatio->1,
FrameLabel->{“X-axis”,”Y-axis” }]

Input[4]: = g3 = Show[g2,Graphics[Table[ Text[“X",{ X[[i]],Y[[il]},
{i,1,16}1]

Input[5]: = Show[g3,Graphics[Text[*“Linearly Connected”,{1.12,4.8},
{-1,0}],Text[“Data Points”,{1.12,4.6},{-1,0}11]
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Only the final plot is presented here. The intermediate plots designated as g1,
22, and g3 can be recalled and displayed if necessary. The Line command in Input[3]
directs the specified pairs of coordinates to be linearly connected.

A bar graph can be drawn by application of Mathematica command Rectangle
and their respective values by the command Text. The following statements recreate
Figure 4 in the program DiffTabl.:

Input[1]: = X = {1,234,5}; Y = {2,4,7,11,24};

Input[2]: = gl = Show[Graphics[Table[Rectangle[ { X[[i]]-0.4,0},
X[[] + 0.4, Y[[1]1}1.{1,1,5}11]

Input[3]: = g2 = Show[g1,Graphics[Table[Text[Y[[i]],
{XHEN-0.LYT[EI + 13].{1,1,5}1]

Input[4]: = g3 = Show[g2, Frame->True, AspectRatio->1]

Input[5]: = g4 = Show[g3,Graphics[Text[“Bar Graph of X-Y Data”,
{0.5,18},{-1,0}11]

Input[6]: = Show[%,FrameLabel->{*“X-axis”,”Y-axis”}]
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FIGURE 5.

Notice that when no expression inside a pair of doubt quotes is provided for
the command Text, the value of the specified variable will be printed at the desired

location. This is demonstrated in Input/3].
Mathematica also has a function called BarChart in its Graphics package

which can be applied to plot Figure 5 as follows (again, some intermediate Output
responses are omitted):
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Input[1]: =Y = {2,4,7,11,24};
Input[2]: = <<Graphics® Graphics
Input[3]: = gl = BarChart[Y]

Input[4]: = g2 = Show[gl,Graphics[Table[ Text[ Y[[i]],
{i,Y[[]] + 13].{3,1,5}1]

To print out a difference table of a given set of n y values, we can arrange the
y values and up to the n-1st order of their differences in a matrix form. The y values
are to be listed in the first column and their ith-order diferences are to be listed in
the i + 1st column for i = 1,2,...,n—1. The following Mathematica input and ouput
statements demonstrate the print out of a set of 6 y values:

Input[1]: =y = {1,3,7,12,44,78};

Input[2]: = n = Length[y]; yanddys = Table[x,{i,n},{j,n}];
MatrixForm[yanddys]
Output[2] =

Pl o T B B
T T B B
Pl o T B B
T T B B
Pl o T B B
T T B B

Input[3]: = Do[yanddys|[[i,1]] = y[[i]]; MatrixForm[yanddys]

Output[3] =
1 X X X X X
3 X X X X X
7 X X X X X
12 X X X X X
4 X X X X X
78 X X X X X

Input[4]: = Do[Do[yanddys[[i,j]] = yanddys[[i + 1,j—1]]-yanddys[[i,j—1],
{i,n-j + 1}],{j,2,n}]; MatrixForm[yanddys]

Output[4] =

1 2 2 -1 27 -78
34 1 26-51 «x
7
1

5 27-25 x X

2 32 2 X X X
44 34 x X X X
78 x X X X X
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Notice that in Input[2], the Mathematica functions Length has been applied
to determine the number of components in the array y, Table is used to initialize a
matrix of n by n with the character x, and MatrixForm allows the matrix, yanddys,
to be printed in a matrix form. Input[3] stores the y array into the first column of
the matrix yanddys by application of the Mathematica command Do. Such looping
is extended in Input[4] where the higher order differences are generated by using
an inner index i and an outer index j. The column number j of the matrix yanddys
is increased from 2 to n but the length of each column is continuously decreased to
n-j + 1. Such DoDo arrangement is made possible by keeping the y values and their
differences in a column-by-column form.

4.3 PROGRAM LAGRANGI — APPLICATIONS OF LAGRANGIAN
INTERPOLATION FORMULA

Program Lagrangl is designed to curve-fit a given set of n points, (x,,f;) fori=1,
2,...,n, by a polynomial of n-1st degree based on the Lagrangian Interpolation
Formula:

f(x)=zn‘fi ﬂ[(x—xk)/(xi—xk)] (1)

i=l1 k=1
k#i

If only the value of the function f(x) at a specified value of x = x, is needed,
then Equation 1 can be applied to compute

f(xs)=2ﬂ ]kl[[(xz—xk)/(xi—xk)] @)

k#i

In Equations 1 and 2, the symbol II is to represent a product of a specified
number of factors such as:

| S 3)
k=1

Equation 1 can be proven if we write the equation which fits the n given points
(x,,f)) for i =1 to n by a combination of n functions L, , ,(X) as:

lton
f(x)=fL,(x)+f,L,(x)+...+f L, (x) 4)

Notice that the ordinates f, , , are utilized in Equation 4. We expect the functions
L, , (x) to behave in such a way that when x = x; only the fL;(x) term in Equation
4 will contribute to f(x). That is to say when x = Xx;, L(x;) should be equal to unity
and the other L(x) should be equal to zero. Mathematically, we write demand that:
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L(x)=1 and L(x)=0 for j#i (5)

J\i

The second condition of Equation 5 suggests that x-x, are factors of L;(x) for
k = 1,2,...,n but not x-x;. Therefore, we may write:

Li(x):ci(x—xl)(x—xz)...(x—xi_l)(x—XM)...(X—XH) 6)

The constant associated with L,(x), ¢; is to be determined by satisfying the first
condition of Equation 5. That is:

¢ =1 H(Xi_xk) @)

Consequently, the complete expression for L;,(x) is:

Li(x)= ]:[[(x -x)/ (x| (®)

k#i

And, when Equation 8 is substituted into Equation 4, we arrive at Equation 1.

A numerical example will clarify the application of Equation 2. Consider the
case of three given points (x,,f;) = (1,2), (x,,f,) = (1.5,2.5), (x5,f;5) = (3,4), then n =
3. If we need to calculate f(x = 2), Equation 2 can be used to find the equation which
passes all three points. That is:

X, — 2)(xl—x3 ! (xz—xl)xz—x3) 2
ey
- s
+<(33§311§)>4

:2(X—4.5x+4.5)—?(x2 —4x+3)+%(x2 ~2.5x+1.5)

=x+1
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When x = 2, f(x = 2) = 3. Actually, the value of f(x = 2) can be specifically
calculated as:

(2-15)2-3),  (2-1)(2-3)
1.5)(1-3) © (1.5-1)(1.5-3)

QuickBASIC VEersioN

'+¥*% Program Lagrangl - Lagrangian interpolation. **%

SCREEN 2: CLEAR: CLS: KEY OFF
OPTION BASE 1 : W=8 : H=8
PRINT "Program Lagrangl - Interpolates F(X) using N
pairs of data points,”
PRINT " (Xi,F1i), based on Lagrangian
interpolation formula."
PRINT
PRINT "Input number of data points, N : ";
INPUT N
DIM F(N) ,X(N)
PRINT
PRINT "Input X values and press <Enter> key after
entering a number
FOR I=1 TO N
INPUT;X(I)
NEXT I
PRINT : PRINT
PRINT "Input F values and press <Enter> key
after entering a number :"
FOR I=1 TO N
INPUT;F(I)
NEXT I
PRINT
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PRINT : PRINT "Input X value for which F needs to be
interpolated : " ;
INPUT XG
S=0
FOR I=1 TO N
p=1
FOR K=1 TO N
IF K=I THEN 190 ELSE
P=P* (XG-X(K)) / (X(I) -X(K))
NEXT K
S=S+P*F (I)
NEXT I
PRINT : PRINT "Answer 1is : F(X) = ";8
PRINT : END

Sample Application

Program Lagrangl - Interpolates F(X) using N pairs of data points, (Xi,6Fi)
based on Lagrangian interpclation formula.
Input number of data points, N :

5

Input X values

1,2,3,4,5

Input F values :

2,4,6,8,11

Input X value for which F needs to be interpolated :
4.56

Answer is @ F(X) = 9.4517350

FORTRAN VERSION

C *** Program Lagrangl - Lagrangian interpclation. ***

DIMENSION F(100) ,X(100)
WRITE (*,2)
2 FORMAT (' Program Lagrangl - Interpolates F(X) using N pairs of',
* ' data points, (Xi,Fi)'/
* ’ based on Lagrangian interpcolation formula. ')
WRITE (*,*) 'Input number of data points, N : '
READ (* *) N
WRITE (*,4)
4 FORMAT (' Input X values :')
READ (*,*) (X(I),I=1,N)
WRITE (*,6)
6 FORMAT (' Input F values :')
READ (*,*) (F(I),I=1,N)
WRITE (*,8)
8 FORMAT (' Input X value for which F needs to be interpclated : ')
READ (*,*) XG
8=0
DO 20 I=1,N
pP=1
DO 15 K=1,N
IF (K.EQ.I) GO TO 15
P=P* (XG-X (K)) / (X (I) -X(K))
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15 CONTINUE

20 S=8+P*F(I)
WRITE (*,*) 'Answer is : F(X) = ',8
END

Sample Application

Program Lagrangl - Interpcolates F(X) using N pairs of data points, (Xi,6Fi)
based on Lagrangian interpolation formula.

Input number of data points, N :

3

Input X values :

1,1.5,3

Input F values :

2,2.5,4

Input X value for which F needs to be interpolated :

2

Answer is : F(X) = 3.0000000

MATLAB APrPLICATION

A m file called Lagrangl.m can be created and added to MATLAB m files for
interpolating a Y value for a giving X value based on a set of (X,Y) data point using
the Lagrangian formula. This file may be written as:

function Yvalue=LagrangI(X,Y, XV)
N=length (¥X) ; Yvalue=0;
for I=1:N
Term=Y (I): for k=1:N
if k~=I, Term=Term.* (XV-X(k)) ./ (X{(I)-X(k)):; end
end
Yvalue=Yvalue+Term;
end
end

This m file can then be applied by specifying the data points, X vs. Y, as
illustrated by the following examples:

>> X=[1,2,3,4,5]; ¥=[2,4,6,8,11]; ¥value=LagrangI(X,Y,6XV)
Yvalue =

9.4517

The graphic capability of MATLABcan also be utilized here to interpret
Lagrangian interpolation. In Figure 6, five given points marked with the character
* have been exactly fitted with a fourth-order polynomial which is plotted for 1<X<5
with a solid line. The interpolation at X = 4.56 using Lagrangian formula is illustrated
by the broken line and dotted line. The interactively entered MATLAB statements,
in addition to those already displayed above, are:
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FIGURE 6. Five given points marked with the character * have been exactly fitted with a
fourth-order polynomial which is plotted for 1<X<5 with a solid line. The interpolation at
X = 4.56 using Lagrangian formula is illustrated by the broken line and dotted line.

>> XV=[{4.56 4.56]: YV=[1 11}
>> XH=[1 4.56); YH=[9.4517 9.4517];
>> C=LeastSqG('A:FSPoly' ,X,Y,5,5);
>> for I=1:5
Creverse (I)=C(6~I)

end
>> XC=[1:0.1:5]; YC=polyval (Creverse, XC);
>> plot(XC,YC,XV,YV XH,YH X ,Y, '*');
>> xlabel ('X-axis'), ylabel('Y-axis')
>> text(1.2,8.0, 'Lagrangian Interpolation of Y Value')
>> text(1.3,7.5,'at X=4.56 Using All Five Given')
>> text(1.4,7.0, Points Marked By *')
>> text(2.5,3.0, 'Answer : Y (X=4.56)=8_.4517")
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Notice that plot.m automatically uses solid, broken, and dotted lines to plot the
four-order polynomial curve based on arrays XC and YC, and the vertical line based
on arrays XV, YV, and the horizontal line based on arrays XH, YH, respectively.
The details involved in exact curve-fit of the five given point by applying Least-
SqG.m already has been discussed in the program Gauss. The coefficients, {C}, of
the fourth-order polynomial determined by LeastSqG.m are arranged in descending
order. In order to apply polyval.m of MATLAB, the order of {C} has to be reversed
and stored in {Creverse} which is implemented above by the for and end loop.

MATHEMATICA APPLICATIONS

Derivation of the polynomial which passing through a set of given (x,y) points
based on the Lagrangian formula can be achieved by application of the Interpolating
Polynomial function of Mathematica. For example, a fourth-order polynomial can
be derived for a given set of 5 (x,y) data points as follows:

In[1]: = pofx = InterpolatingPolynomial [{{1,2},{2,4},{3,6},{4,8},{5,11}},x]

(=4 +x)(-3+x)(-2+x)
24

Out[l]: = 2+(2+

) (-1+x)

To interpolate the y value of using the derived polynomial at x equal to 4.56,
we replace all x’s appearing in the above expression (saved in pofx) with a value
of 4.56 by interactively entering

In[2]: = pofx/. x -> 4.56

Out[2]: = 945174

Linear and parabolic interpolations can also be implemented by selecting appro-
priate data points from the given set. For example, to interpolate the y value at x =
1.25 by linear interpolation, we enter:

In[3]: = pl = InterpolatingPolynomial[{{1,2},{2,4}},x]

Out[3]: =2 +2 (-1 +x)

In[4]: = pl/. x -> 1.25

Out[4]: = 2.5

To parabolically interpolate the y value at x = 3.75 using the points (3,6), (4,8),
and (5,11), the interactive application of Mathematica goes as:

In[5]: = p2 = InterpolatingPolynomial[{{3,6},{4,8},{5,11}},x]
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—4+x

Out[5]: = 6+(2+

) (-3+x)
In[6]: = p2/. x -> 3.75 Out[6]: = 7.40625
4.4 PROBLEMS
DireTABL
1. Construct the difference table based on the following listed data and then

find the y value at x = 4.5 by using the backward-difference formula up
to the third-order difference.

x |1 2 3 4 5
y | 2 12 20

2. Explain why interpolations using Equation 9 by the first through fourth
orders all fail to match the exact value of y(x = 1.24) = 7.3274 by making
4 plots for x values ranging from 1.2 to 1.3 with an increment of Ax =
0.001. These 4 plots are to be generated with the 4 equations obtained
when the first 2, 3, 4, and 5 points are fitted by a first-, second-, third-,
and fourth-degree polynomials, respectively. Also, draw a x = 1.24, ver-
tical line crossing all 4 curves.

3. Find the first-, second-, third-, and fourth-order results of y(x = 1.56) by
use of Equation 15.

4. Write E in terms of binomial coefficient and the backward-difference
operator V, similar to Equation 7.

5. Find the first-, second-, third-, and fourth-order results of y'(x = 1.24) by
use of Equation 24.

6. Find the first-, second-, third-, and fourth-order results of y(x = 1.56) by
use of Equation 25.

7. Given 6 (x,y) points (1,0.2), (2,0.4), (3,0.7), (4,1.5), (5,2.9), and (6,4.7),
parabolically interpolate y(x = 3.4) first by use of forward differences and
then by use of backward differences.

8. Modify either the QuickBASIC or FORTRAN version of the program
DiffTabl to include the fifth difference for the need of forward or back-
ward interpolation and numerical differentiation.

9. Given 5 (x,y) points (0,0), (1,1), (2,8), (3,27), and (4,64), construct a
complete difference table based on these data. Compute (1) y value at x =
1.25 using a forward, parabolic (second-order) interpolation, (2) y value
at x = 3.7 using a backward, cubic (third-order) interpolation, and (3)
dy/dx value at x = 0 using a forward, third-order approximation.

10. Based on Equation 21, derive the forward-difference formulas for D%y,
and Ddy,.

11. Use the result of Problem 10 to compute D%y, and D3y, by adopting the
forward-difference terms in Table 1 as high as available.
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12.

13.

14.

15.

16.

17.

18.

Use the data in Table 1 to compute the first derivative of y at x = 1.155
by including terms up to the third-order forward difference.

Apply MATLAB for the points given in Problem 1 to print out the rows
of X, y, Ay, A%y, A’y, and A%y.

Same as Problem 13 but the points in Problem 6.

Apply Mathematica and DO loops to print out a difference table similar
to that shown in Mathematica Application of Section 4.2 for the points
given in Problem 1.

Apply Mathematica and DO loops to print out a difference table similar
to that shown in Mathematica Application of Section 4.2 for the points
given in Problem 6.

Compute the binomial coefficient for r = 0.4 and k = 1,2,3,4,5 according
to Equation (8) in Section 4.2 using MATLAB.

Rework Problem 17 but using Mathematica.

LAaGraNGl

. Given five points (1,1), (2,3), (3,2), (4,5), and (5,4), use the last three

points and Lagrangian interpolation formula to compute y value at x = 6.

. A setof 5 (x,y) points is given as (1,2), (2,4), (4,5), (5,2), (6,0), apply the

Lagrangian interpolation formulas to find the y for x = 3 by parabolic
interpolation using the middle three points. Check the answer by (a)
without fitting the three points by a parabolic equation, and (b) by deriving
the parabolic equation and then substituting x equal to 3 to find the y value.

. Apply the Lagrangian formula to curve-fit the following listed data near

x = 5 by a cubic equation. Use the derived cubic equation to find the y
value at x = 4.5.

x |1 2 3 4 5
y | 2 12 20

Use the data set given in Problem 3 to exactly curve-fit them by a quartic
equation y(x) = a,; + a,x + a;x? + a,x> + a;x* Do this manually based on
the Lagrangian formula.

. Write a program and call it ExactFit.LnS for computation of the coeffi-

cients a,_s in the y(x) expression in Problem 4.

Generalize the need in Problem 4 by extending the exact fit of N given
(x,y) points by a polynomial y(x) = a; + a,x + ... + ax' + ... + ax¥!
based on the Lagrangian formula. Call this program ExactFit.LnN.

. Based on the Lagrangian formula, use the first four of the five points given

in Problem 1 to interpolate the y value at x = 2.5 and then the last four
of the five points also at x = 2.5.

. Write a program and call it Expand.1 which will expand the set of five

points given in Problem 2 to a set of 21 points by using an increment of
x equal to 0.2 and linear interpolation based on the Lagrangian formula.
For any x value which is not equal to any of the x values of the five given
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points, this x value is to be tested to determine between which two points
it is located. These two given points are to be used in the interpolation
process by setting N equal to 2 in the program Lagrangl. This procedure
is to be repeated for x values between 1 and 6 in computation of all new
y values.

9. As for Problem 8 except parabolic interpolation is to be implemented.
Call the new program Expand.2.

10. Extend the concept discussed in Problems 8 and 9 to develop a general
program Expand.M for using N given points and Mth-order Lagrangian
interpolation to obtain an expanded set.

11. Apply the function InterpolatingPolynomial of Mathematica to solve
Problems 1 and 2.

12. Check the result of Problem 4 by Mathematica.

13. Apply Lagrangl.m to solve Problem 1 by MATLAB.

14. Apply Lagrangl.m to solve Problem 2 by MATLAB.

15. Apply Lagrangl.m to solve Problem 7 by MATLAB.

4.5 REFERENCE

1. R. C. Weast, Editor-in-Chief, CRC Standard Mathematical Tables, the Chemical
Rubber Co. (now CRC Press LLC), Cleveland, OH, 1964, p. 381.
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5 Numerical Integration
and Program Volume

5.1 INTRODUCTION

Sometimes, one cannot help wonder why m appears so often in a wide range of
mathematical problems and why it has a value of approximately equal to 3.1416.
One may want to calculate this 16th letter in the Greek alphabet and would like to
obtain its value as accurate as 3.14159265358979 achieved by the expert.! Geomet-
rically,  represents the ratio of the circumference to the diameter of a circle. It is
commonly known that if the radius of a circle is r, the diameter is equal to 2r, the
circumference is equal to 2r, and the area is equal to mr2. Hence, to calculate the
diameter we simply double the radius but to calculate the circumference and the
area of a circle is more involved. The transcendental number  is the result of
calculating the circumference or area of a circle by numerical integration.

In this chapter, we discuss various methods that can be adopted for the need of
numerical integration. Before we elaborate on determining the value of m, let us
describe the problem of numerical integration in general.

Consider the common need of finding the area inside a closed contour C, such
as the one shown in Figure 1A, or the area between the outside contour C, and the
inside contour C; shown in Figure 1B. The latter could be a practical problem of
determining the usable land size of a surveyed lot which include a pond. To evaluate
the area enclosed by the contour C, approximately by application of digital computer,
the contour can be treated as two separate curves divided by two points situated at
its extreme left and right, denoted as P, and Py, respectively. A rectangular coordinate
system can be chosen to adequately describe these two points with coordinates
(XL, Y,) and (X, YR). Here, for convenience, we shall always place the entire contour
C, in the first quadrant of the X-Y plane. Such an arrangement makes possible to
have the coordinate (X,Y) values any point on C, being greater than or equal to zero.

The area enclosed in the contour C, can be estimated by subtracting the area Ay
between the bottom-branch curve P, P;Py and the X-axis, from the area A; between
the top-branch curve P, P;P; and the X-axis. Approximated evaluation of the areas
Ajg and A; by application of digital computer proceeds first with selection of a finite
number of points P, from P; to Py. That is, to approximate a curve such as P, PPy
by a series of linear segments. Let N be the number of points selected on the curve
P, PPy, then the coordinates of a typical point are (X,,Y,) for i ranges from 1 to N
and in particular (X,,Y,) = (X.,Y,) and (X,Yy) = (Xi,Yg). The area between a
typical linear segment PP, , | and the X-axis is simply equal to:

Ai (Yi +Yi+l)(Xi+1 _Xi)/z ()
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FIGURE 1A. The common need of finding the area inside a closed contour C,.
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FIGURE 1B. The common need of finding the area between the outside contour C, and the
inside contour C;.
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FIGURE 2. (Y;+Y,,,)/2is the average height and (X, ,—X,) is the width of the shaded strip.

Notice that (Y; +Y,, )/2 is the average height and (X, , ,—X,) is the width of the
shaded strip shown in Figure 2. Obviously, the total area A; between the top branch
of contour C,, P, PPy, and the X-axis is the sum of all strips under the N-1 linear
segments PP, , , for i = 1,2,...,N. In other words, we may mathematically write:

iti+l

N-—

N-1 1
AL :ZAi :zl(Yi +Yi+|)(Xi+l _Xi)/2 @

i=

To obtain the area A between the bottom branch of contour C, and the X-axis,
we follow the same procedure as for the area A; except that the first point is to be
assigned to Py and the last point to P;. Suppose that there are M points selected
along P PP, , then the coordinates of these points are (X;,Y,) fori=1,2,....M and
in particular (X,Y,) = (Xg,Yg) and (Xy;,Yy) = (X, Y, ). Consequently, the area Ay
can be calculated, similar to Equation 2 as:

Ap= D A= D (Y+Y,)(X,—X,)2 3
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Since the points are numbered in increasing order from Py through Py and Py,
it is then clear that X, , , is always less than X;. Ay thus carries a minus sign.

Based on the above discussion, the area enclosed by contour C, can therefore
be calculated by adding A; and Ay if the numbering of the points selected on the
contour follows a clockwise direction. Let the total number of points selected around
the contour C, be denoted as K, then K = N + (M-2) because Py and P, are re-used
in consideration of the bottom branch. Hence, the area enclosed in C, is:

A=A, +A, ZYH{,+I X)) @)

where the Nth point has coordinates (Xy,Yy) = (Xg,Yg) and the first and last points
have coordinates (X,,Y,) = (Xg, ,Yk+1) = (X, Y.). And it should be evident that
in case of a cut-out, such as the contour C, shown in Figure 1(B), the subtraction
of the area enclosed by the cut-out can be replaced by an addition of the value of
the area when it is calculated by using Equation 4 but the numbering of the points
on contour C; is ordered in counterclockwise sense.

5.2 PROGRAM NUINTGRA — NUMERICAL INTEGRATION BY
APPLICATION OF THE TRAPEZOIDAL AND SIMPSON RULES

Program NulntGra is designed for the need of performing numerical integration
by use of either trapezoidal rule or Simpson’s rule. These two rules will be explained
later. First, let us discuss why we need numerical integration.

Figure 3 shows a number of commonly encountered cross-sectional shapes in
engineering and scientific applications. The interactive computer program NulntGra
has an option of allowing keyboard input of the coordinates of the vertices of the
cross section and then carrying out the area computation of cross-sectional area
based on Equation 4.

The following gives some detailed printout of the results for the cross sections
shown in Figure 3. It is important to point out that the points on the contours describing
the cross-sectional shapes should be numbered as indicated in Figure 3, namely, clock-
wise around the outer boundary and counterclockwise around the inner boundary.

Program NuIntGra - Numerical Integration using Trapezoidal or Simpson Rule *
Enter a description of the problem : Fig. 3®
Are ordinates tabular data or is an integrand function to be defined?
Enter = : 1
This version is limited to using trapezoidal rule only.
How many closed contours are to be considered? 1
Contour No. 1
How many points are involved? 13
Enter X (1) through X(13), press <Enter> after entering each number :
? 0? 07 1? 17 02 07 37 3?7 2? 2? 37 3?2 0
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FIGURE 3. Commonly used cross sections in engineering and scientific applications.

Enter Y(1) through ¥ (13), press <Enter> after entering each number

? 07 1?7 17 47 47 52 52 47 47 17 17 0? 0

The result is 0.90000E+01

Program NuIntGra - Numerical Integration using Trapezoidal or Simpson Rule *

Enter a description of the problem :

Fig. 3(d)

Are ordinates tabular data or is an integrand function to be defined?

Enter *» : 1

This version is limited to using trapezoidal rule only.

How many closed contours are to be considered? 1

Contour No. 1

How many points are involved? 9

Enter X(1) through X{( 9), press <Enter> after entering each number

? 07 07 3?2 32 17 12 3?2 37 O

Enter Y(1l) through Y( 9), press <Enter> after entering each number :

? 0?7 5?7 52 4?2 47 17 1?2 07 O
The result is 0.90000E+01

Program NulntGra - Numerical Integration using Trapezoidal or Simpson Rule *

Enter a description of the problem :

Fig. 3(e)

Are ordinates tabular data or is an integrand function to be defined?

Enter » : 1
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This version is limited to using trapezoidal rule only.

How many closed contours are to be considered? 1

Contour No. 1

How many points are involved? 13

Enter X (1) through X(13), press <Enter> after entering each number
? 0? 07 1? 17 02 07 37 3?7 2? 2? 37 3?2 0

Enter Y(1) through ¥ (13), press <Enter> after entering each number
? 07 1?7 17 47 47 52 52 47 47 17 17 0? 0

The result is 0.90000E+01

Program NuIntGra - Numerical Integration using Trapezoidal or Simpson Rule *

Enter a description of the problem : Fig. 3(d)

Are ordinates tabular data or is an integrand function to be defined?
Enter *» : 1

This version is limited to using trapezoidal rule only.

How many closed contours are to be considered? 1

Contour No. 1

How many points are involved? 9

Enter X(1) through X{( 9), press <Enter> after entering each number

? 07 0?2 3?7 3?2 1? 12 3?2 32 0O

Enter Y(1l) through Y( 9), press <Enter> after entering each number

? 0?7 5?7 52 4?2 47 17 1?2 07 O

The result is 0.90000E+01

Program NulntGra - Numerical Integration using Trapezoidal or Simpson Rule *

Enter a description of the problem : Fig. 3(e)

Are ordinates tabular data or is an integrand function to be defined?
Enter » : 1

This version is limited to using trapezocidal rule only.

How many closed contours are to be considered? 1

Contour No. 1

How many points are involved? 13

Enter X(1) through X(13), press <Enter> after entering each number

2 0? 07 17 1?2 27 27 37 3? 2?7 2?7 17 1?7 O

Enter Y (1) through Y(13), press <Enter> after entering each number

2 0? 57 52 37 32 57 57 07 0? 2? 2?2 02 O

The result is 0.11000E+02

Program NulIntGra - Numerical Integration using Trapezcidal or Simpson Rule *

Enter a description of the problem : Fig. 3(f)

Are ordinates tabular data or is an integrand function to be defined?
Enter *» : 1

This version is limited toc using trapezoidal rule only.

How many closed contours are to be considered? 2

Contour No. 1

How many points are involved? 5

Enter X (1) through X( 5), press <Enter> after entering each number

? 0? 07 3?2 37 0
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Enter Y(1l) through Y( 5), press <Enter> after entering each number
? 0? 52 52 0?7 O

Contour No. 2

How many points are involved? 5

Enter X (1) through X( 5), press <Enter> after entering each number
? 17 2?7 27 12 1

Enter Y (1) through Y( 5), press <Enter> after entering each number
? 17 17 47 47 1

The result is 0.12000E+02

Program NulntGra - Numerical Integration using Trapezoidal or Simpson Rule *

Enter a description of the problem : Fig. 3(g)

Are ordinates tabular data or is an integrand function to be defined?
Enter *» : 1

This version is limited to using trapezoidal rule only.

How many closed contours are toc be considered? 3

Contour No. 1

How many points are involved? 5

Enter X (1) through X( 5), press <Enter> after entering each number

2 g7 07 37 32 0

Enter Y (1) through Y( 5), press <Enter> after entering each number

? 07 57 57 02 O

Contour No. 2

How many points are involved? 5

Enter X{(1) through X( 5), press <Enter> after entering each number

? 17 2?2 27 1?7 1

Enter Y (1) through Y( 5), press <Enter> after entering each number

? 37 37 47 427 3

Contour No. 3

How many points are involved? 5

Enter X(1) through X{ 5), press <Enter> after entering each number

? 1? 27 27 12 1

Enter Y (1) through Y{( 5), press <Enter> after entering each number

? 1?7 172 27 27 1

The result is 0.13000E+02

By use of a Function subprogram F(X) which defines the upper branch of a
circle of radius equal to 1 and having its center located at X = 1 as listed below,
program NulntGra also has been applied for calculating the value of . The screen
display of this interactive run is also listed below after the Function F(X).

QuickBASIC Version FORTRAN Version
FUNCTION F(X) FUNCTION F(X)
F = SQR(1(X-1)"2) F = SQRT(1l.-(X-1)*%2)
END FUNCTION RETURN

END

© 2001 by CRC Press LLC



Program NuIntGra - Numerical Integration using Trapezoidal or Simpson Rule *

Enter a description of the problem : PI calculation

Are ordinates tabular data or is an integrand function to be defined?
Enter » : 2

You must have defined the integrand function by editing and compiling
subprogram function F(X) .

If you have not done so, terminate the program by press <Ctrl Break>.

Using Trapezoidal/Simpson Rule? Enter , respectively :@ 2

Enter the lower limit of X : 0

Enter the upper limit of X : 2

Enter the number of points for integration : 21

The result is 0.15635E+01

More discussion on the accuracy of m will be given later after we have introduced
both the trapezoidal and Simpson’s rules which have already been incorporated in
the program Nulntgra.

TraPezoIiDAL RULE

Returning to Figure 2, we notice that if in approximating the curve by a series
of linear segments the points selected on the curve are equally spaced in X, Equation
2 can be considerably simplified. In that case, we have:

AX=X,-X, =X, - X, =...= X - Xy, (5)

and Equation 2 can be written as:

Ar= AXZ(Yi + Yi+l)/2 (©)

Or, in a different form for easy interpretation, it may also be written as:

N-1
Ap=AX Y, +2) Y +Y, | 2 )

i=2

All the in-between heights, Y; for i ranging from 2 to N-1 that is the next to the
last, are appearing twice because they are shared by two adjacent strips whereas the
first and last heights, Y, and Yy, only appear once in Equation 7. AX in Equation 7
is the common width of all strips used in summing the area.

Equation 7 is the well known Trapezoidal Rule for numerical integration. In a
general case, it can be applied for approximate evaluation of an integral by the
formula:
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Xg N-1
LL f(X)dX = AX[fl + 222}i + fNJ ®)

where the increment in X, AX, is simply:
AX =(X, - Xg)/(N-1) ©)

when N points are selected on the interval of integration from X, to Xg. It should
be understood that in Equation 8 f; is the value of the integrand function f(X)
calculated at X = X;. That is:

f =f(X,) (10)

where fori=1,2,....N
X, =(i-DAX+X, (11)
X, =X, and X =X, (12,13)

Program NulntGra allows the user to define the integrand function f(X) by
specifying a supporting Subprogram FUNCTION F(X) and to interactively input
the integration limits, X; and Xj, along with the total number of points, N, to
determine the value of an integral based on Equation 8. As an example, we illustrate
below the estimation of a semi-circular area specifying X; = 0, Xz =2, and N = 21
and defining the integrand function f(X) in FUNCTION F(X) with a statement

F = SQRT(1.-(X-1.)*(X-1.))

This statement describes that the center of the circle is located at (1,0) and radius
is equal to 1. When N is increased from 21 to 101 with an increment of 20, the
following table shows that the accuracy of trapezoidal rule is steadily increased when
the estimated value of the semi-circle is approaching the exact value of /2.

N 21 41 61 81 101
Area 1.552 1.564 1.567 1.568 1.569
Error 1.21% 0.45% 0.26% 0.19% 0.13%

SiMPSON’s RULE

The Trapezoidal Rule approximates the integrand function f(X) in Equation 8
by a series of connected straight-line segments as illustrated in Figure 2. These
straight-line segments can be expressed as linear functions of X. A straight line
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which passes through two points (X,,Y;) and (X, ;,Y;, ) may be described by the
equation:

Y=mX+b, (14)

where m; is the slope and b is the intercept at the Y-axis of the ith straight line.
Upon substituting the coordinates (X,,Y;) and (X, ;,Y;, ) into Equation 14, we
obtain two equations

Y, =mX, +b, and Y.

i+l

=mX,, +b,

The slope m; can be easily solved by subtracting the first equation from the
second equation to be

m; = (Yi+1 _Yi)/(Xi+1 - Xi) as)
Substituting m; into the Y, equation, we obtain the intercept to be:
b, =Yi_(Yi+1_Yi)Xi/(Xi+l_Xi) (16)

For the convenience of further development as well as for ease in computer
programming, it is better to write the equation describing the straight line as:

1
Y=a,+3X=) aX (17
i=0

That is to replace m; and b; in Equation 14 by a, and a,, respectively. From
Equations 15 and 16, we therefore can have:

a,= (Y, - Y,)/(X, - X)) (18)
and

a :Y'_(Yi+l_Yi)Xi/(Xi+l_Xi) (19)

1 i

A logical extension of Equation 17 is to express Y as a second-order polynomial
of X, namely:

2

Y=a,+aX+2,X>= Y aX’ (20)

i=0
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FIGURE 4. Three points are required on the f(X) in order to determine the three coefficients
a, a;, and a,.

It is a quadratic equation describing a parabola. If we select Equation 20 to
approximate a segment of f(X) for numerical evaluation of the integral in Equation
8, three points are required on the f(X) curve as illustrated in Figure 4 in order to
determine the three coefficients a,, a;, and a,. For simplicity in derivation, let the
three points be (0,Y,), (AX,Y,), and (2AX,Y;). Upon substitution into Equation 20,
we obtain:

a, =Y, @1
a, +(AX)a, +(AX)’a, =Y, (22)

and
a, +(2AX)a, +(2AX)’a, =Y, (23)

As a, is already determined in Equation 21, it can be eliminated from
Equations 22 and 23 to yield:

a, +(AX)a, =(Y, - Y,)/AX (24)
and

a, +(2AX)a, =(Y, - Y,) /24X (25)

© 2001 by CRC Press LLC



The solutions of the above equations can be obtained by application of Cramer’s
Rule as:

a,=2(Y,-Y,)/AX = (Y, - Y,)/2AX = (-3Y, +4Y, - Y,) /24X (26)
and
a, =[(Y,-Y,)/AX -a,]/AX = (Y, -2, +Y,) /2(AX)’ @7

Having derived a,;, a,, and a, in terms of the ordinates Y,, Y,, and Y5, and the
increment in X, AX, we are ready to substitute Equations 20, 21, 26, and 27 into
Equation 8 to compute the area A, ; in Figure 4 under the parabola. That is:

2AX 2 2 a 2
A .= J a XdX = iX”'} AX
=3 ; : ;[i +1 0

After simplification, it can be shown that the area, ; is related to the ordinates
Y,,Y,, and Y;, and the increment AX by the equation:

AX

A= T(Yl +4Y,+Y,) (28)

When the above-described procedure is applied for numerical integration by
approximating the curve of the integrand Y(X) as a series of connected parabolas,
we can expand Equation 28 to cover the limits of integration to obtain:

M-2 AX M-2
A= isit2 3 2 (Yi +4Y,, + Yi+2) (29)
i=1,3 i=1,3
(odd) (odd)

Notice that the limits of integration are treated by having M stations which must
be an odd integer, and the stepsize AX = (X-X,)/(M-1). These stations are divided
into groups of three stations. Equation 28 has been successively employed for
evaluating the adjacent areas A 3, Az, ..., Ayogy 1D order to arrive at Equation 29.
Equation 29 can also be written in the form of:

AX M-1 M-2
A= Y, 44) Y, 42) Y+Y, (30)

i=2,4 i=35

(even) (odd)

© 2001 by CRC Press LLC



which is the well-known Simpson’s rule. Program NulntGra has the option of using
Simpson’s rule for numerical integration. It can be shown that when this program is
applied for the integration of the semi-circular area under the curve Y(X) = (1-X?)?,
the Simpson’s rule using different M stations will result in

M 21 41 61 81 101
Area 1.564 1.568 1.569 1.570 1.570
Error 0.45% 0.19% 0.13% 0.05% 0.05%

Presented below are the program listings of NulntGra in both QuickBASIC
and FORTRAN versions.

QuickBASIC VEersioN

! PROGRAM NulntGra.QB - Numerical Integration using Trapezoidal or Simpson's Rule
DECLARE FUNCTION F' (X!)
CLS : CLEAR : DIM FY(1001), MD(9), XD(101, 9), YD(101, 9)
PRINT "Program NulntGra - Numerical Integration using Trapezoidal or Simpson Rule *°

INPUT "Enter a description of the problem : ", Tiltle$
PRINT "Are ordinates tabular data or is an integrand function to be defined?"
INPUT " Enter *» : ", IN

IF IN = 1 THEN 6
PRINT "You must have defined the integrand function by editing and compiling”

PRINT " subprogram function F(X) .
PRINT "If you have not done so, terminate the program by press <Ctrl Break>."”
GOTO 12
6 PRINT "This version is limited te using trapezeidal rule only."
INPUT "How many closed contours are to be considered? ", NC

FOR IC = 1 TO NC
PRINT USING "Contour No. #"; IC
INPUT "How many points are invelved? ', MD(IC)
PRINT "Enter X (1) through X(":
PRINT USING "##": MD(IC):
PRINT "), press <Enter> after entering each number :
FOR I = 1 TO MD(IC)
INPUT ; XD(I, IC)

NEXT I
PRINT
PRINT "Enter Y(1) through Y(": : PRINT USING "##": MD(IC):

PRINT "), press <Enter> after entering each number :
FOR I = 1 TO MD(IC)
INPUT ; ¥YD(I, IC)

NEXT I

PRINT

NEXT IC
GOTO 50

12 INPUT "Using Trapezoidal/Simpson Rule? Enter %, respectively : ", K
INPUT "Enter the lower limit of X : ", XL
INPUT "Enter the upper limit of X : ", XR
INPUT "Enter the number of points for integration : ", M
DX = (XR - XL) / (M - 1)
FOR I = 1 TO M: FY(I) = F(XL + (I - 1) * DX): NEXT I

ESUMYI = 0

FOR I = 2 TO M - 1 STEP 2: ESUMYI = ESUMYI + FY(I): NEXT I
OSUMYI = 0

FOR I = 3 TO M - 2 STEP 2: OSUMYI = OSUMYI + FY(I): NEXT I
A=DX / (K + 1) * (FY(l) + 2 * K * ESUMYI + 2 * OSUMYI + FY(M))

37 PRINT USING "The result is #.####4~"~""; A: GOTO S0
50 A = 0: FOR IC = 1 TO NC
FOR I = 1 TO MD(IC) - 1
A=A+ .5 % (XD(I + 1, IC) - XD(I, IC)) * (YD(I + 1, IC) + ¥YD(I, IC))
NEXT I
NEXT IC
GOTO 37
90 END
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FORTRAN VERSION

c PROGRAM NuIntgra - Numerical Integration using Trapezoidal or Simpson’s Rule
DIMENSION FY(1001) ,MD(9) ,XD(101,9),¥YD(101,9)
Character*B0 Title
WRITE (*,*) 'Enter a description of the problem :'
READ (*,1) Title
1 FORMAT (AB0)
WRITE (*,2)
2 FORMAT (' * Program NulIntgra - Numerical Integration using’,
* ' Trapezoidal or Simpson Rule *')
WRITE (*,4)
4 FORMAT (' Are ordinates tabular data or is a integrand’,
* ' function to be defined?'/' Enter % : ')
READ (*,*) IN
IF (IN.EQ.1) GO TO 6
WRITE (*,5)
5 FORMAT (' You must have defined the integrand function by’ ,

* ' editing and compiling subprogram function F(X) .
* /' If you have not done so, terminate the program’,
* ' by press <Ctrl Break>.')

GO TO 12

6 WRITE (*,7)

7 FORMAT (' This version is limited to using trapezoidal rule only.')
WRITE (*,*) "How many closed contours are to be considered?’
READ (*,*) NC
DO 11 IC=1,NC
WRITE (*,B8) IC

8 FORMAT (' Contour #',I1,' :')

WRITE (*,*) 'How many points are involved?
READ (*,*) MD(IC)
WRITE (*,9) MD(IC)
9 FORMAT (' Enter X(1) through X(',I12,') :")
READ (*,*) (XD(I,IC),I=1,MD(IC))
WRITE (*,10) MD(IC)
10 FORMAT (' Enter Y (1) through Y(',12,') :')
11 READ (*,*) (¥YD(I,IC),I=1,MD(IC))
GOTO 50
12 WRITE (*,13)
13 FORMAT (' Using Trapezoidal/simpson Rule? Enter »'
* ' respectively : ')
READ (*,*) K
WRITE (*,14)
14 FORMAT (' Enter the lower limit of X : '}
READ (*,*) XL
WRITE (*,15)
15 FORMAT (' Enter the upper limit of X : ')
READ (*,*) XR
WRITE (*,16)
16 FORMAT (' Enter the number of points for integration : ')
READ (*,*) M
DX=(XR-XL) / (M-1)
DO 25 I=1,M
25 FY(I)=F (XL+(I-1) *DX)
ESUMYI=0
DO 34 I=2,M-1,2
34 ESUMYI=ESUMYI+FY (I)
OSUMYI=0
DO 35 I=3,M-2,2
35 OSUMYI=0SUMYI+FY (I)
A=DX/ (K+1) * (FY (1) +2*K*ESUMYI+2*OSUMYI+FY (M))
37 WRITE (*,40) A
40 FORMAT (' The result is : ' ,E12.5)
GOTO S0
50 a=0
DO 60 IC=1,NC
DO 60 T=1,MD(IC)-1
60 A=A+.5* (XD (I+1,IC)~-XD(I,IC))*(¥YD(I+1, IC)+YD(I,6 IC))
GOTO 37
80 STOP
END

© 2001 by CRC Press LLC



MATLAB APPLICATION

MATLAB has a file quad.m which can perform Simpson’s Rule. To evaluate
the area of a semi-circle by application of Simpson’s Rule using quad.m, we first
prepare the integrand function as a m file as follows:

R — \ /

s \

X Y=[R*-X’]

172

If this file integrnd.m is stored on a disk which has been inserted in the disk
drive A, quad.m is to be applied as follows:
>> Area = quad(‘A:integrnd’,0,2)

Notice that quad has three arguments. The first argument is the m file in which
the integrand function is defined whereas the second and third arguments specify
the limits of integration. Since the center of the semi-circle is located at x = 1, the
limits of integration are x = 0 and x = 2. The display resulted from the execution of
the above MATLAB statement is:

Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Recursion level limit reached in quad. Singularity likely.
Area =

1.5708

Notice that warning messages have been printed but the numerical result is not
affected.
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MATHEMATICA APPLICATION

Mathematica numerically integrate a function f(x) over the interval x = ato x =
b by use of the function NIntegrate. The following example demonstrates the com-
putation of one quarter of a circle having a radius equal to 2:

In[1]: = NlIntegrate[Sqrt[4x"2], {x, 0, 2}]

Out[1] = 3.14159

5.3 PROGRAM VOLUME — NUMERICAL APPROXIMATION
OF DOUBLE INTEGRATION

Program Volume is designed for numerical calculation of double integration involv-
ing an integrand function of two variables. For convenience of graphical interpreta-
tion, the two variables x and y are usually chosen and the integrand function is
denoted as z(x,y). If the double integration is to be carried for the region x; <x<xy
and y, <y<yy, the value to be calculated is the volume bounded by the z surface, z =
0 plane, and the four bounding planes x = X, X = Xy, Y = y., and y = y,; where the
sub-scripts L and U are used to indicate the lower and upper bounds, respectively.
The rectangular region x; <x<x;; and y, <y<yy on the z = 0 plane is called the base
area. The volume is there-fore a column which rises above the base area and bounded
by the z(x,y) surface, assuming that z is always positive. Mathematically, the volume
can be expressed as:

V= jy j 2(%y)e )

If we are interested in finding the volume of sphere of radius equal to R, the
bounds can be selected as x;, =y, =0 and x;; = y; =R, and let z = (R?>x?y?)3. Equation
1 can then be applied to find the one-eighth of spherical volume. In fact, the result
can be obtained analytically for this z(x,y) function. We are here, however, interested
in a computational method for the case when the integrand function z(x,y) is too
complex to allow analytical solution.

The trapezoidal rule for single integration discussed in the program Nulntgra
can be extended to double integration by observing from Figure 1 that the total
volume V can be estimated as a sum of all columns erected within the space bounded
by the z surface and the base area. In Figure 5, the integrand functions used are:

z(x,y)= (R2 -x* -y’ )0'5, for x*+y*<R? )

and
z(x,y) =0, for x*+y>>R? 3)
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FIGURE 5. In this figure , the integrand functions used are Equations 2 and 3.

Notice that Equation 3 is an added extension of Equation 2 because if we use
Equation 1 and the upper limits are x; = y; = R, a point outside of the boundary x>
+ y? = R? on the base area 0<x<R and 0<y<R is selected for evaluating z(x,y), the
right-hand side of Equation 2 is an imaginary number. Adding Equation 3 will
remedy this situation.

If we partition the base area into a gridwork by using uniform increments Ax
andAy along the x- and y-directions, respectively. If there are M and N equally
spaced stations along the x- and y-direction, respectively, then the increments can
be calculated by the equations:

Ax:(xU—xL)/(M—l) =R/(M-1) “4)

and

Ay=(yy-y.)/(N-1) =R/(N-1) (5)

At a typical grid-point on the base area, (x;,y;), there are three neighboring points
(Xi-¥j+1)s Xis 15 ¥y)> and (X, 1,y 1)- The z values at these four points can be averaged
for calculation of the volume, V;, of this column by the equation:

ij>
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1
Vii= Z(Zi,j TZiju T2y T Zija )AxAy ©)

L)

where:

2, = z(xi,yj) (7

The total volume is then the sum of all V;; for i ranging from 1 to M and ]
ranging from 1 to N. Or,

V= J-RJ-R(XZ + 2)'5d d
- y xdy
0 Jo
- AZAyZZJ,(Zu Y2tz Zi+1.j+l)

The two summations in Equation 8 are loosely stated. Actually, the heights
calculated at all MxN grid-points on the base area used in Equation 7 can be separated
into three groups: (1) those heights at the corners whose coordinates are (0,0), (0,R),
(R,0), and (R,R), are needed only once, (2) those heights on the edges of the base
area, excluding those at the corners, are needed twice because they are shared by
two adjacent columns, and (3) all heights at interior grid-points are needed four
times in Equation 8 because they are shared by four adjacent columns. That is to
say, in terms of the subscripts I and j the weighting coefficients, w;;, for z;; can be
summarized as follows:

®)

ij°

w;y = 1 for (i,3) = (1,1),(1,N),(M,1),(M,N),
4 for i= 2,3,.,M-1 and j = 2,3,..,N-1
2 for other i and j combinations

Subsequently, Equation 8 can be written as:

V= AZAyiiwuzu ©)

A more precise way to express V in terms z; is to introduce a weighting
coefficient vector for Trapezoidal rule, {w,}. Since we have averaged the four heights
of each contributing column, that is linearly connecting the four heights. That is,
the trapezoidal rule has been applied twice, one in x-direction and another in y-
direction. When M and N stations are employed in x- and y-directions, respectively.
we may therefore define two weighting coefficient vectors
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{wt}x:[l 22.222 (10
and

{wt}yz[l 22.221] an

It should be noted that the subscripts x and y are added to indicate their asso-
ciation with the x- and y-axes, respectively, and that the orders of these two vectors
are M and N, respectively, and that the beginning and ending components in both
vectors are equal to one and the other components are equal to two. Having defined
{w, and {w},, it is now easy to show that Equation 9 can be simply written as:

A A
V= 7"{\x/t}:[z]{vv[}y 73’ (12)

where [Z] is a matrix of order M by N having z;; as its elements. Since {w}, is a
vector of order M by one, its transpose is of order one by M and {w,}, is of order
N by one, the matrix multiplication of the three matrices can be carried out and the
result does agree with the requirement on w;; spelled out in Equation 9.

Use of weighting coefficient vectors has the advantage of extending the numer-
ical evaluation of double integrals from trapezoidal rule to Simpson’s rule where
three adjacent heights are parabolically fitted (referring to program Nulntgra for
more details). To illustrate this point, let us first introduce a weighting coefficient
vector for Simpson’s rule as:

{WS}=[1 4 2...repeatof4 and2...4 1]T (13)

If we wish to integrate by application of Simpson’s rule in both x- and y-
directions and using M and N (both must be odd) stations, the formula for the volume
is simply:

A A
V= ?"{ws}:[z]{ws}y ?y (14)

If for some reason one wants to integrate using Simpson’s rule along x-direction
by adopting M (odd) stations, and using trapezoidal rule along y-direction by adopt-
ing N (no restriction whether odd or even) stations, then:

V=" w 2w}, (15)

Let us present a numerical example to further clarify the above concept of
numerical volume integration. Consider the problem of estimating the volume
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between the surface z(x,y) = 2x + 3y? + 4 and the plane z = 0 for 0<x<2 and 1<y<2
by application of trapezoidal rule along the x direction using an increment of 0.5,
and Simpson’s rule along y direction using also an increment of 0.5. The increments
of 0.5 in both x- and y-directions make M = 5 and N = 3. First, we calculate the
elements of [Z] which is of order 5 by 3:

z,,=2x0 +3x1°+4=7, z,,72x0 +3x1,5+4=10.75, z,,=2x0 +3x2*+4=16,
z,,=2x0.5+3x1*+4=8, z,,=2x0.5+3x1,5"+4=11.75, 22w3:2x0A5+3x22+4:l7,
2, =2x1+ 3x1244=0, z,,=0x| +3x1.5%44=12.75, z,,=2x| +3x2M+4=18,
7,,=2x1.543x1%+4=10, z,,=2x1.5+3x1,5+4=13.75, z,,=2x1.5+3x2*+4=19,
24 =2x2 A3x1H4=11, 2,,=2x2 +3x1 54+4=14.75, z,~2x2 +3x2%+4=20

Next, the volume is calculated to be:
V = (0.5/2)[1 2 2 2 1] 7 10.75 16 1 (0.5/3)
g8 11.75 17 4
9 12.75 18 [ 1 }
10 13.75 19
11 14.75 20
= 0.25(7+2(8+9+10)+11+10.75+2(11.75+12.75+13.75)

+14.75+16+2 (17+18+19)+20}[1 4 117(0.5)/3)

I

0.25[72 102 14411 4 117(0.5/3)=0.25x624x0.5/3 = 26

Program Volume has been developed for interactive specification of the inte-
grand function z(x,y), the integration limits x;, Xy, Y., and yy, the method(s) of
integration (i.e., , trapezoidal or Simpson’s rule) and number of stations in both x-
and y-direction. The integrand function z(x,y) needs to be individually compiled.
Both QuickBASIC and FORTRAN versions are made available. Listings are pro-
vided below along with sample applications.

FORTRAN VERSION

Program Volume ~ Calculates volume, double integration of z(X,y) for
x=[xL,xU] and y=[yL,yU] using trapezocidal or
Simpson's rule with M stations along x and N
stations along y. (Both M and N <=51.)

DIMENSION WX (51) ,WY(51),2Zv(51,51)

Character*1l AS

ano0aan
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WRITE (*
1 FORMAT ('
* .
WRITE (*
2 FORMAT ('
N .
" .
READ (*

/1)
Program Volume - double integration of z(x,y) over the

region x={xL,xU] and y=[yL,yUl'//)

:2)

Have you specified the integrand function z(x,y)’,
by editing a new Subprogram '/' FUNCTION Z(...)°?',
Enter Y/N ')

,4) AS

4 FORMAT (Al)
IF (AS.NE.'Y') GOTO 90

WRITE (*

5 FORMAT ('

READ (*

WRITE (*

7 FORMAT ('

* ,

READ (*

WRITE (*

8 FORMAT (’

READ (*

WRITE (*

10 FORMAT ('

" .

READ (*

WRITE (*

12 FORMAT ('

READ (*
M1=M-1

/5)

Enter the limits of integration, xL, xU, yL, and yU

*) xL,xU,yL,yU
/7

Enter % for using trapezoidal/Simpson rule’,
along x-direction’)

¥ KX
,8)

Enter number of stations along x-direction : ')

*) M
,10)

Enter % for using trapezoidal/Simpson rule’,
along y-direction')

,*) KY
/12)

Enter number of stations along y-direction : ')

*) N

DX= (XU~XL) /M1

N1=N-1

DY=(YU-YL) /N1

wx(1)=1.
WX {M)=1.

DO 15 I=2,Ml1

WX(I)=2.

IF (I-(I/2)*2.EQ.0.AND.KX.EQ.2) WX(I)=WX(I)+2.

15 CONTINUE

WY (1)=1.
WY (N)=1.

DO 18 I=2,N1

WY (I)=2.

IF (I-(I/2)*2.EQ.0.AND.KY.EQ.2) WY(I)=WY(I)+2.

18 CONTINUE

DO 20 I=1,M
X=XL+ (I-1) *DX
Do 20 J=1,N
Y=YL+ (J-1) *DY
20 2V(I,J)=Z(X,Y)

VOLUME=0

DO 30 J=1,N

SUM=0.

DO 25 I=1,M

25 SUM=SUM+WX (I) *ZV(I,J)

30 VOLUME=VOLUME+SUM*WY (.J)
VOLUME=VOLUME*DX*DY / (KX+1) / (KY+1)

WRITE (*

,80) VOLUME

B0 FORMAT (5X, 'VOLUME=',E12.5)

S0 STOP
END

FUNCTION Z(X,Y)
REQ=X**2+Y**2
IF (RSQ.GE.4) GO TO 10

Z=SQRT (4
RETURN

10 z=0.
RETURN
END

--Rs8Q)
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Sample Application

The FUNCTION Z(X,Y) listed above is for finding the volume under the surface
z(x,y) = (x> + y*4)3 over the region 0<x<2 and 0<y<2. The exact solution is
volume = 4.1889. For a sample run of the program Volume using trapezoidal rule
and 21 stations along both x- and y-directions, the screen display of interactive

communication through keyboard input and the calculated result is:

Program Volume - double integration of z(x,y) over the region x=[xL,xU] and

y=I[yL,yU]

Have you specified the integrand function z(X,y) by editing a new subprogram

FUNCTION Z(...)? Enter Y/N
Y
Enter the limits of integration, xL, xU, yL, and yU

0,2,0,2
Enter » for using trapezoidal/Simpson rule along x-direction
1
Enter number of station along X-direction

21
Enter *» for using trapezoidal/Simpson rule along y-direction
1
Enter number of station along x-direction

21

VOLUME= .41836E+01
Stop - Program terminated.

QuickBASIC VEersioN

' Program Volume - Calculates volume, double integration of z(x,y) for
' x=[xL,xU] and y=[yL,yU] using trapezoidal or
simpscn's rule with M stations along x and N
' statieons along y. (Both M and N <=51.)
DECLARE FUNCTION 2z (X, y)
CLEAR : CLS : DIM WX(51), Wy(51), ZV(51, 51)
PRINT "Program Volume - double integration of z(x,y) over the region x=[xL,xU] and"

PRINT ' y=[yL,yU}."
PRINT "Have you specified the integrand functicn z{x,y) by editing a new Subprogram"
INPUT " FUNCTION Z(...)? Enter Y/N : ", A$
IF (A$ <> "Y") THEN 90
INPUT "Enter the limits of integration, xL, xU, yL, and yuU : ", XL, XU, yL, yU
INPUT "Enter » for using trapezoidal/Simpson rule along x-direction @ ", KX
INPUT "Enter number of stations along x-direction : ", M
INPUT "Enter % for using trapezoidal/Simpson rule along y-directicn : ", KY
INPUT "Enter number of stations along y-direction : ", N
ML =M - 1: DK = (XU - XL) / Ml: N1 =N - 1: DY = (yU-yL)/N1: WX(1) = 1!': WX(M)
FOR I = 2 TO Ml: WX(I) = 2!
IF (INT(I) - INT(I / 2) * 2! = 0) THEN B ELSE GOTO 15
8 IF (KX = 2) THEN WX(I) = WX(I) + 2!
15 NEXT I: WY({1) = 1!: WY(N) = 1!
FOR I = 2 TO N1: WY(I) = 2!
IF (INT{I) - INT(I / 2) * 2 = 0) THEN 16 ELSE GOTO 18
16 IF (KY = 2) THEN WY(I) = WY(I) + 2!
18 NEXT I

FOR I = 1 TO M: X = XL + (I - 1) * DX
FOR J =1 TON: y = yL + (J - 1) * DY: ZV(I, J) = Z(X, y): NEXT J: NEXT I
VOLUME = 0: FOR J = 1 TO N: SUM = O
FOR I = 1 TO M: SUM = SUM + WX(I) * 2ZV(I, J): NEXT I
VOLUME= VOLUME + SUM * WY (J): NEXT J
VOLUME= VOLUME * DX * DY / (KX + 1) / (XY + 1)
PRINT USING "Volume = #._ #####~~"""; VOLUME
90 END

FUNCTION 2 (X, y)
RSQ = X ~ 2 +y ~ 2: IF (RSQ > 4) GOTO 10
Z = SQR(4 - RSQ): GOTO 395

10 z = 0!

95 END FUNCTION
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Sample Applications

The same calculation of one-eighth of a sphere of radius equal to 2 as in the
FORTRAN version is run but here using Simpson’s rule. The screen display is:

Program Volume - double integration of z(x,y) over the region x=[xL, xU] and
y=1[{yL,yU]

Have you specified the integrand function z(x,y) by editing a new subprogram

FUNCTION Z(...)? Enter Y/N : Y

Enter the limits of integration, xL, xU, yL, and yU : 0,2,0,2

Enter > for using trapezoidal/Simpson rule along X-direction : 2
Enter number of station along x-direction :@ 21
Enter % for using trapezoidal/Simpson rule along y-direction :@ 2
Enter number of station along x-direction : 21

Volume = 0.41833E+01

We have presented earlier the manual calculation of the double integration for
7(x,y) = 2x + 3y? + 4, program Volume can be applied to have the results displayed
on the monitor screen as below. The answer is exactly the same as from manual
computation.

Program Volume - double integration of z(x,y) over the region x=[xL,xU] and

y=[yL, yU]
Have you specified the integrand function z(x,y) by editing a new subprogram
FUNCTION Z(...)? Enter Y/N
Y
Enter the limits of integration, XL, xU, yL, and yU :
0,2,1,2

Enter » for using trapezoidal/Simpson rule along x-direction
1
Enter number of station along x-direction
5
Enter % for using trapezoidal/Simpson rule along y-direction
2
Enter number of station along x-direction
3
VOLUME= .26000E+02
stop - Program terminated.

MATLAB APrPLICATION

A Volume.m file can be created and added to MATLAB m files to calculate a
double integral when the integrand function is specified by another m file. For
integrating a function Z(X,Y) over the region X,<X<X, and Y,<Y<Y, by either
Trapezoidal or Simpson’s rules (designated as rule 1 or 2) and with Ny and Ny
stations along the X and Y directions, respectively, this file may be written as
followed:
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function V=Volume(funcfn,Xl 6 X2 6 RuleX NX,Y1l,6Y¥2 RuleY, NY)
% RulexX=1, Trapezoidal Rule; =2, Simpson’'s Rule in X direction.
% Same for RuleY but for Y direction.
X=ones (1,NX) ; Y=ones(NY,1); Z=zeros(NX,6NY);
for I=2:NX-1:; X(I)=2; end
for I=2:NY-1; Y(I)=2; end
if RuleX ==
for I=2:2:NX-1; X(I)=4, end
end
if RuleY = 2
for I=2:2:NY-1; Y(I)=4; end
end
DX= (Xend-X0) ./ (NX-1) ; DY=(Yend-YO0) ./ (NY-1);
for I=1:NX; XV=X0+(I-1).*DX:
for j=1:NY; ¥YV=YO0+(3-1) .*DY;
Z{1i,j)=feval (funfcn, XV,YV)
end
end

V=X*Z*Y ¥DX.*DY./ (RuleX+1) ./ (RuleY+1) ;

For each problem, the integrand function Z(X,Y) needs to be prepared as a m
file. In case that a hemisphere of radius 2 and centered at X = 0 and Y = 0, we may
write:

function Z=FuncZ(X,Y)
T=X."24Y."2;

if T<4; Z=sgrt(4-T);
else 2=0;

end

In case of Z(X,Y) = 2X + 3Y? + 4, we may write a new file as:

function Z=FuncZnew (X,Y)

Zm2 *X+3.NY . 2+4;

Once the files Volume.m, FuncZ.m, and FuncZnew.m, the following MAT-
LAB executions can be achieved:
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>> V=Volume(’A:Funci’,0,2,2,21,0,2,2,21)
V=

4.1893
> V=Volume(’A:PuncZnes’,0,2,1,5,1,2,2,3)
V=

26

Notice the first and second integrations of the hemisphere use Trapezoidal and
Simpson’s rule in both X and Y, respectively. Both use 21 stations in X and Y
directions. The third integration of Z = 2X + 3Y? + 4 over the region 0<X<2 and
1<Y<2 is carried out using Trapezoidal rule along X direction with 5 stations and
Simpson’s rule along Y direction with 3 stations.

MATLAB has a mesh plot capability of generating three-dimensional hidden-
line surface. For example, when the function FuncZ is used to generate a hemispher-
ical surface of radius equal to 2 described by a square matrix [Z], a plot shown in
Figure 6 can be obtained by entering MATLAB commands as follows:

>> for I=1:31, X(I)=-2+(I-1)*4/30;
for j=1:31, Y(j)=-2+(j-1)*4/30;
Z(i,j)=feval ('A:Func2’' ,X(I),Y(3)):
end
end

>> mesh(2)

We observe from Figure 6 that the hidden-line feature is apparent but the hemi-
sphere appears like a semiellipsoid. This is due to the aspect ratios of the display
monitor and/or of the printer. mesh is the option of specifying different scale factors
for the X-, Y-, and Z-axes. To make the three-dimensional surface to appear as a
perfect hemisphere, user has to experiment with different scale factors for the three
axes. This is left as a homework problem. Also, mesh has option for displaying the
surface by viewing it from different angles, user is again urged to try generation of
different 3D hidden-line views.

MATHEMATICA APPLICATIONS

Mathematica has a three-dimensional plot function called Plot3d which can be
applied for drawing the hemispherical surface. Figure 7 is the result of entering the
statement:
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Input]: = Sphere = Plot3D[If[4X"2Y"2>0, Sqrt[4X*2Y"2],0,
{X,-2,2},{Y,-2,2},PlotPoints->{60,60}]

The If command tests the first expression inside the brackets, it the condition
is true then the statement which follows is implemented and other the last statement
inside the bracket is implemented. In this case, the surface only rises over the base
circle of radius equal to 2. The PlotPoints command specifies how many gird points
along X- and Y-directions should be taken to plot the surface. The default number
of point is 15 in both directions. The greater the number of grid points, the smoother
the surface looks.

The same result can be obtained by first defining a surface function, say sf, and
then apply Plot3d for drawing the surface using sf as follows:

Input]: = sf[X_Y_] = H[4X"2Y"2>0, Sqrt[4X"2Y"2], 0]

Input[2]: = Plot3D[Sf[X,Y],{X,~2,2},{Y,~2,2} ,PlotPoints->{60,60}]

5.4 PROBLEMS
NUINTGRA

1. Having learned how to apply Trapezoidal Rule for numerical integration,
how would you find the area under the line y(x) = 1 + 2x and between
x =1 and x = 2? Do it not by direct integration, but numerically. What
should be the stepsize for x in order to ensure an accurate result?

2. Having learned how to apply Simpson’s Rule for numerical integration,
how would you find the area under the parabolic curve y(x) = 1 + 2x +
3x? and between x = 1 and x = 2? Do it not by direct integration but
numerically! What should be the stepsize for x in order to ensure an
accurate result?

3. If Trapezoidal Rule, instead of Simpson’s Rule, is applied for Problem 2,
find out how small should be the stepsize for x in order to achieve the
same result accurate to the fifth significant digit.

4. Could Simpson’s Rule be applied for Problem 1? Would the result be
different? If the result is the same, explain why.

5. Given five points (1,1), (2,3), (3,2), (4,5), and (5,4), use a stepsize of Ax =
1 to compute [ydx by application of Simpson’s and Trapezoidal rules.

6. Use the trapezoidal and Simpson’s rules to find the area within the ellipse
described by the equation (x/a)> + (y/b)>= 1. Compare the numerical
results with the exact solution of ab.

7. Implement the integration of the function f(x) = 3e->*sinx over the interval
from x = 0 to x =1 (in radian) by applying both the Trapezoidal and
Simpson’s rules and using an increment of Ax = 0.25.

8. Find the exact solution of Problem 7 by referring to an integration formula
for f(x) from any calculus book. Decrease the increment of x (i.e., ,
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9.
10.
11.

increase the number of points at which the integrand function is computed)
to try to achieve this analytical result using both Trapezoidal and Simp-
son’s Rules.

Apply the function Quad.m of MATLAB to solve Problem 1.

Apply the function Quad.m of MATLAB to solve Problem 2.

Apply the function Quad.m of MATLAB to solve Problem 6.

12. Apply the function Quad.m of MATLAB to solve Problem 7.
13. Apply MATLAB to spline curve-fit the five points given in Problem 5
and then integrate.

14. Apply the function NIntegrate of Mathematica to solve Problem 1.
15. Apply the function NIntegrate of Mathematica to solve Problem 2.
16. Apply the function NIntegrate of Mathematica to solve Problem 6.
17. Apply the function NIntegrate of Mathematica to solve Problem 7.
18. Problem 13 but apply Mathematica instead.

VOLUME

1. Apply trapezoidal rule for integration along the x direction and Simpson’s
rule along the y direction to calculate the volume under the surface z(x,y) =
3x + 2y? + 1 over the rectangular region 0<x<2 and 0<y<4 using incre-
ments Ax = Ay = 1.

2. Rework Problem 1 except trapezoidal rule is applied for both x and y
directions.

3. Find by numerical integration of the ellipsoidal volume based on the
double integral [[3[1-(x/5)*>~(y/4)?]"2dxdy and for x values ranging from
2 to 4 and y values ranging from 1 to 2. Three stations (for using Simpson’s
rule) for the x integration and two stations (for using trapezoidal rule) for
the y integration are to be adopted.

4. Find the volume between the z = 0 plane and the spherical surface z(x,y) =
[4x2 — y?]2 for x and y both ranging from 0 to 2 by applying the Simpson’s
rule for both x and y integrations. Three stations are to be taken along the
x direction and five stations along the y direction for the specified numer-
ical integration.

5. Specify a FUNCTION Z(x,y) for program Volume so that the volume
enclosed by the ellipsoid (x/a)?> + (y/b)? + (z/c)> = 1 can be estimated by
numerical integration and compare to the exact solution of 41rabc/3.2

6. In Figure 8, the shape and dimensions of a pyramid are described by the

coordinates of the five points (X,,Y,) for I = 1,2,...,5. For application of
numerical integration to determine its volume by either trapezoidal or
Simpson’s rule, we have to partition the projected plane P,P,P,Ps into a
gridwork. At each interception point of the gridwork, (X,Y), the height
Z(X,Y) needs to be calculated which requires knowing the equations
describing the planes P,P,P;, P,P,P,, P,P,P;and P ,P.P,. The equation of

a plane can be written in the form of 2(X-a) + m(Y-b) + n(Z—<) =1
where (a,b,c) is a point on the plane and (2,m,n) are the directional cosines
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FIGURE 8. Problem 6.

of the unit normal vector of the plane.> Apply the equation of plane and
assign proper values for the coordinates (X;,Y;) describing the pyramid,
and then proceed to write a FUNCTION Z(X,Y) to determine its volume
by using program Volume.

7. Find the volume under the surface z = 3x>-4y + 15 over the base area of
0<x<2 and 1<y<2 by applying Simpson’s Rule along the x-direction using
an increment of Ax = 1, and Trapezoidal Rule along the y-direction using
an increment of Ay = 0.25.

8. How do you find the volume under the plane z = 2x—0.5y and above the
rectangular area bounded by x =0, x =1, y= 0, and y = 2 numerically
and not by actually integrating the z function? Explain which method and
stepsizes in x and y directions you will use, give the numerical result and
discuss how accurate it is.

9. Use the function FuncZnew which defines the equation Z = 2X + 3Y? +
4 and plot the Z surface for 0<X<2 and 1<Y<2 by applying mesh of
MATLAB. Experiment with different increments of X and Y.

10. Modify the use of mesh by defining a vector {S} =[Sy Sy S,} containing
the values of scaling factors for the three coordinate axes and then enter
mesh(Z,S) to try to improve the appearance of a hemisphere, better than
the one shown in Figure 2. Referring to Figure 2, the lowest point is the
original and the X-axis is directed to the right (width), Y-axis is directed
to the left (depth), and Z-axis is pointing upward (height). Since the
hemisphere has a radius equal to 2 and by actually measuring the width,
depth, and height to be in the approximate ratios of 2 7/8”: 2 7/16”: 2
3/4”. Based on these values, slowly adjust the values for Sy, Sy and S,.
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11.

12.
13.
14.
15.

FIGURE 9. Problem 11.

Figure 9 is obtained by using mesh to plot the surface Z = 1.5Re™® and
R = (X2 + Y»)H for —15<X,Y<15 with increment of 1 in both X and Y
directions. Try to generate this surface by interactively entering MATLAB
commands. Apply the m file volume and modify the function FuncZnew
to accommodate this new integrand function to calculate the volume of
this surface above the 30x30 base area.

Apply Mathematica to solve Problem 6.

Apply Mathematica to solve Problem 7.

Apply Mathematica to solve Problem 9.

Apply Mathematica to solve Problem 11.
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6 Ordinary Differential
Equations — Initial and
Boundary Value Problems

6.1 INTRODUCTION

An example of historical interest in solving an unknown function which is governed
by an ordinary differential equation and an initial condition is the case of finding
y(x) from:

dy

=y and y(x=0)=1 (1)
dx

As we all know, y(x) = e*. In fact, the exponential function e* is defined by an
infinite series:

P PPIRE - — 2)

To prove that Equation 2 indeed is the solution for y satisfying Equation 1, here
we apply an iterative procedure of successive integration using a counter k. First,
we integrate both sides of Equation 1 with respect to x:

J. d—ydx:jydx 3)
o dx o

After substituting the initial condition of y(x = 0) = 1, we obtain:

y(x)=1+ J:;/ dx 4)

So we are expected to find an unknown y(x) which is to be obtained by inte-
grating it? Numerically, we can do it by assuming a y(x) initially (k = 1) equal to
1, investigate how Equation 4 would help us to obtain the next (k = 2), guessed y(x),
and hope eventually the iterative process would lead us to a solution. The iterative
equation, therefore, is for k= 1,2,...
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Y (=1 [ yax ®)
0

The results are yV =1, y@? =1 + x, y¥ =1 + x + (x%/2!), and eventually the
final answer is the infinite series given by Equation 2.

What really need to be discussed in this chapter is not to obtain an analytical
expression for y(x) by solving Equation 1 and rather to compute the numerical values
of y(x) when x is equally incremented. That is, for a selected x increment, Ax (or,
stepsize h), to find y;=y(x,) for i = 1,2,... until x reaches a terminating value of x,
and x; = (i-1) Ax. A simplest method to find y, is to approximate the derivative of
y(x) by using the forward difference at x,. That is, according to the notation used
in Chapter 4, we can have:

dy| _Ay, _Y,-y,
_— === = 6
dx M Ax AX i ©)

Or, y, = (1 + AX)y,. In fact, this result can be extended to any x; to obtain y;, , =
1 + (x)y;. For the general case when the right-hand side of Equation 1 is equal to a
prescribed function f(x), we arrive at the Euler’s formula y,, ; = y; + f(x;) Ax. Euler’s
formula is easy to apply but is inaccurate. For example, using a Ax = 0.1 in solving
Equation 1 with the Euler’s formula, it leads to y,= (1 + 0.1)y, = 1.1, y;= (1 +
0.1)y, = 1.21 when the exact values are y, = ! = 1.1052 and y, = %2 = 1.2214,
respectively. The computational errors accumulate very rapidly.

In this chapter, we shall introduce the most commonly adopted method of Runge-
Kutta for solution of the initial-value problems governed by ordinary differential
equation(s). For the fourth-order Runge-Kutta method, the error per each compu-
tational step is of order h3> where h is the stepsize. Converting the higher-order
ordinary differential equation(s) into the standardized form using the state variables
will be illustrated and computer programs will be developed for numerical solution
of the problem.

Engineering problems which are governed by ordinary differential equations and
also some associated conditions at certain boundaries will be also be discussed.
Numerical methods of solution based on the Runge-Kutta procedure and the finite-
difference approximation will both be explained.

6.2 PROGRAM RUNGEKUT — APPLICATION
OF THE RUNGE-KUTTA METHOD
FOR SOLVING THE INITIAL-VALUE PROBLEMS

Program RungeKut is designed for solving the initial-value problems governed by
ordinary differential equations using the fourth-order Runge-Kutta method. There
are numerous physical problems which are mathematically governed by a set of
ordinary differential equations (ODE) involving many unknown functions. These
unknown functions are all dependent of a variable t. Supplementing to this set of
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FIGURE 1. The often cited vibration problem shown requires the changes of the elevation
x and velocity v to be calculated.

ordinary differential equations are the initial conditions of the dependent functions
when t is equal to zero. For example, the often cited vibration' problem shown in
Figure 1 requires the changes of the elevation x and velocity v to be calculated using
the equations:

m(d” x/dt*) + c(dx/dt) + kx = (t) (1
and
dx/dt=v (2)

where m is the mass, ¢ is the damping coefficient, k is the spring constant, t is the
time, and f(t) is a disturbing force applied to the mass. When the physical para-
meters m, ¢, and k, and the history of the applied force f(t) are specified, the complete
histories of the mass’ elevation x and velocity v can be calculated analytically, or,
numerically if the initial elevation x(t = 0) and v(t = 0) are known. If m, c, and k
remain unchanged throughout the period of investigation and f(t) is a commonly
encountered function, Equation 1 can be solved analytically.! Otherwise, a numerical
method has to be applied to obtain approximate solution of Equation 1.

Many numerical methods are available for solving such initial-value problems
governed by ordinary differential equations. Most of the numerical methods require
that the governing differential equation be rearranged into a standard form of:
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dx,/dt=F (xl,xz,. S N & parameters)

dxz/dt = Fz(xl,xz,...,xn,t; parameters)
3

dxn/dt =F (XI,XZ,. S S parameters)

For example, the variables x and v in Equations 1 and 2 are to be renamed x,
and x,, respectively. Equation 1 is to be rewritten as:

m(dv/dt)+cv+kx =f(t)
and then as:
dv/dt =[f(t) - cv —kx]/m
and finally as:
dx, /dt= Fz(xl,xz,t;m,c,k)
Meanwhile. Equation 2 is rewritten as:
dx,/dt= Fl(xl,xz,t;m,c,k)
Or, more systematically the problem is described by the equations:

dx,/dt= Fl(xl,xz,t;m,c,k) =X,

)
dxz/dt = Fz(x],xz,t;m,c,k) = [f(t)—kx1 —cxz]/m

and having the initial conditions x,(t = 0) and x,(t = 0) prescribed.

Runge-Kutta method is a commonly used method for numerical solution of a
system of first-order ordinary differential equations expressed in the general form
of (3). It is to be introduced and illustrated with a number of practical applications.

RuNGEe-KuttA METHOD (FOURTH-ORDER)

Consider the problem of finding x and y values at t>0 when they are governed
by the equations:

(dx/dt)—4x +(dy/dt) — 6y = -2 (5)
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and
2(dx/dt) +Xx+ 3(dy/dt) +2y=0 (6)

when initially their values are x(t = 0) = 7 and y(t = 0) = —4. The analytical solutions
are obtainable? and they are:

x=5¢'+2 and y=-3e'-1 @)

To solve the problem numerically, Equations 5 and 6 need to be decoupled and
expressed in the form of Equation 3. Cramer’s rule can be applied by treating dx/dt
and dy/dt as two unknowns and x and y as parameters, the converted standard form
after changing x to x, and y to X, is:

dxl/dt = Fl(xl,xz,t;constants), x,(0)=7 8)
dx, /dt = F,(x,,x,,t;constants), x,(0)=—4 9)
where:
F (x] X5, t;constants) =—6+13x, +20x, (10)
and
Fz(xl,xz,t;constants):4—9x1 —14x, (11)

Numerical solution of x; and x, for t>0 is to use a selected time increment At
(often referred to as the stepsize h for the independent variable t). Denote t, as the
initial instant t= 0 and t;, , as the instant after j increments of time, that is, ¢, ; =
( + Dh. If the values for x, and x, at t;, denoted as x;; and Xx,; respectively, are
already known, the fourth-order Runge-Kutta method is to use the following formu-

las to calculate x, and X, at t;, |, denoted as x,;, ; and X,;,

Xijn = X5+ (pm +2p, +2P;5 + Piy )/6 12)

for i = 1,2. The p’s in Equation 12 are the Runge-Kutta parameters to be calculated
using the functions F, and F, by adjusting the values of the variables x, and x, at
t;. The formulas for calculating these p’s are, for i = 1,2

Pis :hFi(tj’XLj’xz,j) (13)
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p,= hFi[tj +(h/2), X+ (p1,1/2), X, + (p2,1/2)] (14)
Doy = BE[t+ (0/2),x, + (P15 /2) %+ (P /2)] (15)

Pis :hFi( j+h,xu+p1’3,xz,j+p273) (16)

Equations 12 to 16 are to be used to generate x; and x, values at t; for j = 1,2,3,...
which can be tabulated as:

£ | o h 2h  3h . ) ) jh ) ) .t
X, 7 ? ? ? . . . Xy,5 . . . ?
X, -4 ? ? ? . . . X5 . . . ?

where t, is the ending value of t at which the computation is to be terminated. The
first pair of values to be filled into the above table is for x, and x, at t="h (j = 1).
Based first on Equations 13 to 16 and then Equation 12, the actual computations for
h=0.1 and at t, go as follows:

pr1 = hF,(toX) 0:Xp0) = 0.1F;(0,7,~4) = 0.1(=6 + 91-80) = 0.5
Pt = hFy(to,X| 0:X00) = 0.1F(0,7,~4) = 0.1(4-63 + 56) = 0.3
p1o = hF,(ty + 0.05,x o + 0.25,x, —0.15) = 0.1F(.05,7.25,~4.15)
= 0.1(=6 + 13x7.25-20x4.15) = 0.525
P = hFy(ty + 0.05,x o + 0.25,%, —0.15) = 0.1F,(.05,7.25,~4.15)
= 0.1(4-9x7.25 + 14x4.15) = —0.315
P13 = hF,(ty + 0.05,x, o + 0.2625 x, ;~0.1575)
= .1F,(.05,7.2625,—4.1575)
= 0.1(=6 + 13x7.2625-20x4.1575) = .52625
Pas = hFy(ty + 0.05,x, o + 0.2625 x, ;~0.1575)
1F,(.05,7.2625,~4.1575) = 0.1(4—9x7.2625 + 14x4.1575)
= 031575
Pra = hF,(ty + 0.1,x, o + 0.52625,x, ;—0.31575)
= 0.1F,(0.1,7.52625,-4.31575)
= 0.1(=6 + 13x7.52625-20x4.31575) = 0.552625
Pas = hFy(ty + 0.1,x o + 0.52625,x, ;—0.31575)
1F,(.1,7.52625,-4.31575) = .1(4-9x7.52625 + 14x4.31575) = —0.331575
X1y = 7 + (0.5 + 2x0.525 + 2x0.52625 + 0.552625)/6

=7 + (3.155125)/6 = 7.5258541 (17)
X1 = —4 + (<0.3-2x0.315-2x0.31575-0.331575)/6
= 4 + (-1.893075)/6 = —4.3155125 (18)

The exact solution calculated by using Equation 7 are:

X,,=7.5258355 and x,,=-4.3155013 (19)
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The errors are 0.000247% and 0.000260% for x, and x,, respectively. Per-step
error for the fourth-order Runge-Kutta method is difficult to estimate because the
method is derived by matching terms in Equation 12 with Taylor-series expansions
of x, and x, about t; through and including the h* terms. But approximately, the per-
step error is of order h3. For better accuracy, the fifth-order Runge-Kutta method
should be applied. For general use, the classic fourth-order Runge-Kutta method is,
however, easier to develop a computer program which is to be discussed next.

SuBrOUTINE RKN

A subroutine called RKN has been written for applying the fourth-order Runge-
Kutta method to solve the initial-value problems governed by a set of first-order
ordinary differential equations. It has been coded according to the procedure
described in the preceding section. That is, the equations must be in the form of
Equation 3 by having the first derivatives of the dependent variables (x, through xy)
all on the left sides of the equations and the right sides be called F, through Fy.
These functions are to be defined in a Function subprogram F.

The FORTRAN version of Subroutine RKN is listed below. There are seven
arguments for this subroutine, the first four are input arguments where the last is an
output argument. The fifth argument P keeps the Runge-Kutta parameters generated
in this subroutine. The sixth argument XT is needed for adjusting the input argument
XIN. These two arguments, P and XT, are included for handling the general case
of N variables. Listing them as arguments makes possible to specify them as matrix
and vector of adjustable sizes.

FORTRAN VERsION

SUBROUTINE RKN(XIN,N,DT,T,P,XT,X0UT)
¢ SOLVING N FIRST-ORDER 0.D.E. D(XIN)/DT=F(XIN,T)
KNOWING XIN AT T, THIS SUB. FINDS YOUT AT T+DT
C P ARE THE RUNGE-KUTTA 4TH-ORDER PARAMETERS.
DIMENSION P(N,4),XIN(N),XOUT(N),XT(N)
D0 5 I=1,N
5 P(I,1)=DI*F(XIN,T,I,N)
D0 15 J=2,3
DO 10 I=1,N
10 YT(I)=XIN(I)+P(I,d-1)/2.
D0 15 I=1,N
15 P(I,J)=DT*F(XT,T4DT/2.,1,¥)
DO 20 I=1,N
20 ¥T(I)=XIN(I)+P(I,3)
DO 25 I=1,N
P(I,4)=DT*F(XT,T4DT,I,N)
25 XOUT(I)=XIN(I)+(P(I,1)42.%(P(L,2)+P(I,3))+P(I,4))/6.
RETURN
END

o
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QuickBASIC VEersioN

SUB RKN (XIN(), N, DT, T, P(), XT(), XOUT())
' SOLVING N FIRST-ORDER 0.D.E. D(XIN)/DT=F(XIN,T)
! KNOWING XIN AT T, THIS SUB. FINDS XOUT AT T4DT
! P ARE THE RUNGE-KUTTA 4TH-ORDER PARAMETERS.
FORI =1 TO N: P(I,1) = DT * F(XIN(), T, I, N): NEXT I
FORJ =21T03
FOR I=1 TO N: XT(I)=XIN(I)+P(I,J-1)/2 : NEXT I
FOR I=1 TO N
P(I,J)=DT*F(XT(),T+D1/2,1,N): NEXT I : NEXT J

FORI =1 TO N: XT(I)=XIN(I)+P(I,3) : NEXT I

FOR I =1 TO N: P(I,4) = DT*F(XT(),T+DT,I,N) : NEXT I

FORI=1TON
XOUT(I)=XIN(I)+(P(I,1)+2%(P(I,2)+P(I,3))+P(I,4))/6
NEXT I

END SUB

ProGrAM RUNGEKUT

Program RungeKut which calls the subroutine RKN is to be run interactively
by specifying the inputs through the keyboard. Displayed messages on screen instruct
user how to input the necessary data and describe the problem in proper sequence.
From the provided listing of the program RungeKut, user will find that the following
inputs and editing need to be executed in the sequence specified:

(1) Input the number of variables, N, involved.

(2) Define the N functions on the right sides of Equation 3, F, through Fy,
by editing the DEF statements starting from statement 161. Presently only
9 functions can be handled by the program RungeKut, but the user should
be able to expand the program to accommodate any N value which is
greater than 9 by renumbering the program and adding more DEF state-
ments.

(3) Type RUN 161 to run the program.

(4) Reenter the N value.

(5) Enter the beginning (not necessary equal to zero!) and ending values of
the independent variable, denoted as t, and t, (TO and TEND in the
program RungeKut), respectively. It is over this range, the values of the
N dependent variables are to be calculated.

(6) Enter the stepsize, h (DT in the program RungeKut), with which the
independent variable is to be incremented.

(7) Enter the N initial values.
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QuickBASIC VErsioN

Program RungeKut.QB - Solving N lst-order ordinary differential equations
initial-value problem using Runge-Kutta 4th-order
method. dx(I)/dt=F(i;t;x1,x2,...,Xn), N<=100

! F(X,T,I,N) must be defined in a subprogram.
DECLARE SUB RKN (X(), N, DT, T, P(), XT{(), XN())
DECLARE FUNCTION F (X()}, T, I, N)
CLEAR : CLS : DIM P(100, 4), X(100), XN(100), XT(100)

INPUT " Input number of equation : ", N

INPUT " Enter the initial value of the independent variable : ", T
INPUT " Enter the increment of the independent variable : ", DT
INPUT " Enter the ending value of the independent variable : ", TEND

PRINT " Enter the initial value of the dependent variables
FOR I = 1 TO N
PRINT "X("; I; ") = "; : INPUT "", X(I): NEXT I
PRINT " T X(1) X(2)
PRINT USING "##.####"~""""; T;

FOR I = 1 TO N: PRINT USING " ## ####~""""; X(I): : NEXT I: PRINT
6 CALL RKN(X(), N, DT, T, P(), XT(), XN())
10 T = T + DT

FOR I = 1 TO N: X(I) = XN(I): NEXT I

PRINT USING "##. ####~""""; T;
FOR I =1 TON
PRINT USING " ##.####"~~~"; X(I):; : NEXT I: PRINT
IF (T »= TEND) THEN 50 ELSE 6
50 PRINT : PRINT " Last set of R-K Parameters are "
FOR T = 1 TO N: PRINT " "
FOR J = 1 TO 4: PRINT USING " ##.### """ P(I, J):
NEXT J: PRINT : NEXT I

END

FORTRAN VERSION

*% Program RungeKut - Solving N lst-order ordinary differential equations

C
[of initial-value problem using Runge-Kutta 4th-order
C method. dx{(I)/dt=F(i:t;x1,x2,...,Xn), N<=100
o] F(X,T,I,N) must be defined in a subprogram.
DIMENSION P(100,4) ,X(100) XN (100) ,XT(100)
WRITE (*,10)
10 FORMAT (1X, 'Input number cof equaticn : ')
READ (*,*) N
WRITE (*,12)
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12 FORMAT (1X, 'Enter the initial value of the independent variable : ')
READ (*,*) T
WRITE (*,14)
14 FORMAT (1X,'Enter the increment of the independent variable : ')
READ (*,*) DT
WRITE (*,16)
16 FORMAT (1X, 'Enter the ending value of the independent variable : ')
READ (*,*) TEND
WRITE (*,18)
18 FORMAT (1X, 'Enter the initial value of the dependent variables :@: ')
DO 20 I=1,N
20 READ (*,*) X(I)
WRITE (*,22)
22 FORMAT (9%, 'T',5X,'X(1) through X(N)')
WRITE (*,24) T, (X(I),I=1,N)
24 FORMAT (F10.3,5E14.5)
26 CALL RKN(X,N,DT,T,P,XT,XN)
T=T+DT
DO 30 I=1,N
30 X(I)=XN(I)
WRITE (*,24) T, (X(I),I=1,N)
IF (T.GE.TEND) GOTO 50
GOTO 26
50 WRITE (*,52)
$2 FORMAT (1X, 'R-K Parameters are :@')
DO 54 I=1,N
54 WRITE (*,56) (P(I,J),J=1,4)
56 FORMAT (4E15.5)
END

FunctioN F

According to Equations 12 to 15, the Runge-Kutta parameters p;; (matrix P in
the program RungeKut) are calculated using two FOR-NEXT loops — an I loop
covering N sets of variables and a J loop covering the four parameters in each set.
As an illustrative example, let us apply program RungeKut for the problem defined
by Equations 8 to 11. We create a supporting function program F as follows:

QuickBASIC Version

FUNCTION F(X (), T, I, N)
IF I=1 THEN F=-6+13*X(1)+20*X(2): GOTO 5
F= 4-0*X(1)-14*X(2)
5 END FUNCTION
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FORTRAN Version

FUNCTION F(X,T,I,N)
DIMENSION X (N)
GO TO (10,20),1

10 F=-6+13*X(1)+20*X(2)
RETURN

20 F=4-9*X(1)-14*X(2)
RETURN
END

The computation can then commence by entering through keyboard the begin-
ning and ending values of t, t, = 0 and t, = 3, respectively, the stepsize h = 0.1, and
the initial values x,,= 7 and x,,= —4. The complete sequence of question-and-
answer steps in running the program RungeKut for the problem described by
Equations 8 to 11 is manifested by a copy of the screen display:

Input number of equation : 2

Enter the initial value of the independent variable : 0
Enter the increment of the independent variable : 0.1
Enter the ending value of the independent varaible : 3
Enter the initial value of the dependent variables:
X(1) =7

X(2) = -4
T X(1) X(2)
0.0000E+00 7.0000E+00 -4.0000E+00
1.0000E-01 7.5259E+00 -4.3155E+00
2.0000E-01 8.1070E+00 -4.6642E+00
3.0000E-01 8.7493E+00 -5.0496E+00
4.0000E-01 9.4591E+00 -5.4755E+00
5.0000E-01 1.0244E+01 -5.9462E+00
6.0000E~-01 1.1111E+01 -6,4664E+00
7.0000E~01 1.2069E+01 -7.0413E+00
8.0000E-01 1.3128E+01 -7.6766E+00
9.0000E-01 1.4298E+01 -8.3788E+00
1.0000E+00 1.5591E+01 -9.1548E+00
1.1000E+00 1.7021E+01 -1.0012E+01
1.2000E+00 1.8601E+01 -1.0960E+01
1.3000E+00 2.0345E+01 -1.2008E+01
1.4000E+00 2.2276E+01 -1.3166E+01
1.5000E+00 2.4408E+01 -1.4445E+01
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1.6000E+00 2.6765E+01 -1.5859E+01
1.7000E+00 2.9370E+01 -1.7422E+01
1.8000E+00 3.2248E+01 -1.9%914SE+01
1.9000E+00 3.5429E+01 -2.1058E+01
2.0000E+00 3.8945E+01 -2.3167E+01
2.1000E+00 4.2831E+01 -2.5498E+01
2.2000E+00 4.7125E+01 -2.8075E+01
2.3000E+00 5.1871E+01 -3.0922E+01
2.4000E+00 5.7116E+01 -3.4069E+01
2.5000E+00 6.2912E+01 -3.7547E+01
2.6000E+00 6.9319E+01 -4.1391E+01
2.7000E+00 7.6398E+01 -4.5639E+01
2.8000E+00 8.4223E+01 -5.0334E+01
2.9000E+00 9.2871E+01 -5.5522E+01
3.0000E+00 1.0243E+02 -6.1256E+01
3.1000E+00 1.1299E+02 -6.7594E+01

Last set of R-K Parameters are
1.004E+01 1.054E+01 1.057E+01 1.110E+01
-6.026E+00 -6.327E+00 -6.342E+00 -6.660E+00

SAMPLE APPLICATIONS OF THE PROGRAM RUNGEKUT

As a first example, consider the problem of a beam shown in Figure 2 which is
built into the wall so that it is not allowed to displace or rotate at the left end. For
consideration of the general case when the beam is loaded by (1) a uniformly
distributed load of 1 N/cm over the leftmost quarter-length, x between 0 and 10 cm,
(2) a linearly varying distributed load of 0 at x = 10 cm and 2 N/cm at x = 20 cm,
(3) a moment of 3 N-cm at x = 30 cm, and (4) a concentrated load of 4 N at the
free end of the beam, x = 40 cm. It is of concern to the structural engineers to know
how the beam will be deformed. The equation for finding the deflected curve of the
beam, usually denoted as y(x), is:3

EI(d’y/dx*) = M(x) 1)

where EI is the beam stiffness and M(x) is the variation of bending moment along
the beam. It can be shown that the moment distribution for the loading shown in
Figure 4 can be described by the equations:

—1121/3+24x —x?/2, for 0 = x =10 cm

M = —871/3+4x+x*—x°/30, for 10 = x = 20 cm 22)
4x —157, for 20<x = 30 cm
4x —160, for 30<x = 40 cm
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FIGURE 2. The problem of a beam, which is built into the wall so that it is not allowed to
displace or rotate at the left end.

To convert the problem into the form of Equation 3, we replace y, dy/dx, and x
by x,, X,, and t, respectively. Knowing Equation 21 and that the initial conditions
are y = 0 and dy/dx = 0 at x = 0, we can obtain from Equation 21 the following
system of first-order ordinary differential equations:

dx, /dx =F,(x,x,.x,) =x x,(x=0)=0 (23)

2 9’
and

dx, /dx = F,(x,x,,x,) = M/EL x,(x=0)=0 24)
For Equation 24, the moment distribution has already been described by Equation
21 whereas the beam stiffness EI is to be set equal to 2x10° N/cm? in numerical
calculation of the deflection of the beam using program RungeKut.
To apply program RungeKut for solving the deflection equation, y(x) which has
been renamed as x,(t), we need to define in the QuickBASIC program RungeKut
two functions:

DEF FNF1 (X) X (2)
DEF FNF2(X) = BM(X)/(2*10"5)

Notice that the bending moment M is represented by BM in QuickBASIC
programming. In view of Equation 21, F, in Equation 24 has to be defined by
modifying the subprogram function, here we illustrate it with a FORTRAN version:
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FUNCTION BM (X)

IF ((X.LE.O.).AND. (X.LT.10.)) BM = —-1121./3 + 24*X-X**2/2
IF ((X.GE.10.).AND. (X.LT.20.)) BM = -871./3 + 4*T +
T**2T**3 /30

IF ((X.GE.20.) .AND. (X.LT.30.)) BM 4*X-157
IF ((X.GE.30.).AND. (X.LT.40.)) BM = 4*X-160
RETURN

END

In fact, each problem will require such arrangement because these function
statements and subprogram function describe the particular features of the problem
being analyzed. The computed deflection at the free end of the beam, y(x = 40 cm),
by application of the program RungeKut using different stepsizes, and the errors
in % of the analytical solution (= —0.68917) are tabulated below:

Stepsize h, cm y at x = 40 cm, Error, %

5 -0.79961 16.0

2 -0.73499 6.65
-0.71236 3.36

.5 -0.70083 1.69

.25 -0.69501 .847

.1 -0.69151 .340

.05 -0.69033 .168

This problem can also be arranged into a set of four first-order ordinary differ-
ential equations and can be solved by using the expressions for the distributed loads
directly. This approach saves the reader from deriving the expressions for the bending
moment. Readers interested in such an approach should solve Problem 4.

A NONLINEAR OsCILLATION PrROBLEM SoLveDp BY RUNGEKUT

The numerical solution using the Runge-Kutta method can be further demon-
strated by solving a nonlinear problem of two connected masses m, and m, as shown
in Figure 3. A cable of constant length passing frictionless rings is used. Initially,
both masses are held at rest at positions shown. When they are released, their
instantaneous positions can be denoted as y(t) and z(t), respectively. The instanta-
neous angle and the length of the inclined portion of the cable can be expressed in
term of y as:

6=tan”[(y+h)/b] and L=[(y+h)'+ b2]°'5 (25,26)

If we denote the cable tension as T, then the Newton’s second law applied to
the two masses leads to m,;g—2Tsin® = m,d?y/dt> and T-m,g = m,d’z/dt>. By elimi-
nating T, we obtain:
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FIGURE 3. The numerical solution using the Runge-Kutta method can be further demon-
strated by solving a nonlinear problem of two connected masses m, and m,.

dy , 2m, sin0 2 = g(l _2M) Gin e) 27)
m

1 1

The displacements y and z are restricted by the condition that the cable length
must remain unchanged. That is z = 2{[(y + h)? + b?]"2[h? + b?]"2}. This relationship
can be differentiated with respect to t to obtain another equation relating d?y/dt> and
d?z/dt?> which is:

&’z =2 dLdy 2 (dy)2 d?y
—=—(yt+th)—+—|| | +(y+h)— 28
de*  1° (v+h) dtdt L[ dt (y+h) de® (28)

Equation 28 can be substituted into Equation 27 to obtain:

2 . 2
dy__smd {gL2 _2my [ng ~o(y+h) Y, 2L(d—y) }} (29)
m

e L(2y+h+L) ' dedt dt

By letting x, =y, x, = dy/dt, x5 = z, and x, = dz/dt, then according to Equation
3 we have F, = x,, F, to be constructed using the right-hand side of Equation 29,
F; = x,, and F, to be constructed using the right-side of Equation 28. It can be shown
that the final form of the system of four first-order differential equations are:

dx, dx, gL2(1 —2r_sin 9) + 4rmV2 sin©
—=X,, —t = s
a2 dt L(1+4rsin’ 0)
(30)
A2
%zxw and dx, _22v +2&sin6
dt dt L
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FIGURE 4. A numerical case where b =3.6 m, h =.15 m, m,/m, = 0.8, and initial conditions
y = z = dy/dt = dz/dt = 0 has been investigated and the results for -y, z, -dy/dt, and dz/dt have
been plotted for 0<t<12 seconds.

where:
r =—2 and Vv’ =x2(%sin6—x2) (31,32)

A numerical case where b =3.6 m, h = .15 m, my/m, = 0.8, and initial conditions
y = z = dy/dt = dz/dt = 0 has been investigated and the results for -y, z, -dy/dt, and
dz/dt have been plotted in Figure 4 for 0<t<12 seconds. The reason that negative
values of y and dy/dt are used is that the mass m, is moving downward as positive.
It can be observed from Figure 4 that y varies between 0 and 3.0704 m, and z varies
between 0 and 3.8358 m. The oscillation has a period approximately equal to
2x6.6831 = 13.3662 seconds, so the frequency is about 0.47 rad/sec. The masses
reach their maximum speeds, Idy/dtl = 1.4811 and Idz/dtl_,, = 1.8336 in m/sec,
when y = 5y, = 1.5352 and z = .5z, = 1.9179 m, respectively. Details for the
oscillation for the studied period are listed below:
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t -y ~dy/dt z dz/dt t -y -dy/dt z dz/dt

[ 0 o] o] 0 6.4583 ~0.0B63 0.6415 0.0680 ~0.5173
0.1200 -0.0183 -0.3042 0.0142 0.2365 6.5749 -0.0271 0.3686 0.0210 -0.2879
0.2203 -0.0611 -0.5455 0.0478 0.4340 6.6831 -0.0018 0.0968 0.0014 -0.0745
0.3225 -0.1285 -0.7695 0.1024 0.6343 6.7854 -0.0053 -0.1647 0.0041 0.1271
0.4285% -0.2215 -0.9718 0.1809 0.8385 6.8857 ~0.0344 -0.4140 0.0267 0.3246
0.5395 -0.3389 -1.1443 0.2849 1.0411 6.9865 -0.0882 -0.6480 0.0685 0.5231
0.6542 -0.4784 -1.2818 0.4156 1.2347 7.0804 -0.1668 -0.86283 0.1343 0.7251
0.7783 -0.6444 -1.3859 0.5805 .1.4185 7.1993 -0.2716 -1.0538 0.2246 0.9306
0.8146 ~-0.8384 ~1.4535 0.7856 1.5835 7.3115 -0.3980 ~1.2107 0.3403 1.1297
1.0644 -1.0588 -1.4816 1.0335 1.7167 7.4299 -0.5501 -1.3332 0.4856 1.3185
1.2249 -1.2961 -1.4702 1.3167 1.8636 7.5592 ~0.7285 -1.4212 0.6679 1.4561
1.4002 -1.5501 -1.4215 1.6368 1.8377 7.7002 -0.8%360 -1.4713 0.8934 1.6491
1.5942 -1.8180 -1.3360 1.8917 1.8108 7.8563 -1.1640 -1.4811 1.1570 1.7621
1.8108 -2.0945 ~1.2132 2.3745 1.7144 8.0231 -1.4090 -1.4527 1.4569 1.8261
2.0581 -2.3746 -1.0488 2.7178 1.5367 8.20863 -1.6698 -1.3874 1.7932 1.8336
2.3474 -2.6476 -0.B348 3.1840 1.2608 8.4101 -1.8425 -1.2851 2.1620 1.7763
2.6845 -2.8844 -0.5663 3.5460 0.8754 8.6380 -2.2189% -1.1451 2.5533 1.6457
3.0632 -3.0395 -0.2517 3.7874 0.3944 8.9035 -2.48%87 -~0.8590 2.9624 1.4256
3.4510 -3.0734 0.0768 3.8407 -0.1207 9.2138 -2.7607 -0.7210 3.3560 1.1015
3.8449 -2.9776 0.4087 3.6907 -0.6370 9.5745 -2.9680 -0.4273 3.6761 0.6655
4.2378 -2.7537 0.7287 3.3452 -1.1125 9.9570 -3.0704 -0.1056 3.8358 0.1659
4.6224 -2.4165 1.0201 2.8393 -1.5020 10.3483 -3.0467 0.2261 3.7987 -0.3546
4.9961 -1.9879 1.2648 2.2251 -1.7601 10.7427 ~2.8924 0.5547 3.5583 -0.8581
5.2483 -1.6520 1.3929 1.7697 -1.8351 11.1326 -2.6151 0.8640 3.1351 ~1.3006
5.5033 -1.2854 1.4715 1.3035 -1.8009 11,5121 -2.2343 1.1368 2.5740 -1.6368
5.1730 -0.9752 1.4760 0.9377 -1.6725 11.8752 -1.7810 1.3497 1.9416 -1.8184
5.8940 -0.7124 1.4152 0.6510 -1.4820 12.0000 -1.6050 1.4085 1.7133 -1.8373
6.0557 -0.4927 1.2930 0.4284 -1.2523
€.2049 -~0.3124 1.1110 0.2609 -0.9991
6.3373 -0.1783 0.8900 0.1449 -0.7525

MATLAB APPLICATION

MATLAB has a file called ode45.m which implement the fourth- and fifth-
order Runge-Kutta integration. Here, we demonstrate how the sample problem used
in the FORTRAN and QuickBASIC versions can also be solved by use of the m
file. The forcing functions given in Equations 10 and 11 are first prepared as follows:

i

function XDOT
XDOT = zeros(2,1);

XDOT (1) = =6+13.*X (1)+20.*X(2);

XDOT(2) = 4= 9.*X(1)-14.*X(2);

FunF (T, X)
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If this file FunF.m is stored on a disk which has been inserted in disk drive A,
ode45.m is to be applied with appropriate initial conditions and a time interval of
investigation as follows:

>> TO = 0; Tend = 3; X0 = [7;-4]; [T, X] = ode45(‘A:Funf’,T0,Tend, X0); plot(T,X)

Notice that ode45 has four arguments. The first argument is the m file in which
the forcing functions are defined. The second and third argument the initial and final
values of time, respectively. The fourth argument is a vector containing the initial
values of the dependent variables. The resulting display, after rearranging T and X
side-by-side for saving space instead of one after the other, is:

T = X =

0 7.0000 -4.0000
0.0300 7.1523 -4.0914
0.2350 B.3244 -4.7947
0.4424 8.7826 -5.6695
0.6478 11.5563 -6.7338
0.8511 13.7117 -8.0270
1.0529 16.3304 -9.5982
1.2534 19.5113 -11.5068
1.4528 23.3747 -13.8248
1.6512 28.0667 -16.6400
1.8489 33.7646 -20.0588
2.0460 40.6839 -24.2103
2.2425 49.0860 -29.2516
2.4387 59.2887 -35.3732
2.6344 71.6776 -42.8066
2.8299 86.7210 -51.8326
3.0000 102.4276 -61.2566

The plots of X(1) and X(2) vs. T using the solid and broken lines, respectively,
are shown in Figure 5.

As another example, MATLAB is applied to obtain the displacement and veloc-
ity histories of a vibration system, Figure 1. First, a m file FunMCK.m is created
to describe this system as:

function XDOT

I

FunMCK (T, X)

XDOT = zeros(2,1);
XDOT (1) = X (2);
XDOT(2) = 5% (1-3*X(2)-4*X (1)) ;

Notice that the first and second variables X(1) and X(2) are displacement (X)
and velocity (v = dx/dt), respectively, and the mass (m), damping constant (c), and
spring constant (k) are taken as 2 N-sec?cm, 3 N-sec/cm, and 4 N/cm, respectively.
For a system which is initially at rest and disturbed by a constant force of F(t) = 1
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FIGURE 5. The plots of X(1) and X(2) vs. T using the solid and broken lines, respectively.

N, the MATLAB solution for 0<t<25 seconds shown in Figure 6 is obtained by
entering the commands:

>> T0 = 0; Tend = 25; X0 = [0;0]; X = [0;0]; [T,X] = ode45(‘a:FunMCK’,T0,Tend, X0)

We can observe from Figure 6 that the mass has a overshoot (referring to Figure 2
in the program NewRaphG) of about 0.28 cm at approximately t = 2.5 seconds and
finally settles to a static deflection of 0.25 cm, and that the maximum ascending
velocity is about 0.18 cm/sec.

As another example of dynamic analysis in the field of fluid mechanics, Figure 8
shows the flow of a fluid between two connected tanks. The valve settings control
the amount of flows, q; for i = 1,2,3. The levels of the tanks h, and h, change in
time depending on these settings and also on the supply rates Q, and Q, and the
discharge rate q,. Expressing the valve settings in terms of the resistances R; for i =
1,2,3, the conservation of masses requires that the flow rates be computed with the
formulas:

A

dh 1 dh 1
1ditl Q1_R71(h1_h3) and Asz:Qz_g(hz_h3) (33,34)
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FIGURE 6. For a system initially at rest and disturbed by a constant force of F(t) = 1 N,

the MATLAB solution for 0<t<25 seconds shown here is obtained by entering the commands
shown below.

where A’s are the cross-sectional areas of the tanks, and h; is the pressure head at
the junction indicated in Figure 7 and is related to the discharge rate q; by the

equation:
q;=q,+9, =h, /R, =(h,—h,)/R, +(h, —h,)/R, (35)
Or, h, can be written in terms of R’s and h, and h, as:
h,=R,(R,h, +Rh,)/(RR, +R R, +R,R,) (36)

By eliminating h, terms from Equations 33 and 34, we obtain two differential
equations in h, and h, to be:
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FIGURE 7. The flow of a fluid between two connected tanks.

A dd—htl =Q,—ah, +ah, and A, % =Q,—a,h, +ah (37,38)
where:
a,=(R,+R,)/A and a,=(R +R,)/A (39.40)
and
A=RR,+R,R,+R R, 41)

By assigning values for the parameters involved in the above problem, Runge-
Kutta method can again be applied effectively for computing the fluid levels in both
tanks.*

MATHEMATICA APPLICATIONS

Mathematica solves a set of ordinary differential equations based on the Runge-
Kutta method by a function called NDSolve. The following run illustrates its inter-
active application using the same example in the MATLAB presentation of Figure 7:

In[1]: = 1d = (NDSolve[ {X1’[t] = = X2[t], X2[t] = = .5*(1-3*X2[t]4*X1[t]),

X1[0] = =0, X2[0] = = 0},
{X1,X2}, {t,0,25}])
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Out[1] = {{X1 -> InterpolatingFunction[{O0., 25.}, <>],
X2 -> InterpolatingFunction[{O0., 25.}, <>]}}

In[1] shows that NDSolve has three arguments: the first argument defines the
two ordinary differential equations and the initial conditions, the second argument
lists the dependent variables, and the third argument specifies the independent
variable and the range of investigation. Id is a name selected for easy later reference
of the results generated. Out[]] indicates that interpolation functions have been
generated for X1 and X2 for t in the range from O to 25. To print the values of X1
and X2, Id can be referred to interpolate the needs as follows:

In[2]: = (Do[Print["t =", tv," X1 =", X1[tv]/. Id, " X2 =", X2[tv]/. Id],
{tv, 0, 25, 1}])

Out[2] =t=0
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X1 = {0.13827}
X1 = {0.267432}
X1 = {0.280915}
X1 = {0.256722}
X1 = {0.245409}
X1 = {0.246925}
X1 = {0.249969}
X1 = {0.250675}
X1 = {0.250238}
X1 = {0.249931}
X1 = {0.249923}
X1 = {0.24999}
X1 = {0.250014}
X1 = {0.250006}
X1 = {0.249999}
X1 = {0.249998}
X1 = {0.25)

X1 = {0.25)

X1 = {0.25)

X1 = {0.25)

X1 = {0.25)

X1 = {0.25)

X1 = {0.25)

X1 = {0.25)

X1 = {0.25)

X2 = {0.}

X2 = {0.183528}

X2 = {0.0629972}

X2 = {-0.0193286}
X2 = {-0.0206924}
X2 = {~0.00278874}
X2 = {0.00365961}
X2 = {0.00187841}
X2 = {~0.000172054}
X2 = {~0.000477574}
X2 = {~0.000125015}
X2 = {0.0000639464}
X2 = {0.0000489215}
X2 = {4.83211 10-7)
X2 = {~0.0000104109}
X2 = {-3.5685 10-6}
X2 = {1.38473 10-6}
X2 = {1.35708 10-6}
X2 = {1.39173 10-7}
X2 = {-4.40766 10-7}
X2 = {—4.61875 10-7}
X2 = {~1.93084 10-8}
X2 = {2.47763 10-8}
X2 = {9.81364 10-8)
X2 = {6.7364 10-8}
X2 = {3.57288 10-8}



These results are in agreement with the plotted curves shown in the MATLAB
application. In[2] shows that the replacement operator/. is employed in X1[tv]/.Id
which requires all t appearing in the resulting interpolating function for X1(t) created
in the Id statement to be substituted by the value of tv. The looping DO statement
instructs that the tv values be changed from a minimum of 0 and a maximum of 25
using an increment of 1. To have a closer look of the overshoot region, In[2] can
be modified to yield

In[3]: = (Do[Print[“t = “,tv,” X1 = “X1[tv]/. Id,” X2 = “,X2[tv]/. 1d],
{tv,2,3,0.1}])

Out[3]= t=2  Xl={0.267432} X2 = {0.0629972}

t=2.1 X1 = {0.273097} X2 = {0.0504262}
t=22 X1 = {0.277544) X2 = {0.0386711}
t=23 X1 = {0.280862} X2 = {0.0278364}
t=24 X1 = {0.283145} X2 = {0.0179948}
t=2.5 X1 = {0.284496) X2 = {0.00919032}
t=26 X1 = {0.285019} X2 = {0.00144176)
t=27 X1 = {0.284819} X2 = {~0.00525428}
t=2.8 X1 = {0.284002} X2 = {~0.0109202}
t=29 X1 = {0.282669} X2 = {-0.0155945)
t=3. X1 = {0.280915} X2 = {-0.0193286)

This detailed study using a time increment of 0.1 reaffirms that the overshoot
occurs at t = 2.6 and X1 has a maximum value equal to 0.28502.

6.3 PROGRAM ODEBVPRK — APPLICATION OF RUNGE-KUTTA
METHOD FOR SOLVING BOUNDARY-VALUE PROBLEMS

The program OdeBvpRK is designed for numerically solving the linear boundary-
value problems governed by the ordinary differential equation by superposition of
two solutions obtained by application of the Runge-Kutta fourth-order method. To
explain the procedure involved, consider the problem of a loaded beam shown in
Figure 8. Mathematically, the deflection y(x) satisfies the well-known flexural equa-
tion.’

= (1)

where M is the internal moment distribution, E is the Young’s modulus and I is the
moment of inertia of the cross section of the beam. For the general case, M, E and
I can be function of x. The boundary conditions of this problem are:
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y(x=0)=0 and y(x=L)=0 2

where L is the length of the beam. The problem is to determine the resulting
deflection y(x). Knowing y, the moment and shearing force, V, distributions can
subsequently be determined based on Equation 1 and V = dM/dx. The final objective
is to calculate the stress distributions in the loaded beam using the M and V results.

The Runge-Kutta method for solving an initial problem can be applied here if
in additional to the initial condition given in (2), y(x = 0) = 0, we also know the
slope, O, at x = 0. But, we can always make a guess and hope that by making better
and better guesses the trial process will eventually lead to one which satisfies the
other boundary condition, namely y(x = L) = 0 given in Equation 3. In fact, if the
problem is linear, all we need to do is making two guesses and linearly combine
these two trial solutions to obtain the solution y(x).

Let us first convert the governing differential Equation 1 into two first-order
equations as:

dx

B x=0)=y(:=0)=0

d, M 3:4)
dixzﬁ, XZ(XZO):G(X:O):GO

To apply the fourth-order Runge-Kutta method, we have to first decide on a
stepsize h, for example h = L/N we then plan to calculate the deflections at N + 1
locations, x + jh for j = 1,2,...N since j = 0 is the initial location. If we assume a
value for ©,, say A, the Runge-Kutta process will be able to generate the following
table

x| o h 2h jh Nh
x=y | o v, v, v, v (5)
Xfe (1) A el(l) 62(1) ej(l) eN(l)
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If y» = 0, then the value A selected for O(x = 0) is correct and the y and O
values listed in Equation 5 are the results for the selected stepsize. If yy(" is not
equal to zero, then the value incorrectly selected, we have to make a second try by
letting O(x = 0) = B to obtain a second table by application of the Runge-Kutta
method. Let the second table be denoted as:

x| o h 2h jh Nh
x gy @ 0 v, v, v; @ vy (6)
x20 @ | B 9,2 9, 9, 0,2

Again, if y@= 0, then the value B selected for 8(x = 0) is correct and the y and
0 values listed in Equation 6 are the results for the selected stepsize. Otherwise, if
the problem is linear, the solutions can be obtained by linearly combining the two
trial results as, for j=1,2,...,N:

Y=oy +By” and 6 =0’ +pe (7.8)
where the weighting coefficients and are to be determined by solving the equations:

a+B=1 and oyl +pyY =0 (9,10)

Equation 10 is derived from the boundary condition y(x = Nh = L) = 0 and based
on Equation 7. Equation 9 needs more explanation because it cannot be derived if
y(x = 0) = 0. Let us assume that for the general case, y(x = 0) = 3. Then Equation
7 gives ad + Bd = & which leads to Equation 9. Using Cramer’s rule, we can easily
obtain:

a=y?/D and PB=-y¥/D (11,12)
and

D=yg -y (13)

NUMERICAL EXAMPLES

Let us consider the problem of a loaded beam as shown in Figure 8. The
crosssection of the beam has a width of 1 cm and a height of 2 cm which results in
a moment of inertia I = 2/3 cm®. The reactions at the left and right supports can be
computed to be 5/3 N and 25/3 N, respectively. Based on these data, it can be shown
that the equations for the internal bending moments are:

5x/3, for 0<x<20 cm

M(x) = 65 1, (14)
—200+?x—5x , for 20<x<30 cm
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If the beam has a Young’s modulus of elasticity E = 2x107 N/cm?, we may decide
on a stepsize of h= 1 cm and proceed to prepare a computer program using the
fourth-order Runge-Kutta method to generate two trial solutions and then linearly
combining to arrive at the desired distributions of the deflected shape y(x) and slope
(x). The FORTRAN version of this program called OdeBvpRK to be presented
later has produced the following display on screen:

Trial 1
X Y THETA
0.00 0.0000E+00  100.0000E~03
0.30  300,0000E-04 100.0000E-~03
0.60  600.0000E-04 100.0000E-03
0.90  900.0000E-04  100,0001E-03

--------------

||||||||||||||

29.70  297.0517E-02  100.0437E-03
30.00  300.0530E-02  100,0437E-03

Trial 2
X Y THETA
0.00 0.0000E+00  200.0000E-03
0.30  600.0000E-04  200.0000E-03
0.60  120.0000E-04  200.0C00E-03
0,90 180.0000E-04  200.0000E-03

--------------

2970 594,0519E-02  200.0437E~03
30,00  600.0532E-02  200.0437E~03

The solutions are:
X ¥ Theta
0.00 0.000E+00 -175,9827E-07
0.30 -527.87368-08 ~-175.8337E-01
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0.30 -527.8736E-08 -175.8337E-01
0.60 -105.4257E-07 -175.6847E-07
1,20 -210.5534E-07 -175.0886E-07

15,90 -196.4569E-06 ~177.3238E-08
16,20 -197.1722E-06 -116.2291E-08
16,50 -197.4106E-06 -551.3430E-09
16.80 -197.1722E~06  745.0581E-10
17.10 -197.4106E-06  700.3546E-09

L T I T A R L R}

D T N N

28.80 ~-305,1758E-07  256.8960E~07
29,10 -224.1135E-07  258.8332E-07
29.40 -143,0511F-07  260.1743E-07
29.70 -715,2557E-08  260.9193E-07
30.00 476.8372E-09  261.2174E-07

FORTRAN VERSION

(o] PROGRAM CdeBvpRK -~ Ordinary differential equation, boundary-value problem using two
C Runge-Kutta trial solutions . Up to 1000 steps.

DIMENSION XT(2,1001,2) X$(2,1001),P(2,4) ,TEMP(2)

REAL INERTIA,L

COMMON E, INERTIA
C 2 unknowns and 100 steps

DATA DX,L,NV,NS,NSTATION/0.3,30.,2,100,101/
E=2.E7
INERTIA=. 66667
DO 10 NTRY=1,2
WRITE (*,5) NTRY
FORMAT (1X, 'Trial #',I12/9X,'X',14X,'Y' 10X, THETA')
XT(1,1,NTRY)=0.
XT(2,1,NTRY)=0.1*NTRY
XV=0
WRITE (*,8) XV, (XT(IP,1,NTRY),6IP=1,6NV)
FORMAT (F10.2,2EL5.4)
DO 10 Ks$=1,NS
CALL RKM (XT (1,K8,NTRY) ,NV,DX,XV, P, TEMP,XT (1,KS+1 ,NTRY))
XV=XV+DX
10 WRITE (*,8) XV, (XT(IP,KS$+1,NTRY) K IP=1 NV)
D=XT (1,NS+1,2) ~XT (1 ,NS+1,1)

o

@

ALPHA=XT (1,NS+1,2) /D
BETA=-XT (1,NS+1,1) /D
WRITE (*,12)
12 FORMAT (1X, 'The solutions are:'/9X,'X', 614X, 'Y', 10X,
* ‘Theta'/)
XV=-DX
PO 15 I=1,NSTATION
XV=XV+DX
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XS(1,I)=ALPHA*XT(1l,I,1)+BETA*XT(1,I,62)

XS(2,I)=ALPHA*XT(2,I,1)+BETA*XT(2,1,2)
15 WRITE (*,8) XV, (XS(IP,I),IP=1,2)

STOP

END

FUNCTION F(X,T,I,N)
COMMON E, INERTIA
REAL INERTIA,M
DIMENSION X (N)
Go TO (10,20),I
F=X (2}
RETURN
20 IF (T.GT.20.) GO TO 25
M=5*T/3
F=M/E/INERTIA
RETURN
25 M=-200+65+T/3-T**2/2
GO TO 22
END
SUBROUTINE RKN (XIN,N,DT,T,P, XT,X0UT)
SOLVING N FIRST-ORDER O.D.E. D(XIN) /DT=F (XIN,T) KNOWING XIN AT T, THIS SUB. FINDS XOUT
c AT T+DT
P ARE THE RUNGE-KUTTA 4TH-ORDER PARAMETERS .
DIMENSION P(N,4) XIN(N) , XOUT (N} XT (N)
Do 5 I=1,N
P(I,1)=DT*F(XIN,T,I,N)
Do 15 J=2,3
DO 10 I=1,¥
XT(I)=XIN(I)+P(I,J-1)/2.
DO 15 I=1,N
15 P(I,J)=DT*F(XT,T+DT/2.,1,N)
DO 20 I=1,N
20 XT(I)=XIN(I)+P(1,3)
DO 25 I=1,N
P(I,4)=DT*F(XT,T+DT,I,N)
25 XOUT (I)=XIN(I)+(P(I,1)+2.*(P(I,2)+P(I,3))+P(1,4))/6.
RETURN
END

1

o

2

N

9}

[e]

o

1

o

The Subprogram FUNCTION F which defines the initial-value problem is coded
in accordance with Equation 14. The two trial initial slopes are selected as equal to
0.1 and 0.2. The trial results are kept in the three-dimensional variable XT, in which
the deflection y®(j) for the kth try at station x = x; = jh is stored in XT(1,j,k) whereas
the slope there is stored in XT(2,j,k) for j= 1,2,...,30 and k = 1,2. Such a three-
subscripts arrangement facilitates the calling of the subroutine RKN because
XT(1,KS,NTRY) is transmitted as XIN(1) and automatically the next value
XT(2,KS, NTRY) as XIN(2), and the computed results XOUT(1) and XOUT(2) are
to be stored as XT(1,KS + 1,NTRY) and XT(2,KS + 1,NTRY), respectively. Notice
that there are only two dependent variables, NV = 2.

After the weighting coefficients « (ALPHA in the program) and 3 (BETA) have
been calculated, the final distributions of the deflection and slope are saved in first
and second rows of the two-dimensional variable X, respectively. It should be
emphatically noted that the solutions obtained is only good for the selected stepsize
h =1 cm. Whether it is accurate or not remains to be tested by using finer stepsizes
and by repeated application of the Runge-Kutta methods.

It can be shown that the maximum deflection of the loaded beam is equal to
—2.019 cm and is obtained when the stepsize is continuously halved and two con-
secutively calculated values is different less than 0.0001 cm in magnitude. The
needed modification of the above listed program to include this change in the stepsize
and testing of the difference in the maximum deflection is left as homework for the
reader.
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QuickBASIC VErsioN

PROGRAM OdeBVvpRK - Ordinary differential equation, boundary-value problem using two

Runge-Kutta trial soluticns. Up to 1000 steps.
DECLARE SUB RKN (XIN() N,DT,T,P(),TEMP() ,XOUT())
DECLARE FUNCTION F(X() ,T,I, N)
DIM XT(2,1001,2) ,X8(2,1001),P(2,4) ,TEMP(2):
2 unknowns and 100 steps
READ E,INERTIA,L,NV,NS: DATA 2.E7,,66667.,3

COMMON SHARED E,

0.,2,100

DX = L / NS: DIM XIN(NV), XOUT(NV)
FOR NTRY = 1 TO 2
PRINT USING " Trial ## ": NTRY
PRINT SPC(9); "X"; SPC(14): "Y"; SPC(10); "THETA"

¥T(1,1,NTRY) = O: XT(2,1 ,NTRY) = .1 * NTRY: XV = 0
PRINT USING "#######%. ##": xv:
FOR IP=1 TO NV: PRINT USING "
FOR KS = 1 TO N§
FOR I=1 TO NV: XIN(I)=XT(I,KS,NTRY) : NEXT I
CALL RKN(XIN() ,NV,DX,XV,P(),TEMP() ,XOUT())
FOR I=1 TO NV: XT(I,KS+1,NTRY)=XOUT(I): NEXT I
XV = XV + DX: PRINT USING "####### ##"; xv;
FOR IP=1 TO NV: PRINT USING "
NEXT KS
NEXT NTRY
D=XT (1,NS+1,2) -XT (1 ,NS+1,1) : ALPHA=XT(1,6NS+1,2)/D:
PRINT " The solutions are:"
PRINT SPC(9);"X";SPC(14) ;"Y";SPC(10) :"Theta”:
FOR I = 1 TO NSTATION: XV=XV+DX
XS(1,I)=ALPHA*XT(1,I,1)+BETA*XT(1,I,2):
PRINT USING "#######. ##" XV
FOR IP=1 TO 2: PRINT USING "
PRINT: NEXT I: END

HE#H H#H#H~~ "0 XT(IP,1,NTRY) ;¢

HH#H B#E#°"0 " XS (TP, T) ;1 NEXT IP

FUNCTION F(X(),T,I,N)
ON I GOTO 10,20

10 F=X(2): GOTO 50
20 IF T»>20 THEN 25
M=5*T/3
22 F=M/E/INERTIA: GOTO 50
25 M=-200+65%T/3-T*2/2: GOTO 22
50 END FUNCTION
SUB RKN (XIN(), N, DT, T, P(), XT(), XOUT())

AT

SOLVING N FIRST-ORDER O.D.E. D(XIN)/DT=F (XIN,T) KNOWING XIN AT T,

T+DT
P ARE THE RUNGE-KUTTA 4TH-ORDER PARAMETERS.
FOR I = 1 TO N: P(I,1) = DT * F(XIN(),T, I ,N): NEXT I
FOR J = 2 TO 3
FOR I=1 TO N: XT(I)=XIN(I)+P(I,J-1)/2! : NEXT I
FOR I=1 TO N: P(I,J)=DT*F(XT(),T+DT/2',I,N): NEXT I: NEXT J
FOR I=1 TO N: XT(I)=XIN(I)+P(I, 3): NEXT I
FOR I=1 TO N: P(I,4)=DT*F(XT(), T+DT,I,6N)

XOUT (1) =XIN{(I)+(P(I, 1)+2!*(P(I,2)+P(I,3))+P(I1,4))/6!: NEXT I

INERTIA

NEXT IP:

RERE RRRH "~ " XT (IP,KS+1,NTRY) ; :

NEXT IP:

BETA=-XT (1,NS+1,1) /D

PRINT: XV=-DX: NSTATION=NS+1

PRINT

PRINT

XS(2,I)=ALPHA*XT (2,I,1) +BETA*XT(2,1,2)

THIS SUB. FINDS XOUT

END SUB

MATLAB APPLICATIONS

In the program RungeKut, MATLAB is used for solving initial value problems

by application of its m function ode45 based

on the fourth- and fifth-order Runge-

Kutta method. Here, this function can be employed twice to solve a boundary-value
problem governed by linear ordinary differential equations. To demonstrate the
procedure, the sample problem discussed in FORTRAN and QuickBASIC versions
of the program OdeBvpRK, with the aid of function BVPEm listed in the subdi-
rectory <mFiles>, can be solved by interactive MATLAB operations as follows:
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>> format compact
>> %

** First trial solutiom **

>> X0=0; Xend=30; YT10={0;0.1]; [X,Y¥Tl]=oded45(’'a:BVPF’,X0.Xend, ¥T10)
X =

o]
0.3000
6.3000
12.3000
18.3000
24,3000
30.0000
¥TL =
4] 0.1000
0.0300 0.1000
0.6300 0.1000
1.2300 0.1000
1.8301 0.1000
2.4302 0.1000
3.0005 0.1000
>> § ** Second trial solution **
>> ¥T20=[0;0.2]; [X,¥T2}=0ded5( a:BVFF',X0.Xend,¥T20)
X =
[0}
0.3000
6.3000
12.3000
18,3000
24.3000
30.0000
YT2 =
o 0.2000
0.0600 0.2000
1.2600 0.2000
2.4600 0.2000
3.6601 0.2000
4.8603 0.2000
6.0005 0.2000

>>

>>
Alpha =

2.0002

>>
Beta =

-1.0002

>> % ** Find the solution for deflection (first column) and slope (second coiumn) **
Yanswer=Alpha*YT1l+Beta*¥YT2

>>

Beta=-¥T1(1,7)/D

$ ** Linearly combining the two solutions **
D=YT2(7,1)-Yri(i,7); Alpha=¥T2(1,7)/D

Yanswer =
1.0e-003 *
0 -0.0177
-0.0053 -0.0177
-0.1064 -0.0152
-0.1791 -0.0083
-0.1965 0.0032
-0.1325 0.0182
0 0.0261
>> plot(X,Yanswer)

Notice that format compact enables the display to use fewer spacings; YT1 and
YT2 keep the two trial solutions, and ode4S automatically determines the best
stepsize which if used directly will result in a coarse plot as shown in Figure 9. The
plot showing solid-line curve for the deflection and broken-line curve for the slope
can, however, be refined by linear interpolation of the data (X, Yanswer) and expand-
ing X and the two columns of Yanswer into new data arrays of XSpline, YSpline,
and YPSpline, respectively. Toward that end, the m function spline in MATLAB is
to be applied as follows:

>> XSpline=0:0.1:30; YSpline=spline(X,Yanswer, XSpline);
>> Y¥PSpline=spline(X,Yanswer(:,2),XSpline);

>> plot(XSpline,YSpline,XsSpline,YPSpline)
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x18~3

FIGURE 9.

The result of plotting the spline curves is shown in Figure 10.

MATHEMATICA APPLICATIONS

The Runge-Kutta method, particularly the most popular fourth-order method,
can be applied for solution of boundary-value problem governed by ordinary differ-
ential equation(s). Here, only the application of this method is elaborated; readers
are therefore referred to program RungeKut to review the method itself and the
development of related programs and subprograms. The boundary-value problem is
to be solved by continuously guessing the initial condition(s) which are not provided
until all boundary conditions are satisfied if the problem is nonlinear. When the
problem is linear, then only a finite number of guesses are necessary. A system of
two first-order ordinary differential equations which governed the loaded elastic
beam problem previously solved in the MATLAB application is here adapted to
demonstrate the application of the Runge-Kutta method.
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FIGURE 10. The result of plotting the spline curves.

In[1]: = EI = 4.*10"7/3; F[X_] = I{[X>20,
(=200 + 65*X/3X"2/2)/EL, 5*X/3/EI]

In[2]: = 1d1 = (NDSolve[{Y'[X] = = YP[X], YP'[X] = = F[X], Y[0] == 0,
YP[0O] == 0.1}, {Y,YP}, {X, 0, 30}])

Inf3]: = Y30Triall = Y[30]/. 1d1
Out[3] = {3.00052}

El value and F(X) are defined in In[1]. In[2] specifies the two first-order ordinary
differential equations involving the deflection Y and slope YP, describes the correct
initial condition Y(X = 0) = 0, gives a guessed slope Y'(X = 0) = 0.1, and decides
on the limit of investigation from X = 0 to X = 30. In[3] interpolates the ending Y
value by using the data obtained in Id1. A second trial is then to follow as:

In[4]: = 1d2 = (NDSolve[{Y'[X] == YP[X], YP'[X] = = F[X],
Y[0] == 0, YP[0] == 0.2},
{Y,YP}, {X, 0, 30}])
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In[5]: = Y30Trial2 = Y[30/. 1d2
Out[5] = {6.00052)

Linear combination of the two trial solutions is now possible by calculating a
correct Y'(X = 0) which should be equal to the value given in Out[8].

In[6]: = d=Y30Trial2Y30Triall; a = Y30Trial2/d; b = -Y30Triall/d;
In[7]: = Print[“Alpha = “,a,” Beta = “,b]

Out[7] = Alpha = {2.00017} Beta = {-1.00017}

In[8]: = YPO = 0.1*a + 0.2%b

Out[8] = {-0.0000174888}

Finally, the actual deflection and slope can be obtained by providing the correct
set of initial conditions and again applying the Runge-Kutta method.

In[9]: = Id = (NDSolve[{Y'[X] = = YP[X], YP'[X] = = F[X],
Y[0] = = 0, YP[0] = = -0.0000174888},
{Y,YP}, {X,0,30}])

In[]O] = (DO[Print[“X = “, XV, “Y = “, Y[XV]/Id, ¢ DY/DX = “,
YP[Xv]/.1d], {Xv,0,30}])

Out[10] =
X=0 Y={0} DY/DX = {-0.0000174888}
X=1  Y={-0.0000174645})  DY/DX = {-0.0000174262}
X=2  Y={-0.0000348041}  DY/DX = {-0.0000172387}
X=3  Y={-0.0000518936)  DY/DX = {-0.0000169262}
X=4  Y={-0.0000686077}  DY/DX = {-0.0000164887}
X=5  Y={-0.0000848222}  DY/DX = {-0.0000159262}
X=6  Y={-0.000100412} DY/DX = {~0.0000152387}
X=7  Y={-0.000115251} DY/DX = {-0.0000144262}
X=8  Y={-0.000129215} DY/DX = {~0.0000134887}
X=9  Y={-0.00014218} DY/DX = {-0.0000124262}
X=10 Y ={-0.000154019} DY/DX = {~0.0000112387}
X=11 Y= {-0.000164608} DY/DX = {-0.00000992619}
X=12 Y= {-0.000173788} DY/DX = {-0.00000848869}
X=13 Y={-0.000181454} DY/DX = {-0.00000692619}
X=14 Y ={-0.000187493} DY/DX = {-0.00000523869}
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X=15 Y ={-0.000191786} DY/DX = {-0.00000342619}
X=16 Y ={-0.00019422} DY/DX = {-0.00000148869}
X=17 Y ={-0.00019468} DY/DX = {0.000000573812}
X=18 Y ={-0.000193037} DY/DX = {0.00000276006}
X=19 Y={-0.000189163} DY/DX = {0.00000506839}
X=20 Y={-0.000182912} DY/DX = {0.0000074989}
X=21 Y={-0.000174247} DY/DX = {0.0000100026}

X=22 Y={-0.00016319} DY/DX = {0.0000125002}
X=23 Y= {-0.00014959} DY/DX = {0.0000149974}
X=24 Y ={-0.000133573} DY/DX = {0.0000174176}
X=25 Y={-0.00011547} DY/DX = {0.0000196352}

X=26 Y ={-0.0000951574} DY/DX = {0.0000216325}
X=27 Y ={-0.0000725124} DY/DX = {0.0000233628}
X =28 Y ={-0.0000483635} DY/DX = {0.0000246913}
X=29 Y ={-0.0000233292} DY/DX = {0.0000255217}
X=30 Y ={0.0000023099} DY/DX = {0.0000258107}

6.4 PROGRAM ODEBVPFD — APPLICATION
OF FINITE DIFFERENCE METHOD
FOR SOLVING BOUNDARY-VALUE PROBLEMS

The program OdeBvpFD is designed for numerically solving boundary-value
problems governed by the ordinary differential equation which are to be replaced
finite-difference equations. To illustrate the procedure involved, let us consider the
problem of an annular membrane which is tightened by a uniform tension T and
rigidly mounted along its inner and outer boundaries, R =R; and R =R, respectively.
As shown in Figure 11, it is then inflated by application of a uniform pressure p. The
deformation of the membrane, Z(R), when its magnitude is small enough not to
affect the tension T, can be determined by solving the ordinary differential equation®
Z(R) satisfies Equation 1 is for R,<R<R and the boundary conditions.

d’z 1dz
e (1)
dR> RdR T

Z(R)=0 and Z(R,)=0 )

If the finite-difference approximation is to be applied for solving Equation 1,

we will be seeking not for the expression Z(R) but for the numerical values at a
selected stations of R in the interval R,<R<R, say N. Let these stations be designated

as R, for k=1 to N and the lateral displacements of the membrane as Zk=Z7(R,).
Using the first-order and second-order central differences (see the program DiffTabl),
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FIGURE 11. An annular membrane tightened by a uniform tension T and rigidly mounted
along its inner and outer boundaries, R = R; and R = R, respectively, and then inflated by
application of a uniform pressure p.

the first and second derivatives of Z(R) appearing in Equation 1 at R, can be
approximated as, respectively:

dl at R = Zk+l - Zk—l 3)
drR k 2AR
and
d’z Z,,-2Z,+Z,,
7dR2 at Rk: k-1 (ARk)2 k-+1 (4)

where AR is the increment in R and is related to the decided number of station N
by the equation:

AR =(R —R)/(N+1) Q)
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Substituting Equations 3 and 4 into Equation 1, we obtain for R = R, that:

Zk—l - 2Zk + Zk+1 _ L Zk+1 - Zk—l —

P
(AR)’ R, 2AR T

Multiplying both sides by (AR)? and collecting terms, we can have for k =
1,2,....N:

2

UL S I i L) ©6)
2R, 2R, T

The two boundaries are Z =7(R = R;) and Zy , ;=Z(R = R,), at which Z= 0.
The above equation thus lead to the matrix equation:

[CHZ} ={R} )

where:
zy=[z, z,..2,] (8)
{R}=—p(AR)’[1 1...1]"/T o)

and if the elements for the coefficient matrix [C] are denoted as c,;, based on
Equation 6 they are to be calculated using the formulas:

c,,=—2, fork=12,...N

¢y =1—-(AR/2R), fork=23,...,N
Con =1+(AR/2R), fork=12,..,N-1 (10)
Cj = 0, elsewhere
and
R, =kAR (11)

After having calculated [C] and {R}, Equation 7 can be solved by calling the
subroutine GAUSS for {Z}. This solution is only for the selected value of N. N
should be continuously increased to test if the maximum Z value would be affected.

The program OdeBvpFD has been developed in both QuickBASIC and FOR-
TRAN versions based on the above described procedure for solving the boundary
problems governed by ordinary differential equations. It is designed for the general
case where the coefficient matrix [C] and the right-hand side vector {R} of the
matrix equation derived from the finite-difference approximation, [C]{Z} = {R}, are
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FIGURE 12. As a second example, we consider the simply supported beam of length 3L which
has a solid section at its middle portion and hollow sections at both end portions as shown

to be defined by the user. In addition, the user needs to specify the number of station,
N, the stepsize, AR, and the location of the left boundary, R,. Here, Z and R are
referred as the dependent and independent variables, respectively using the mem-
brane problem only for the convenience of explanation; user could have other
notations as dependent and independent variables.

As a second example, we consider the simply supported beam of length 3L
which has a solid section at its middle portion and hollow sections at both end
portions as shown in Figure 12. It is of interest to know how the beam will deflect
under its own weight. This is the case of a beam subjected to uniformly distributed
loads. For simplicity, let us assume that the distributed loads to be w,, and w,, in
N/cm?, for the middle and end portions, respectively. To determine the deflection
y(x) for 0<x<3L, we need the following relevant equations which are available in a
standard textbook on mechanics of materials’:

dy _o dO_dy_ M dM_,  dV_

’ dx

= =—, = w (12-15)
dx dx dx EI dx

bl

where O, M, and V are the slope, bending moment, and shearing force, respectively.
E is the Young’s modulus and I is the moment of inertia of the beam. The distributed
load w is considered as positive when it is applied upward in the direction of the
positive y-axis and the moment is considered as positive if it causes the beam to
bend concave up. The shearing forces are considered as positive if they are related
to M according to Equation 14.

By successive substitutions, Equations 1215 can yield an equation which relates
the deflection y directly to the distributed load w as:

2 2
d(E dy)zw (16)
X
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This is a fourth-order ordinary differential equation and needs fourth supple-
mentary initial, boundary, or mixed conditions in order to completely solve for the
deflection y(x). For the simply supported beam subjected to its own weight, the four
boundary conditions are:

2
y=0 and M:El%zo at x=0 and x=L (17)
X

If EI is not a function of x, the central-difference approximation for Equation
16 at x = x, is:

4 —4 —4
% at x, = Yica Yici +(ZY§4 Yin Mo = % at X, (18)
X X

If N in-between stations are selected for determination of the deflections there,
then the two boundaries are at k = 0 and k= N + 1. In view of the subscripts k-2
and k + 2 in Equation 18, k can thus only take the values 2 through N-1. For solving
y, through yy, we hence need two more equations which are the two moment
conditions in Equation 17. At x, = 0, the second-order, forward-difference formula
can be applied to give

2
M=E1%at X
X

Y, =2y, +y
y=2 (AXSZ OEI [at x,=0

Since y = 0 at the left support x = x, = 0, the above equation yields
-2y, +y,=0 (19)

Similarly, at the right support x = Xy, ; = 3L, the second-order, backward-
difference formula can be applied to give

~YNu 2yn T Yna

o= () Elat x

0

N+l T

M=E1S Y lat x
dx

Since y = 0 at the right support x = Xy, ; = 3L, the above equation yields
yN_1 - ZyN =0 (20)

Meanwhile, the boundary condition y = O at the left support x = x, = 0 can be
substituted into Equation 18 for k = 2 to obtain:

w
4y, +6y, -4y, +y, = (Ax)* a‘at X, (21)
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Similarly, the boundary condition y = 0 at the right support x = xy, , = 3L can
be substituted into Equation 18 for k = N-1 to obtain:

w
Ynos = 4Ynoa TOYN —4yy = (Ax)°* a‘at XN-1 (22)

Equation 18 now should have the modified form of, for k = 3,4,...,N-2:

w
Yia =4Yi HOY =4y Yy = (AX)4 a‘at Xi (23)

In matrix form, Equations 19-23 can be written as [C]{Y} = {R} where {Y} =
[y, y2 * ¢ * yxl" and the elements of the coefficient matrix [C] denoted as c;; are to
be calculated using the formulas:

¢y =Cyn =2 Cip = Cyno =1

ci,i=6, for 1=2,3,....N—-1

Ciiy =€ = —4, for 1=2,3,...,N—-1 (24)
C.,= i’i+2=1, for 1=3,4,....N-2

c..=0 elsewhere

For the right-side vector {R} in the matrix equation [C]{Y} = {R}, its elements
denoted as r; are to be calculated using the formula:

1

r=r,=0 and r:(AX)4%‘at x, for i=2,3,...,N-1 (25)

where w(x;) means the distributed load at x = x;,. Consider the beam shown in
Figure 12 with dead loads w,, and w,. That is:

w(xi)=we, for 0<x, <L and 2L <x,<3L
w(xi) =w,_, for L<x,<2L (26)
W(Xi) = (wm +w, )/2 for x,=L and x,=2L

Notice that the average value of w,, and w, at the junctions of hollow and solid
portions of the beam. Expressions for the EI product can be given similar to those
for w. In a sample application of the QuickBASIC version of the program OdeB-
vpFD, we will give two subprogram functions which are prepared for the beam
problem shown in Figure 12 based on Equations 25 and 26.

An alternative approach for solving the simply supported beam by finite-differ-
ence approximation of Equation 13 and using the two boundary conditions y = 0 at
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x= 0 and x = 3L is given as a homework problem. This approach requires the
moment equation M(x) be derived prior to the solution of the matrix equation
[CI{Y} = {R}.

FORTRAN VERSION

c PROGRAM OdeBvpFD - Orxdinary differential egquation, boundary-value problem
[o] solved by finite-difference method. Up to 99 statiomns.
DIMENSION X(99),C(99,99),R(99)
WRITE (*,2)
2 FORMAT(1X, 'Program OdeBvpFD - Finite-difference solution of ',

* ’0.D.E. boundary-value problem.’/)

WRITE (*, 4)
4 FORMAT(1X,’Have you edited the functions CIJ and RI for ’,
* ‘generating the elements of [C] and {R} in

* "[C1{¥}={R}2"/

* 1X,'If not, press <Shift Break>;if yes, press 1.')

READ (*,*) Il

WRITE (*,6)

6 FORHAT(lx, Enter the number of (in-between, excluding ’
‘boundaries) stations and stepsize :’)
READ (*,*) N,DX
WRITE (*,8)

8 FORMAT(1X, Enter the first (left boundary) X value : ')
READ (*,*) X1
o] Calculate [C] and {R}

DO 10 I=1,N
X(I)=X1+I*DX
R(I)=RI(X(I),DX)
po 10 J=1,N

10 ¢(I,J)=CIJ(X(I),I,J,DX)
CALL GAUSS(C,N,99,R)

o] {¥} is in {R}.
WRITE (*,12) (R(K),K=1,6N)
12 FORMAT(1X, The solution is : '//5(5E16.5/))
STOP
END

FUNCTION RI }x, DX}
RI=-5*DX**2/100.
RETURN

END

FUNCTION ClJ(X,I,J,DX)

CIJ=0.

IF (I.EQ.J y CIJy=-2.

IF (I.EQ.(J-1)) CIJ=1.-DX/2./X
IF (I.EQ.(J+1)) CIJ=1.+DX/2./%X
RETURN

END

SUBROUTINE GAUSS(C,N,M,V)

(See Program Gauss.)

Sample Application

Consider the membrane problem shown in Figure 1. Let the inner radius R; be
equal to 3 in, the stepsize or radial increment AR be equal to 9.5 in, and the number
of stations N between the two boundaries be selected as equal to 11 (that is, the
other boundary is at R=R; + (N + 1) AR =3 + 12x0.5 = R, = 9 in.) If the tension
T is equal to 100 Ibs/in and the pressure p is equal to 5 Ibs/in?, a function subprogram
RI can then be accordingly prepared as listed in the program OdeBvpFD. An
interactive run of this program has resulted in a display on screen as follows:
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Program OdeBvpFD - Finite-difference solution of 0.D.E. boundary-value problems.

Have you edited the functions CIJ and RI for generating the elements of [C] and
{R} in [CI{¥}={R}?

If not, press <Shift Break>; if yes, press 1.

1

Enter the number of (in-between, excluding boundaries) stations and stepsize :
11,0.5

Enter the first (left boundary} X value

3.
The solution is

-53374E-01 .10159E+00 .14271E+00 .17552E+00 .19864E+00
.21086E+00 .21111E+00Q .19837E+00 .17172E+00 .13031E+00
.73321E-01

Stop - Program terminated.

QuickBASIC VErsioN

‘ PROGRAM OdeBvpFD - Ordinary differential equation, boundary-value problem

’ solved by finite-difference method. Up to 119 stations.
DECLARE FUNCTION RI(X,DX)
DECLARE FUNCTION CIJ(X,I,J,DX)
DECLARE SUB GauJor(C(),N,R(),D)
COMMON SHARED N

CLS : CLEAR : DIM X(119),C(119,119),R(119)
PRINT "Program OdeBypFD - Finite-difference solution of O0.D.E. *;
PRINT “boundary-value problem. ": PRINT
PRINT "Have you edited the functions CIJ and RI for generating ";
PRINT “"the elements of [C]"

PRINT " and {R} in [C]{Y}={R}?"
INPUT "If not, press <Shift Break>;if yes, press any key : “,Il: PRINT
PRINT “"Enter the number of (in-between, excluding boundaries) “;
INPUT “"stations and stepsize : " ,N,DX
INPUT "Enter the first (left boundary) value of the independent variable : ", X1
’ Calculate [C] and {R}
FORI =1 TO N t X(I) = X1+I*DX : R(I}=RI(X{I),DX)
FOR J = 1 TOo N: C(I,J) = CIJ(X(I),I,J,DX): NEXT J: NEXT I
CALL GauJdor(C(),N,R(),D) ‘{Y} is in {R}.
PRINT : PRINT "The solution is : INT
FOR K = 1 TO N: PRINT USING " f4.$§444°°°"";R(K); : NEXT K
END

FUNCTION CIJ(X,I,J,DX)

CI3 =0 : IFI =20 TREN CIJ = -2!

IF I =J - 1 THEN CI0 = 1! - DX / 2t / %
IF I =J + 1 THEN CIJ = 1! + DX / 2! / X
END FUNCTION

SUB GauJdor(A(),N,C(),D)
. Gauss-Jordan Elimination method for seclving [A]{X}={C}. {C} exits as {X}.

FOR I = 1 To N: IF A(IL,I)=0 THEN 220 7 *%* Normalization ***
200 FOR J=I+1 TO N : A(X,J) = A(X,J)/A(XI,I): NEXT J
c(I) = C(I)/A(I,I): GOTO 250
220 FOR J = I+l TO N: IF A(J,I)=0 THEN 230 ' **%+ pivoting #*%#*
FOR K = I TO N: T=A(I,K): A(I,K)=A(J,K): A(J,K)=T: NEXT K
T=C(I): C(I)=C(J): C(J)=T: GOTO 200
230 NEXT J
250 FOR K = 1 TO N: IF K = I THEN 265 / %%+ Elimination *x»*

IF A(K, I) = O THEN 265
C(K) = C(K) - A(K, I) * C(I
FOR J = I + 1 TO N: A(K,J)=A(K,J)-A(K,I)*A(I,J): NEXT J
265 NEXT K
NEXT I
p=1: FOR I=1 TO N: D=D*A(I,I): NEXT I
END SUB

FUNCTION RI(X,DX)

RI=-5+*DX"2/100
END FUNCTION
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Sample Applications

Consider the same membrane problem as for the sample application using the
FORTRAN version of the program OdeBvpFD. The QuickBASIC version has a
COMMON SHARED statement allowing N to be shared in the subprograms. Also,
this version has been expanded to solving up to 119 stations. It gives an interactive
run as follows:

Program OdeBvpFD - Finite-difference solution of 0.D.E. boundary-value problems.

Have you edited the functions CIJ and RI for generating the elements of [C]
and {R} in [C]{Y}={R}?
If not, press <Shift Break>; if yes, press any key :

Enter the number of (in-between, excluding boundaries) stations and stepsize :
11,0.5

Enter the first (left boundary) X value : 3.

The solution is

.53374E-01 .10159E+00 <14271E+00 .17552E+00 . 19864E+00
-21086E+00 .21111E+00 .19837E+00 «17172E+00 «13031E+00
.73321E-01

The simply supported beam under its own weight is considered as a second
example. For w,, = w, = -2 and a uniform EI value equal to 1 (that is when the beam
has a uniform cross section without the hollow end portions), L = 100, Ax = 30,
and N = 9 stations between the supports, the subprograms CIJ and RI are prepared
according to Equations 24 to 26 as follows:

FUNCTION CIJ(X,I,J,DX)
C1J = 0
IF I<> 1 THEN 15

IF J =1 THEN CIJ = -2: GOTO 99
IF J = 2 THEN CIJ = 1!: GOTO 99 ELSE 99
15 IF I<> N THEN 25
IF I = J THEN CIJ = -2: GOTO 99
IF J = N-1 THEN CIJ = 1l!: GOTO 99 ELSE 99
25 IF I = J THEN CIJ = 6!: GOTO 99
IF J=(I-1) THEN CIJ = -4: GOTO 99
IF J=(I+1l) THEN CIJ = -4: GOTO 99
IF J=(I-2) THEN CIJ = 1l!: GOTO 99
IF J=(I+2) THEN CIJ = 1!
99 END FUNCTION
FUNCTION RI(X,DX)
WM =-2 : =2 : EIM=1 : EIE=1
L = 100
IF X = DX THEN RI = 0O : GOTO 88
IF X = N * DX THEN RI = O i GOTO 88
IF X < L THEN RI = DX“4*WE/EIE : GOTO 88
IF X = L THEN RI = DX"4* (WMIWE)/(EIM+EIE): GOTO 88
IF X>= 2 * L. THEN 22
RI = DX"4*WM/EIM : GOTO 88
22 IF X = 2 * L THEN RI = DX"4*(WM+WE)/(EIM+EIE): GOTO 88
RI = DX"4*WE/EIE
88 END FUNCTION
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It should be noted that the arguments X and DX for FUNCTION CIJ are not
actually involved in any of the statements therein. They are kept so that the statements
in the program OdeBvpFD involving CIJ can remain as general as possible to
accommodate other problems which may need these arguments as linkages. The
interactive application of the above two FUNCTION subprograms is demonstrated
below.

Program OdeBvpFD - Finite-difference solution of O0.D.E. boundary-value problems.
Have you edited the functions CIJ and RI for generating the elements of [C]
and {R} in [CJ{Y¥}={R}?
If not, press <Shift Break>; if yes, press 1.
Enter the number of (in-between, excluding boundaries) stations and stepsize :
9,30
Enter the first (left boundary) X value : O
The solutiom is :

-3.40199E+07 -6.80398E+07 -9.63898E+07 -1.15020E+08 ~1.21500E+08
-1.15020E+08 -9.63898E+07 -6.80398E+07 -3.40199E+07

The analytical solution of this beam problem can be easily obtained. From any
textbook on mechanics of materials (see footnote *), the maximum deflection for a
beam of length 3L and subjected to a uniformly distributed load w is y,. =
Sw(3L)*/384EI. Since w = -2, L = 100, and EI = 1 are used in the above illustrative
run, y,.. is equal to 5x(-2)x(300)*/384 = 2.109x103. The computed result of y at x,
(for N =9, the 5th station is the mid-length of the beam) by the program OdeBvpFD
is equal to —1.21500x10® which has an error about 42%. A homework problem is
given for readers to exercise different N and Ax values, which will show that for N
equal to 19, 29, 59, 99, and 119, the respective y,,, values are —1.63285x108,
—1.78535x108, — 1.93665x108, —1.92011x108, and —1.83x108. Notice that the accu-
racy continue to improve until the roundoff errors begin to affect the solution when
N becomes large, for such cases the double precision should be used in solving the
matrix equation [C]{Y} = {R} by the Gaussian elimination method.

MATLAB APPLICATIONS

The two sample problems discussed in FORTRAN and QuickBASIC version
of the program OdeBvpFD can be executed interactively by MATLAB with the
commands entered from keyboard as follows:

Membrane Problem
>>N=11; DX=0.5; R=-5/100*DX"2*ones (1,N)
R =

Columns 1 through 7

-0.0125 -0.0125 -0.0125 -0.0125 -0.0125 -0.0125 ~0.0125
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>>N=11; DX=0.5: R=-5/100*DX"2*ones (1,N)

R =
Columns 1 through 7
-0.0125 -0.0125 -0.0125
Columns 8 through 11
-0.0125 -0.0125 -0.0125
>>for I=1:N, X=3+I*DX;

for j=1:N
if I==7j, C(i,3)=-2;

-0.0125

-0.0125

-0.0125

elseif I==3j-1, C(i,j)=1-DX/2/X;

elseif I==j+1, C(i,j)=1+4DX/2/X;:

else C(i,3)=0;

end
end
end, C
C =

Columns 1 through 7

-2.0000 0.9286 0
1.0625 -2.0000 0.9375
0 1.0556 -2.0000
o] o] 1.0500
o] V] 0
0 0 0
0 0 0
0 0 0
0 0 0
0 o] 0
0 o] 0

Columns 8 through 11

0 [¢] 0
0 0 0
0 0 0
0 0 0
o} 0 0
0 [¢] 0
0.9615 0 0o
-2.0000 0.9643 ¢]
1.0333 ~2.0000 0.9667
0 1.0313 -2.0000
[¢] 0 1.0294

>>V=C\R'; V'

ans =
Columns 1 through 7
0.0534 0.1015 0.1427
Columns 8 through 11

0.1984 0.1717 0.1303
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0.9444
-2.0000
1.0455

o

[olleleNo Nl

[eloleNeNololeol

o

0.0688
-2.0000

0.1755

0.0733

(oMol Ne]

-2.0000
1.0417

0.1986

[eleleiNe]

-0.0125

0.2108

~0.0125

[eN ol elNeNolNel

-2.0000
1.0357

0.2111



Beam Deflection Problem

>>C=zeros(9,9); C(1,1)=-2; C(1,2)=1; C(9,9)=-2; C(9,8)=1;
>>for I=2:8
for 3=1:9
if I==3j, C(i,])=6;
elseif j=—1-1, C(i,3)=-4:
elseif j==I+1, C(i,j)=-4:
elseif j==I-2, C(i,3)=1;
elseif j=I+2, C(i,j)=1:

end
end
end, C
C =

-2 1 o] 0 0 o] o} 0 0
-4 6 -4 1 ¢] [¢] o} 0 0
1 -4 6 -4 1 0 [¢] [¢] (4]
¢} 1 -4 6 -4 1 0 o} 0
o] 0 1 -4 6 -4 1 o] 0
o] o] 4] 1 -4 6 -4 1 o]
o] 0 0 o] 1 -4 6 -4 1
0 0 o] o] o} 1 -4 6 -4
0 o] o] 0 o] 0 Y] 1 -2

>>Re=zercs(1l,9); WE=-2; WM=-2; EIE=1; EIM=1; L=100;
for I=2:8, X=I*DX:
if X<L, R(I)=DX"4*WE/EIE;
elseif X==L, R(I)=DX"4*)WE+WM)/(EIE+EIM):
elseif X>L
if X<2*L, R(I)=DX"4*WM/EIM;

elseif X==2+L, R(I)=DX"4% (WE+WM)/(EIE+EIM)

elseif X>2*L, R(I)=DX"4*WE/EIE;
end
end
end, R

Columns 1 through 6
0 ~-1620000 -1620000 -1620000 -1620000

Columns 7 through 9

-1620000 -1620000 o}

>>V=C\R'; V'’
ans =

1.0e+008 *
Columns 1 through 7

-0.3402 -0.6804 -0.3639 -1.2150 -1.1502 -0.963%
Columns 8 through ¢

-0.6804 -0.3402
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MATHEMATICA APPLICATIONS

For solving the membrane problem, Mathematica can be applied as follows:

In[1]: = Ns=11; DX = 0.5; ¢c = Table[0,{Ns},{Ns}];
R = Table[-5*DX"2/100,{Ns}];
Print[“R = “,R]

Out[1] = R = {-0.0125, -0.0125, -0.0125, -0.0125, —0.0125, -0.0125,
-0.0125, -0.0125, -0.0125, -0.0125, -0.0125}

In[2]: = (Do[Do[x = 3 + i*DX; If[i = = j, c[[i,j]] = -2;,
Ifli = = j-1, c[[i,j]] = 1DX/2/x;,
Ifli==j+ 1, ¢[[i,j]] = 1 + DX/2/x;, Continue]]],
{i,Ns}], {j,Ns}]); Print[“Matrix ¢ = “c]

Out[2] = Matrix ¢ = {{-2, 0.928571, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{1.0625,~2, 0.9375, 0, 0, 0, 0, 0, 0, 0, 0},
{0, 1.05556, 2, 0.944444, 0, 0, 0, 0, 0, 0, 0},
{0, 0, 1.05, -2, 0.95, 0, 0, 0, 0, 0, 0},
{0, 0, 0, 1.04545, -2, 0.954545, 0, 0, 0, 0, 0},
{0, 0,0, 0, 1.04167, -2, 0.958333, 0, 0, 0, 0},
, 0,0, 0,0, 1.03846, —2, 0.961538, 0, 0, 0},
{0,0.0.0.0,0, 1.03571, -2, 0.964286. 0, 0},
{0,0,0,0,0,0,0, 1.03333, -2, 0.966667, 0},
{0,0,0,0,0,0,0,0, 1.03125, -2, 0.96875},
{0,0,0,0,0,0,0,0,0, 1.02941, -2} }

)

) s

In[3]: = V = Inverse[c].R

Out[3] = {0.0533741, 0.101498, 0.142705, 0.175525, 0.198641, 0.210864,
0.211107, 0.198368, 0.171723, 0.13031, 0.0733212}

These results are in agreement with those obtained by the MATLAB application.
The loaded beam problem also can be treated in a similar manner as follows:

In[1]: = ¢ = Table[0,{9},{9}]; c[[1,1]] = -2; c[[1,2]] = 1; c[[9,9]] = -2;
c[[9.811=1;

In[2]: = (Do[Dol[If[i = =j,c[[i,j]] = 6;, [ ==i-DIG = =i+ 1), c[[i,j]] = —4;,
If[G = =i + 2 = = i-2), c[[i,j]] = 1;, Continue]]],
{1,2,8}1,{j.9}1); Print[“Matrix c = “,c]

Out[2] = Matrix ¢ = {{=2, 1,0, 0, 0,0, 0, 0, 0}, {—4, 6,4, 1,0, 0, 0, 0, 0},
{1’ _41 69 _49 1’ 0, 09 09 O}’ {Os 19 _49 6’ 4’ l, 09 07 O}’
{0’ 09 19 _43 6a _4, 19 09 O}’ {01 09 03 la 4, 69 _49 1’ O}’
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{0,0,0,0,1,-4,6,-4,1},{0,0,0,0,0, 1, 4, 6, 4},
{Os 0’ 07 O, Oa 09 09 1’ _2}}

In[3]: = R =Table[0,{9}]; WE=-2; WM =-2; EIE=1; EIM = 1; L = 100;
DX = 30;

In[4]: = (Do[X = i*DX; If[X<L, R[[i]] = DX"4*WE/EIE;,
If[X = = L, R[[i]] = DX*4*(WE + WM)/(EIE + EIM);,
I[X>L, If[X<2*L, R[[i]] = DX*WM/EIM;,
If[X = = 2*L, R[[i]] = DX"*(WE + WM)/(EIE + EIM);,
IF[X>2*L, R[[i]] = DX"4*WE/EIE;,
Continue]]]]1],
{i,2,8}]); Print[“R = “,R]

Out[4] = R = {0, —-1620000, —1620000, —1620000, —1620000, —1620000,
—-1620000, —1620000, 0}

In[5]: =V = Inverse[c].R

Out[5] = {-34020000, 68040000, 96390000, —115020000, —121500000,
—115020000, 96390000, —-68040000, —34020000}

Again, the results are in agreement with those obtained by the MATLAB
application.

6.5 PROBLEMS

RuNGeKut

1. The differential equation of motion of a spring-and-mass system is d>x/dt?
+ ®’x = 0 where ®? = k/m, m is the mass and k is the spring constant. If
the weight is 5 1b., g = 32.2 ft/sec?, k = 1.5 Ib/in, and initially the dis-
placement x = 2 in. and velocity dx/dt = 0, use the 4th-order Runge-Kutta
method and a step-size of 0.05 sec. to manually calculate the values of x
and dx/dt at t= 0.05 sec. Note that the given second-order ordinary
differential equations should first be converted into two first-order differ-
ential equations.

2. Initially, the two functions x(t) and y(t) have values 1 and —1, respectively.
That is x(t = 0) = 1 and y(t = 0) = —1. For t>0, they satisfy the differential
equations dx/dt = 5x-2y + 2t and dy/dt = x>-0.25sin2t. Use Runge-Kutta
classic fourth-order method and a time increment of 0.01 second to cal-
culate x(t = 0.01) and y(t = 0.01).

3. In the following two equations, the terms dx/dt and dy/dt both appear.

2dx/dt -3x + 5dy/dt -7y = .5t + 1
—3dx/dt -x — 4dy/dt + 9y = 2e >
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Separate them by treating them as unknowns and solve them by simple
substitution or Cramer’s rule. The resulting equations can be expressed
in the forms of dx/dt = F,(t,x,y) and dy/dt = F,(t,x,y). Carry out by manual
computation using Runge-Kutta method to obtain the x and y values when
t = 0.1 if the time increment is 0.1 and the initial conditions are x(t = 0) =
1 and y(t=0)=-2.

4. The distributed loads on the beam shown in Figure 3 can be described as
w = —1 N/cm, for 0<x<10 cm; w = 2.2x N/cm, for 10<x<20 cm; w = 0,
for 20<x<40 cm. Meanwhile, the bending moment applied at x = 30 cm
can be described as M, = 0, for 0<x<30 cm and M, = -3 N-cm, for
30<x<40 cm. By introducing new variables t, and x, through x, so that
t=X, X, =Y, X, = dy/dx, x; = d’y/dx?, and x, = d’y/dx3, the problem of
finding the deflection y(x) of the beam can be formulated (see the refer-
ence cited in footnote) as:

dx,/dt = F,(t,X,X5,X3,X,) = X,, x,(t=0)=0

dx,/dt = F,(t,x,,X,,X3,X,) = (X5 + M))/EL, x,(t=0)=0

dx,/dt = F5(t,X,,X,,X5,X,) = Xy, X5(t=0)=-1121/3
dx,/dt = F,(t,X,,X,,X4,X,) = W, x,(t=0)=24

with M, and w being the applied bending moment and distributed loads,
respectively. The initial conditions specified above are all at the left end
of the beam which is built into the wall and for the deflection (x,), slope
(x,), bending moment (x;), and shearing force (x,), respectively. Apply
the program RungeKut by using EI = 2x10° N/cm? and various stepsizes
to tabulate the results and errors similar to that given in the text.

5. Apply the fourth-order Runge-Kutta method to find the values of x, and
X, at the time t = 0.2 second using a time increment of 0.1 second based
on the following governing equations:

dx; =4-5x,+7x, -2t and ax, =-3X, +X,X, +6e"
dt dt

Att=0.1 second, x;, =-1 and x, = 1.

6. Use different stepsizes to calculate y values at x = 0.1, 0.2, and 0.3 by
application of the program RungeKut for the initial-value problem
dy/dx = x>-y, y(x = 0) = 1. The analytical solution is y = 2-2x + x%e%, by
which the exact solutions can be easily computed to be y(0.1) = 0.90516,
y(0.2) =0.82127, and y(0.3) = 0.74918. Determine the stepsize which will
lead to a Runge-Kutta numerical solutions of y(0.1), y(0.2), and y(0.3)
accurate to five decimal figures.

7. For the loaded beam shown in Figure 13, the deflection y(x) is to be
determined by solving Equation 21. Let the stiffness EI be equal to 2x107
N-cm? and it can be shown that the bending moment M can be described
by the equations:
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FIGURE 13. Question 7.

M = -x2 + 180x-9600 for 0<x<40 cm

and
M = 100x-8000 for 40<x<80 cm

Apply the program RungeKut to find y at x = 80 cm by using stepsizes
h=4,2,1,0.5, 0.25, and 0.1 and calculate the error by comparing with
the expected value of y(x = 80) = —0.928 cm.

8. Convert the following two differential equations into three first-order
differential equations in the forms of dx/dt = F(t;x,,X,,X5;constants) for
i=1,2,3 so that the subroutine RKN can be readily applied:

2
U a3V g Sv—0.6sin7t=0
dt dt dt
Y019 1 20uv-300e* =0
dt e

9. Write a subprogram FUNCTION F(X,T,I,N) which includes the statements
COMMON R1,R2,R3,R4

for transmitting the values of R1, R2, R3, and R4 from the main program.
These four variables are r,, 1,, 13, and r,, respectively, appearing in the

equations:
LN
dt
% =r,A-1,B
dC
E = r2B - r3C
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10.

11.

12.

13.

14.

dD

—t =r,C-r,D
E_
dt

This FUNCTION is to be used by the subroutine RKN in application of
the fourth-order Runge-Kutta method.

The functions x(t) and y(t) satisfy the differential equations d’x/dt*> +
3dx/dt + 5dy/dt-7e* + 9sin2t = 0 and 2dx/dt—4dy/dt + 6x-8y + 10t-12 =
0. Convert the above two equations into the standard form dx;/dt = f(t;
X,,Xp,X5;constants) for i = 1,2,3 where X, = X, X, =y, and x; = dx/dt. Give
the expressions for f, f,, and f; in terms of t, x,, X,, and Xx; so that the
Runge-Kutta method can be applied.

Apply the fourth-order Runge-Kutta method to find the values of y and
z at x=0.35if at x=0.3, y=1 and z = 2 respectively and they satisfy
thedifferential equations dy/dx = xy + z and dz/dx = yz + x. Use a stepsize
of x = 0.5 and show all details of how the Runge-Kutta parameters are
calculated.

The deflection y of the load beam shown below satisfies the ordinary
differential equation EI(d?y/dx?)= M where the Young’s modulus E =
2x10% N/m?, moment of inertia I = 4.5x10-® m* and the internal bending
moment, in N-m, has been derived in terms of x as M(x) = 200x—30 for
0<x<.1 m and M(x) = 100x-20 for .1<x<.2 m. (1) Using an increment of
Ax = 0.01 m, standardize the above problem into a system of two first-
order ordinary differential equations dx;/dx = fi(x;x,,X,;constants) for i =
1,2 where x, = y and x, = dy/dx (slope). (2) Write a FUNCTION F(...)
needed in SUBROUTINE RKN which we have discussed in class for
using the fourth-order Runge-Kutta method, based on the result of Step
(1) and also the M(x) equations. (3) Calculate the eight RungeKutta
parameters and then the value of y and dy/dx at x = 0.01 m.

Convert the following differential equation into a set of two first-order
differential equations so that the fourth-order Runge-Kutta method can
be applied: d?x/dt> + 4dx/dt + 3x =4et. If at t =0, x = 0 and dx/dt = 2,
use a time increment oft = 0.1, compute the x and dx/dt values at At =
0.1 based on the fourth-order Runge-Kutta method.

The forced swaying motion of a three-story building can be simulated as
a system of three lumped masses m; connected by springs with stiffnesses
k; and subjected to forces fi(t) for i = 1,2,3 as shown in Figure 14. Here,
the dampingcharacteristics are not considered but could be incorporated.
Derive the governing differential equations for the and then convert them
into a system of 6 first-order differential equations so that the programs
RungeKut and ode45 can be applied to find the histories of displace-
ments, x;(t), and velocities v,(t) = dx;(t)/dt. Solve a numerical case of m; =
2i N-sec’/cm, k; = 3i N/cm, and f(t) = (2i-3)sin(2i-1)t N, x,(t=0)= 0
and v;(t = 0) = 0 for 0<t<20 seconds. Plot all displacement and velocity
histories.
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FIGURE 14. Problem 14.

15. Instead of f(t) = 1 in obtaining the system’s response of the mechanical
vibration problem using the MATLAB file FunMCK.m shown in
Figure 5, resolve the problem for the case of f(t) = 5sin(0.5t-0.3) by
changing FunMCK.m and plot the resulting displacement and velocity.

16. Implement the Runge-Kutta solution of Equation 30 by defining a sub-
program function TwoMs in FORTRAN, QuickBASIC, or, MATLAB
to obtain the result shown in Figure 5 for the case of b= 3.6 m, h= 1.5
m, m,/m; = 0.8, and initial conditions y = z= dy/dt= dz/dt= 0. And
calculate the histories of the cable tension T(t) and angle (t).

17. For the nonlinear oscillation problem of two connected masses shown in
Figures 4 and 5, we observe that the oscillation goes on continuously. The
motion can be damped by adding a viscous device vertically connected
to the mass whose displacement is denoted as z(t). This could be a
frictional wall, on which the mass slides vertically. Usually, the retarding
force of such a damping device, F, could be assumed to be linearly
proportional to the velocity of the motion, dz/dt. That is, F, = cdz/dt where
¢ is constant. Figure 15 is a result of the oscillation when a damping
device having ¢ = 1 N-sec/m and m, = 1 N-sec?m is added to that system.
We notice that amplitudes of y(t) and z(t) shown in Figure 5 are steadily
decreased. Develop this modified program in FORTRAN, QuickBASIC,
or, MATLAB to generate Figure 15.

18. Use Mathematica’s function NDSolve to solve Problem 7.
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19. Apply Mathematica to solve Problem 17 for a time increment At = 0.2
sec and until t = 12 seconds.
20. Apply Mathematica for solving Problem. 14.

OpbeBveRK

1. The function y(x) satisfies the boundary conditions y(x =0) =2 and y(x =
3) = 4 and the differential equation 5d%y/dx>-3dy/dx + y = 13x-15 for
0<x<3. Apply the fourth-order Runge-Kutta method to find the y values
at x =1 and x = 2 based on an increment of x equal to 1.

2. The function y(x) has the boundary values of y(x=0)=1 and y(x =3)=5
and for x between 0 and 3, y(x) satisfies the ordinary differential equation:

2
d—}; 3 +2y=2x+1
dx dx
Apply the fourth-order Runge-Kutta method to find the y values at x = 1
and x = 2 based on a stepsize of Ax = 1.

3. For a membrane (Figure 16) under uniform tension T and fastened at the
inner radius R; and outer radius R, the axisymmetric deformation z
resulted by the acting uniform pressure p can be shown to satisfy the
differential equation:’
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FIGURE 16. Problem 3.

FIGURE 17. Problem 4.

d’z 1dz_ p

— 4+ — =X
dr® rdr T
for Ri<r<R,. The boundary conditions are z(R;) = 0 and z(R,) = 0. Modify

the program OdeBvpRK to solve this problem.
4. A cable hung at its two ends as shown in Figure 17 by its own weight

will have a catenary shape described by the equation:
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T WX
— x h—=_1
y {cos :| (a)

w

X

where w is the weight per unit length and T, is the horizontal, x-component
of the tension of the cable. Equation (a) is for the case when both w and
T, are constant throughout the cable. In fact, Equation a is the solution
of the differential equation:®

dy wds w dy Y "
y_waes_¥v 1+(—) (b)
d’x T dx T, dx

where s is a variable along the length of the cable. To solve this problem
by applying the Runge-Kutta method, we introduce the slope variable,
=0 dy/dx and convert Equation (b) to form the system of first-order
differential equations dy/dx = f;(x) and d/dx = f,(x) where f,(x) = and
f,(x) = w[l + 02]"¥/T,. Let w = 0.12 KN/m, x, = y, = 0, x5 = 200 m, and
yg = 50 m and let the initial conditions be y = = 0 at x = x,, = 0, iterate
T, value until y; is within 99.9% of 50 m.

5. Actually, the value of T, in Problem 4 can be obtained by solving the
transcendental equation (a) for y = y; = 50, x = x5 = 200, and w = 0.12.
Select a method in the program FindRoot to find this value.

6. How could Problem 4 be solved if x, = —-100 m and y, = 25 m by

application of the Runge-Kutta method (w remains equl to 0.12 KN/m)?

Apply MATLAB to solve Problem 2.

Apply MATLAB to solve Problem 4 by using an increment of Ax =2 m.

Apply Mathematica to solve Problem 2.

Apply Mathematica to solve Problem 4 using an incremwnt of Ax =2 m.

© 0o

OpbeBveFD

1. The deflection y(x) of the beam shown in Figure 2 can be solved from
using the moment equation, Equation 13 instead of Equation 16, but the
moment M needs to be expressed in terms of x. A similar matrix equation
[CI{Y} = {R} should be derived using only two boundary conditions y =
0 at x = 0 and x = 3L instead of the four boundary conditions specified
in (17). Using the second-order, central-difference formula for d?y/dx2,
derive the formulas for calculations of the elements of [C] and {R}.

2. Based on the results of Problem 1, proceed to prepare the subprogram
functions CIJ and RI and solve for {Y}. Using the data presented in the
sample application of the QuickBASIC version of program OdeBvpFD,
compute {Y} and compare the two approaches.

3. Following the illustrative example, run the QuickBASIC version of pro-
gram OdeBvoFD for the beam problem shown in Figure 2 but for N equal
to 19, 29, 59, 99, and 119.
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4. Roundoff errors in the Gaussian elimination steps begin to affect the
accuracy of the computed values of the deflection for Problem 3 when
N = 119. Change the program OdeBvpFD into double precision arith-
metics and rerun the case N = 119 and compare the computed y,,, to that
of analytical solution.

5. Make necessary changes in the FORTRAN version of program OdeB-
vpFD to solve Problems 3 and 4.

6. For the second sample problem (deflection of beam, Figure 2), change
the distributed loads to w,, = 2 and w, = 1, and the rigidities to EI[, = 1
and EI, = 0.5 to recalculate the maximum deflection y,,,.

7. Show that for the beam deflection problem shown in Figure 2 when
Equation 13 is approximated by use of second-order, central difference
and by incorporating the boundary conditions y =0 at x =0 and x = 3L,
it will lead to the solution of the matrix equation [C]{Y} = {R} where
the elements of [C] and {R} denoted as c;; and r;, respectively can be
calculated by the formulas:

i =-2, for i=1,2,...,.N
Ciint C,; =1, fori=12,...,N-1 (a)
. =0, elsewhere
and
M
r =(Ax)’ —fat x, b

where N is the number of stations between the two supports and Ax is
the stepsize equal to 3L/(N + 1).

8. For Figure 2, if the uniformly distributed loads for the middle and ending
portions are designated as w,, and w,, respectively, derive the expressions
for the internal bending moments in the three portions of the beam, 0<x<L,
L<x<2L, and 2L<x<3L.

9. Prepare subprogram FUNCTIONS CIJ and RI for Problem 8 and find the
deflection vector {Y} by use of either FORTRAN or QuickBASIC
version of the program OdeBvpFD. Select appropriate values for the
number of stations N so that the results obtained by this second-order
approach can be compared to those by the fourth-order approach.

10. Use the central finite-difference method and an increment of Ax = 1 to
find the y values at x = 1 and x = 2 when y is governed by the equation
d?y/dx? + 3dy/dx — y = 2x — 3 and satisfies the boundary conditions y =
Oatx=0and x=3.

11. Use the central finite-difference method and an increment of Ax = 1 to
find the y values at x = 1 and x = 2 when y is governed by the equation
d?y/dx? + 3y = x-1 and satisfies the boundary conditions y=0 at x =0
and x = 3.
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12.

13.
14.

15.
16.
17.
18.

6.6

1.

It is known that u= 0 at r = 2 and r = 5 and that for 2<r<5 u satisfies the
equation d?u/dr? — rdu/dr = -3, use central differences to approximate both
the first and second derivatives of u and an increment of r equal to 1 and
then derive two equations relating the u values at r = 3 and r = 4 and solve
them.

Apply MATLAB to solve Problem 3.

Apply MATLAB to solve the cable problem #4 listed under OdeBvpRK
and using an increment of Ax = 1 m.

Apply MATLAB to solve Problem 10 by using an increment of Ax = 0.05.
Repeat Problem 13 except by application of Mathematica.

Repeat Problem 14 except by application of Mathematica.

Repeat Problem 15 except by application of Mathematica.
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7 Eigenvalue and
Eigenvector Problems

7.1 INTRODUCTION

There is a class of physical problems which lead to a governing ordinary differential
equation containing an unknown parameter. As an example, consider the buckling
of a slender rod subjected to an axial load P shown in Figure 1. The deflected shape
y(x) is governed by the equation:'

dy M_ B M
dx® EI EI

vyt m s

”!; L ’ P =

FIGURE 1. The buckling of a slender rod subjected to an axial load P.

where El is the rigidity and M is the internal bending moment (in this case equal
to -Py) of the rod at the section x. If the rod is supported at both ends such that the
boundary conditions are:

y(x=0)=y(x=L)=0 )

The unknown parameter appearing in Equation 1 is P which is the load axially
applied causing the rod to buckle. The problem is then to find P and the corresponding
buckled shape y(x). If the value of EI is a constant for all x, this problem can be
solved analytically. The buckling load can be shown to be P = w?EI/L2. For the
general case when EI is the function of x, numerical method has to be applied to
obtain approximate solutions.

In this chapter, we will apply the finite-difference approximation to solve Equa-
tion 1. As will be presented in Section 7.2, the resulting matrix equation involving
the buckled shape evaluated at N selected stations between the end supports of the
rod will be of the standard form:

([Al-AIfY}={0} o, [ARY}=2A{Y} 3)
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FIGURE 2. Another example of eigenvalue and eigenvector problem — the vibration of
three masses connected by three springs.

where the matrix [A] will depend on the distances between the stations, { Y} contains
the buckled amount of the rod at the stations, and \ is related to the unknown
buckling load P. Equation 3 can be interpreted as knowing a matrix [A] and trying
to find a proper vector {Y} when it is multiplied by [A], a scaled {Y} will result.
This becomes the well-known eigenvector and eigenvalue problem because eigen
means proper. A and {Y} in Equation 3 are called the eigenvalue and eigenvector
of [A], respectively. If N is the order of the matrix [A], there are N sets of eigenvalues
and eigenvectors. In Section 7.3, how a polynomial from which all eigenvalues of
a given matrix can be found as roots will be discussed.

As another example of eigenvalue and eigenvector problem, consider the vibra-
tion of three masses connected by three springs shown in Figure 2. If any one of
these three masses is subjected to some disturbance such as the case when the mass
m; is pulled down by a certain distance and then released, the whole system will
then be vibrating! One will be interested in knowing at what frequency will they be
oscillating up and down. To formulate the analysis, let us denote the displacements
of the masses as x;(t) for i= 1 to 3 which are functions of time t. If the elastic
constants of the three springs are denoted as k; for i = 1,2,3, it can be shown? by
application of the Newton’s laws of motion that the governing differential equations
for the displacements are:

2
m, % +(k, + K, )x, —k,x, =0 (4)

t2
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d’x

2 dtZ

2—k,x, +(k, +k;)x, —k,x, =0 )

d’x
m, —dt; -kx, +kx, =0 6)

If we assume that the masses are vibrating sinusoidally with a common frequency
o but with different amplitudes C,, their displacements can then be expressed as:

x,(t)=C;sinot  for =123 @)
Substituting Equation 7 into Equations 4 to 6, we obtain:
[(k, K, ~m@”)C, —kye, [sinwt =0

[F,A, (K, +k —m,0?)A, —k A, [sinot =0
and

[—kzc2 +(k, - m3m2)C3] sinot =0

In matrix form, the above equations can be written as:

k, +k, —m,o’ -k, 0 C, 0
-k, k, +k, —m,®’ -k, C, [sinot=|0 ®)
0 -k, k,-m,»’ || C, 0

Since the amplitudes C,_; and sinwt cannot be equal to zero which would have
led to no motion at all, this leaves the only choice of requiring that the coefficient
matrix be singular. In other words, its determinant must be equal to zero. The
resulting equation is a cubic polynomial and enables us to solve for three roots which
are the squared values of the frequencies (w?) of the vibrating system. For each
frequency, we next need to know the associated amplitudes of the vibration. Equation
8 can be arranged into the standard form, Equation 3 by letting {Y} = [C, C, C;]" and:

(k, +k,)/m, —k,/m, 0
A=, [A]=| —k,/m,  (k,+k,)/m, —k,/m, (9,10)
0 —k,/m, —k;/m,

This example shows that the governing ordinary differential Equations 4 to 6
may not involve with an unknown parameter as in the buckling problem, but once
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the common frequency  is introduced for the free vibration it becomes a standard
eigenvalue and eigenvector problem described by the matrix [A].

Hence, the question becomes how to find the eigenvalues and their associated
eigenvector of a prescribed matrix. The methods of solution are to be discussed in
Sections 7.3 and 7.4 where the programs CharacEq and EigenVec are introduced.
In Section 7.5, an iterative method for finding the eigenvector when an eigenvalue
of a matrix is provided and program Eigenvlt also will be presented. Prior to these
discussions, in the next section we will first concern with how the matrices connected
with the buckling and vibration problems are to be derived and demonstrate in
advance how the programs CharacEq, Bairstow, EigenVec, and Eigenvlt are to
be employed for obtaining the eigenvalues and eigenvectors of these matrices.

7.2 PROGRAMS EigenODE.Stb AND EigenODE.Vib —
FOR SOLVING STABILITY AND VIBRATION PROBLEMS

In order to obtain numerical solution of the buckling load and shape of the rod
shown in Figure 1 in Section 7.1, the central-difference method introduced in
Chapter 4 can be applied to approximate the second derivative term appearing in
Equation 1 there. At a typical location along the rod, say x = x;, Equation 1 can be
approximated as:

ﬁi yjfl _2yj' +yj+l __ Pyj (1)
dx? h* (ED),

where (EI); is the rigidity of the rod at x; and y; = y(x = x;) etc. This approach requires
that the rod be investigated at N stations between the two supports which are labeled
as X, and xy , ;- These stations are equally spaced so that the increment of x (stepsize
h) is simply h= Ax = L/(N + 1). As a result of such arrangement, the boundary
conditions previously defined in Equation 2 now become:

Yo=Ynu =0 2

By writing out the equation for the first and last in-between stations, i.e., j = 1
and j = N, based on Equation 1 and the boundary conditions (2), the two simplified
equations are, respectively:

h*P
[—2+ (ED) }yl +y,=0 3)
1
and
h*P
Yo | =2+ :|y =0 “4)
N-1 |: (EI)N N
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Also Equation 1 can be rearranged into the form, for j = 2,3,...,N-1

2

Vi +l—2 + h°P

(EI).

]yj+yj+1 =0 (5)
]

where (EI); is the rigidity of the beam at the jth station. By multiplying the jth
equation by —(EI)J-/h2 forj=1,2,....N, Equations 3 to 5 can be further simplified into
the standard matrix form [A-AI]{Y} = {0} where {0} is a null vector of order N,
N =P {Y}=1[y, y, ... y»I", and [A] = [a;] which for i,j = 1,2,...,N the elements
are to be calculated with the formulas:

2(EIl),/h*,  for i=]

a,=|—(EI),/h®, for i=j—1 or i=j+1 (6)

1

0, elsewhere

As a simple numerical example, consider the case of EI=1, L =1, and N = 2.
We are seeking only the solution of displacements, y, and y, at two in-between
points since the stepsize h= L/(N + 1) = 1/3. [A] is of order 2 by 2 and having
elements a;; = a,, = 18 and a,, = a,; = -9 according to Equation 7. The eigenvalues
of [AM] can be easily obtained to be A, = 9 and A, = 27. The exact solution P =
T?EI/L? in this case is P = A = 2 = 9.87, which indicates that A, is off about 10%
from the exact value. If N is increased to 3, h = 0.25 and the eigenvalues are A, =
9.4, A, =32, and A, = 54.6. The error in estimating the first buckling load is reduced
to 100x(9.87-9.4)/9.87 = 4.76%.

ProGrAM EIGENODE.S1B

Buckling problem belongs to a general class of stability problems, for which a
program called EigenODE.Stb is developed to demonstrate how different increments
or different number of stations can be adopted to continue improving the solution
of eigenvalues and eigenvectors with the aid of programs EigenVec, EigenvIt and
Bairstow. The following shows the interactive application of this program.

FORTRAN VERSION

c Program EigenODE.Stb - Buckling Problem governed by Ordinary
Differential Equation
DIMENSION C(10,10) ,EI(10)
DATA EI/10*1./,RL/1./
DO 25 N=2,5
H=RL/ (N+1)
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CALL CBUCKLE(N,10,H,EI,C)
WRITE (*,50) N
DO 15 1=1,N
15 WRITE (*,55) (C(I,J),J=1,6N)
25 CONTINUE
50 FORMAT (1X,'N = ',I5/1X,'C matrix is’')
55 FORMAT (8F10.5)
END

SUBROUTINE CBUCKLE (N,M,H,EI,C)
C Generates [C] matrix for buckling problem.
DIMENSION C(M,M) ,EI (N)
DO 50 I=1,N
DO 50 J=1,N
Cc(1,J)=0.
IF (I.EQ.J) C(I,I)=2*EI(I)/H**2
IF ((I.EQ.(J-1)).0R.(I.EQ.(J+1))) C(I,J)= EI(I)/H**2
50 CONTINUE
RETURN
END

Sample Applications

When program EigenODE.Stb is run for the buckling problem, the screen will
show the coefficient [C] in the standard eigenvalue problem of the form [A-AI[{Y} =
{0} where the values of the buckled shape y(x) computed in 2, 3, 4, and 5 stations
between the supported ends of the rod are stored in the vector {Y} and \ is equal
to the buckling load P. The resulting display is:

N = 2
C matrix 1is
18.00000 9.00000
9.00000 18.00000
N = 3
C matrix is
32.00000 16.00000 .00000
16.00000 32.00000 16.00000
.00000 16.00000 32.00000

N = 4
C matrix 1is
50.00000 25.00000 .00000 .00000
25.00000 50.00000 25.00000 .00000
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.00000 25.00000 50.00000 25.00000

.00000 .00000 25.00000 50.00000

N = 5

C matrix is

71.99990 36.00000 .00000 .00000 .00000

36.00000 71.99999 36.00000 .00000 .00000
.00000 36.00000 71.99999 36.00000 .00000
.00000 .00000 36.00000 71.99999 36.00000
.00000 .00000 .00000 36.00000 71.99999

To find the eigenvalues of the above listed matrices, program CharactEq can
be applied by interactively specifying the elements in these matrices to obtain the
respective characteristic equations as

A? =36\ + 243 =0,
A3 — 96)2 — 2560A — 16384 = 0,
At — 20043 + 13125A2 — 3125004 + 1953125 =0, and
A5 — 360A* + 46656° — 2612736)% + 5.878656x107A — 3.62791x10% = 0

The eigenvalues for these equations can be found by application of the program
Bairstow. The sets of eigenvalues for the first three equations are (9 and 27), (9.3726,
32, and 54.627), and (9.5492, 34.549, 65.451, and 90.451). The smallest eigenvalue
in magnitude found for the fourth equation is 9.64569. It indicates that if the rod is
partitioned into finer and finer increments, the numerical solution continue to
improve in predicting the first buckling load from 9, 9.3726, 9.5492, to 9.64569 and
converging to the exact value of P =\ = % = 9.8696. For further improvement, the
derivation of the characteristic equations of order 6 and higher is given as a home-
work problem for the reader to practice application of the programs EigenODE.Stb,
CharacEq, and Bairstow.

ProGrAM EIGENODE.ViB

For a better understanding of the vibration problem also introduced in
Section 7.1, let us assign values for the spring constants and masses to be k, =k, =
ky = 10 1b/ft and m; = m, = m; = 1 lb-sec?/ft. The matrix [A] becomes:

20 -10 0
[A]=|-10 20 10
0 -10 10

Indeed, [A] is singular. The determinant of [A—AI] gives the characteristic equa-
tion N3-50A% + 600NA—1000 = 0. The roots can be obtained by application of the
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program Bairstow to be A = w? = 1.98, 15.5, and 32.5. For \ = 1.98 the frequency
w is equal to 1.407 radians/second, the amplitude ratios are C,/C, = 1.80 and C,/C, =
2.25. The program EigenVib has been developed for generation of the matrix [A]
when the values of the masses, m’s, and the spring constants, k’s, are provided.

FORTRAN VERSION

o) Program EigenODE.Vib - Vibration Problem governed by Ordinary
o] Differential Equation
DIMENSION A(3,3),RK(4) ,RM(3)
DATA RK/3*10.,0./,RM/3*1./
CALL CVIBRA(3,3,RK,RM,A)
DO 15 1=1,3
15 WRITE (*,55) (A(I,J),J=1,3)
25 CONTINUE
50 FORMAT(1X,'A matrix is')
55 FORMAT (8F10.5)

END

SUBROUTINE CVIBRA(N,M,RK,RM,A)
o] Generates [A] matrix for vibration problem.

DIMENSION A(M,M) ,RK{1l) ,RM(1)
po 50 I=1,N
po 50 J=1,N
A(I,J)=0.
IF (I.EQ.J) A(I,I)=(RK(I)+RK(I+1))/RM(I)
IF (I.EQ.(J-1)) A(I,J)= RK(J)/RM(I)
IF (I.EQ.(J+1)) A(I,J)= RK{I)/RM(I)

50 CONTINUE
RETURN
END

Sample Application

To demonstrate application of the program EigenODE.Vib, the numerical exam-
ple for the vibration of three masses shown in Figure 1 in Section 7.1 is run to
generate the matrix [A] and then the program CharacEq is used to obtain a char-
acteristic equation A\* — 50\ — 600N — 1000 = 0. The program Bairstow enables its
roots to be found as equal to 1.9806, 15.550, and 37.470.

It is also of interest to show an application of the programs MatxInvD and
Eigenvlt (to be introduced in Section 7.5) for inverting the matrix [C] and then
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iteratively finding the smallest eigenvalue
lowest natural frequency of the vibration).
two programs is:

in magnitude (which is related to the
The resulting display from using these

* Program MatxInvD - Calculate inverse and determinant of a square matrix *

Enter the order of the matrix : 3

Enter the elements of the matrix row-by-

after entering each element
? 207 10?7 0
? 107 207 10
? 02 107 10

Determinant = 999.9999

The inverse matrix is
1.000E-01 -1.000E~-01 1.000E-01
-1.000E-01 2.000E-01 -2.000E-01

1.000E-01 -2.000E-01 3.000E-01

Program EigenvIt - Iterates the largest

row and press <Enter> key

eigenvalue in magnitude

& associated eigenvector of an Nth-order matrix

Enter the order of the matrix, N ? 3

Enter elements of the matrix [M] row-by-

Tow

Press <Enter> key after entering each number.

7 .17 -.1? .1
? -.17 .27 -.2
? .17 -.2? .3

Enter a trial eigenvector of order N

Press <Enter> key after entering each number.

? 17 0?7 O

Iterations go as follows

Trial # Eigenvalue Normalized Eigenvector Error

(Terminated when total error < 0.0001)

1 0.17321 0.57735 -0/57735 O.
2 0.48305 0.35857 -0.59761 O
3 0.50455 0.33165 -0.59222 O
4 0.50489 0.32844 -0.59118 0
5 0.50489 0.32804 -0.59103 0.
[ 0.50488 0.32799 -0.59101 O
7 0.50489 0.32799 -0.59%101 O

The smallest eigenvalue in magnitude

.73698

57735 1.57735

.71714 0.37883

73436 0.04953

.73663 0.00653

73683 0.00084

.73697 0.00011
]

. 00001

of the matrix [A] is therefore equal to

1/0.50489, or, 1.9806 same as obtained by application of the programs CharacEq

and Bairstow.

MATLAB APPLICATIONS

A file EigenvIt.m for MATLAB has been developed and is listed and discussed
in the program Eigenvlt. This function is in the form of [EigenVec,Lambda] =
EigenvIt(A,N,VO,NT,Tol). It accepts a matrix [A] of order N, an initial guessed
eigenvector VO, and tries to find the eigenvector Eigenvec and eigenvalue Lambda
iteratively until the sum of the absolute values of the differences of the components
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of two consecutive guessed eigenvectors is less than the specified tolerance Tol. The
number of iterations is limited by the user to be no more than NT times. The reader
should refer to the program EigenvIt for more details, here provide a simple example
of using EigenvIt.m:

>> A=[2,0,3; 0,5,0; 3,02,]; VO=[1; 0; 0]; format compact
>> [EigenVec,Lambdal]=EigenvIt(A,3,V0,10,0.0001)
TryNumb =

8

0.7071

0.7071
Lambda =
5.0000

The display indicates that for the specified matrix [A] of order equal to 3, the
largest eigenvalue in magnitude is equal to 5.0000 and its associated eigenvector is
[0.7071 0 0.7071]7 after 8 iterative steps. The iteration is terminated when the sum
of the absolute values of the differences of the corresponding components of the
guessed eigenvectors obtained during the seventh and eighth iterations is less than
the specified tolerance 0.0001.

To find the smallest eigenvalue and its associated eigenvector by iteration,
EigenvIt.m also can be applied effectively. Let us use the example in Sample
Applications:

>> A=[20,10,0; 10,20,10; 0,10,10]; Ainv=inv(A);, format compact
>> V0=[1; 0; 0]; [EigenVec,LambdaR]=Eigenvit(Ainv,63,Vv0,10,0.0001)

TryNumb =
7
v =
0.3280
~-0.5910
0.7370
LambdaR =
0.5049
Lambda =
1.9806

Notice that inv.m of MATLAB has been applied to find the inverse of [A] and
using it for EigenvIt.m to find the eigenvalue and eigenvector by iteration.
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MATHEMATICA APPLICATIONS

For the buckling problem, Mathematica can be applied as follows:
In[l1]: =Ns=5;El=1;L=1;H=L/Ns + 1);

In[2]: = (Print[“Number of Station = “, Ns, “ EI =, EI, *“ Length = “, L,
“Delta L = “, H)

Out[2]: =
Number of Station =5 EI = 1. Length = 1. Delta L = 0.166667

In[3]: = (Do[Do[If[i == j, M[[i,j]] = 2.*E/H"2,
Ifli == (j + Dlli = = (G-1), M[[i,j]] = EI/H"2, 0]],
{i,Ns}1,{j,Ns}1]); MatrixForm[M]

Out[3]//MatrixForm: =

72. 36. 0. 0. O.
36. 72. 36. 0. O.
0. 36. 72. 36. 0.
0. 0. 36. 72. 36.
0. 0. 0. 36. 72.

In the next section, we will show how the characteristic equation for the above
derived matrix [M] can be determined by application of Mathematica and subse-
quently how the eigenvalues and eigenvectors are to be obtained.

7.3 PROGRAM CHARACEQ — DERIVATION OF CHARACTERISTIC
EQUATION OF A SPECIFIED SQUARE MATRIX

The program CharacEq is designed to generate the coefficients of the characteristic
equation of an interactively specified square matrix by use of the Feddeev-Leverrier
method. Such a characteristic equation is needed in the stability, vibration, and other
so-called eigenvalue problems.? Readers interested in these problems should also
refer to the discussions on the programs EigenODE and EigenVec. The former
discusses how the square matrix is to be generated by finite-difference approximation
of ordinary differential equation. The latter program delineates how the eigenvectors
are to be found by a modified Gaussian elimination method for each eigenvalue and
how the eigenvalues are to be solved from the characteristic equation by the program
Bairstow. Here for derivation of the characteristic equation, let us denote the specified
square matrix be [A] and its elements be a; for i,j = 1,2,...,n with n being the order of
[A]. The Feddeev-Leverrier method first express the characteristic equation of [A] as:

()" (X —p A —p, X —...=p,_ A—p,)=0 (1)
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where the coefficients p, through p, are to be determined by the following recursive
formulas:

P, 2% Trace of [B],  for k=1,2,...,n 2)
and

[B],=[A] and [B], =[A](B]_, ~p.[1]) (34)

Equation 4 is to be applied for j = 2,3,...,n. Trace, appearing in Equation 2, of
a square matrix is the sum of the diagonal elements. A specific, numerical example
will help further explain the details involved in applying the formulas presented
above. Consider a square matrix:

0 2 3
[A]=|-10 -1 2 5)
2 4 7

Then, [B], = [A] and p, = Trace([B],) = 0-1+7 = 6. The other p’s and [B]’s are
to be calculated according to Equations 2 and 4, and finally the characteristic equa-
tion is to be expressed according to Equation 1 as:

o 2 3][-6 2
[B], =[A]([B],-€[1])=|-10 -1 2||-10 -7
2 4 7|2 4

26 -2 7
=| 66 -5 -30| p,= Trace ([B],)/2=(-26-5+9)/2=-11
42 -4 9

6 0 0
=[0 6 0| p,= Trace ([B],)/3=(6+6+6)/3=6
0 0 6

and finally, the characteristic equation is:

(1) (X = pA* = p,A—py) =K + 62> ~11A+6=0
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Both QuickBASIC and FORTRAN version of the program CharacEq have

been made

available for derivation of the characteristic equation based on the

Feddeev-Leverrier method. The program listings are presented below along with

some sample applications.

QuickBASIC VErsioN

' Program CharacEq - Generates Characteristic Equation of an nth-order matrix
[M] using Faddeev-Leverrier method.
SCREEN 2: CLEAR : KEY OFF: CLS
PRINT "Program CharacEq - Generates Characteristic Equation of an";
PRINT " nth-order matrix [M] using Faddeev-Leverrier method.”
PRINT INPUT "Enter the order of the matrix, N "; N
Nl =N -1
N2 =N - 2
DIM A(N1l), M(N, N), MK(N, N), MK1(N, N)
PRINT PRINT "Enter elements of the matrix [M] row-by-row"
PRINT " Press <Enter> key after entering each number."
FOR I =1 TO N
FOR J =1 TO N
INPUT : M(1, J)
NEXT J: PRINT
NEXT I
A(N1) = 0!': FOR I =1 TO N
A(N1) = A(N1) - M{(I, I}
FOR J =1 TO N
MK1(I, J) = M(I, J)
NEXT J
NEXT I
FOR T = N2 TO O STEP -1
K=N-T
FOR I =1 TO N
FOR J =1 TO N
IF I = J THEN 175
MK(I, J) = MK1(I, J)
GOTO 180
175 MK(I, J) = MK1(I, I) + A(N - K + 1)
180 NEXT J
NEXT I
A(N - K) =0
FOR I =1 TON
FOR J = 1 TO N
MK1(I, J) = 0O
FORQ =1 TON
MK1(I, J) = MKL1(I, J) + M(I, Q) * MK(Q, J)
NEXT Q
NEXT J
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A(N - K) = A(N - K) - MK1(I, I)
NEXT I
A(N - K) = A(N - K) / K
NEXT T
PRINT PRINT "The calculated coefficients of the ";
PRINT "characteristic equation are "
PRINT " (from highest- to lowest-order terms)": PRINT PRINT 1;
FOR I = N1 TO O STEP -1
PRINT A(I):
NEXT I
PRINT PRINT END

Sample Application

The display screen will show the following questions-and-answers and the com-
puted results when the matrix [A] given in (5) is interactively entered as the matrix,
for which its characteristic equation is to be obtained:

Program CharacEq - Generates Characteristic Equation of an nth-order

matrix [M] using Faddeev-Leverrier method.

Enter the order of the matrix, N ? 3

Enter elements of the matrix [M] row-by-row
Press <Enter> key after entering each number.

? 07 2?7 3
? -10? -12 2
? =27 472 7

The calculated coefficients of the characteristic equation are
(from the highest- to lowest-order terms)
-6

1 -6 11

FORTRAN VERsION

C Program CharacEg - Generates Characteristic Equation of an Nth-order
C matrix [M] using Faddeev-Leverrier method.
DIMENSION A(51) ,M(50,50) ,MK(50,50) ,MK1 (50, 50)
REAL M,MK,MK1
WRITE (*,2)

2 FORMAT (' Program CharacEq - Generates Characteristic Equation’,
' of an Nth-order matrix [M]'/
* ' using Faddeev-Leverrier method.')
WRITE (*,4)
4 FORMAT (' Enter the order of the matrix, N :')
READ (*,*) N
N1=N-1
N2=N-2
WRITE (*,6)
6 FORMAT (/' Enter elements of the matrix [M] row-by-row'/

*
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* ' Press <Enter> key after entering each number. ')
po 8 I=1,N
DO 8 J=1,N
8 READ (*,*) M(I,J)
A(1)=0.
DO 12 I=1,N
A(1l)=A(1)-M(I,I)
DO 12 J=1,N
12 MK1(I,J)=M(I,J)
DO 250 K=2,N
DO 180 I=1,N
DO 180 J=1,N
IF (I.EQ.J) GO TO 175
MK(I,J)=MK1l(I,6J)
GO TO 180
175 MK(I,J)=MK1(I,I)+A(K-1)
180 CONTINUE
A(K)=0
Do 200 I=1,N
DO 220 J=1,N
MK1(I,J)=0
DO 220 IQ=1,N
220 MK1 (I,J)=MK1(I,J)+M(I,IQ)*MK(IQ,J)
200 A(K)=A(K)-MK1(I,I)
250 A(K)=A(K)/K
WRITE (*,300)
300 FORMAT (/' The calculated coefficients of the characteristic’,
* ' equation are : '/’ (from highest- to lowest-order',
* ' terms) '/)
WRITE (*,*) 1
DO 310 I=1,N
310 WRITE (*,*) A(I)
END

Sample Application

Program CharacEq - Generates Characteristic Equation of an Nth-order matrix [M]
using Faddeev-Leverrier method.

Enter the order of the matrix, N

3

Enter elements of the matrix [M] row-by-row
Press <Enter> key after entering each number
1

2

3

-10

The calculated coefficients of the characteristic equation are
(from highest- to lowest-crder terms)

1
-9.0000000
26.0000000

-24.0000000
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MATLAB APPLICATION

MATLAB has a file called poly.m which can be applied to obtain the charac-
teristic equation of a specified square matrix. The following is an example of how
to specify a square matrix of order 3, how poly.m is to be called, and the resulting
display:

>> A=[0,2,3;-10,-1,2;-2,4,7]

A =
0 2 3

-10 -1
-2 4 7

>> p=poly(A)

p =
1.0000 -6.0000 11.0000 -6.0000

For the FORTRAN sample problem, we can have:

>> A=[1,2,3;-10,0,2;-2,4,8]

A=
1 2 3

-10 (o] 2

-2 4 8

>> p=poly(A)

p=
1.0000 -9.0000 26.0000 -24.0000

Here, we can apply plot.m and polyval of MATLAB to graphically explore the
roots of this obtained polynomial P(x) = x3>-9x? + 26x-24 = 0 by interactive entering:

>> x = [1:0.05:5]; y = polyval(p,x); plot(x,y), hold
>> XL =[1 5]; YL = [0 O]; plot(XL,YL)
The resulting curve is shown in Figure 3. Notice that the added horizontal line
intercepts the polynomial curve, it helps indicate where the real roots are. To actually

calculate the values of all roots, real or complex, the roots.m of MATLAB can be
applied as follows:
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FIGURE 3.

>> Xroots=roots(p)
Xroots =

4.0000

3.0000

2.0000

These results complement well with those presented in Figure 3.

MATHEMATICA APPLICATIONS

For finding the characteristic equation of a given matrix, Mathematica’s func-
tion Det which derives the determinant of a specified matrix can be employed. To
do so, the matrix should be entered first and then Det is to be called next.

Input[1]: =
m = {{0,2,3), {-10,-1,2}, {-2,.4,7}}
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Output[1] =
m = {{0,2,3), {-10,-1,2}, {-2,.4,7}}

Notice that the elements in each row are separated by comma and enclosed by
a pair of braces, and rows are separated also by comma. Next, we derive the
characteristic equation of the matrix m.

Input[2]: =
Det[m — x IdentityMatrix[3]]

Output[2] =
6-11 X+6X2—X3

Input[3]: =
m = {{1,2,3), {-10,0,2}, {-2,4,8}}

Output[3] =
m = {{1,2,3), {-10,0,2}, {-2,4,8}}

Input[4]: =
Det[m — x IdentityMatrix[3]]

Output[4] =
24-26X +9 X2-X3

We may proceed to solve the characteristic roots as follows:

Input[5]: =
NSolve[24-26x + 9x"2x"3 = = 0,X]

Output[5] =
{{x >2.1}, {x>-31}, {x>4.}}

Again, the polynomial can be plotted with:

Input[6]: =
Plot[x"3-9x/2 + 26x-24, {x,1,5},

Frame->True}, AspectRatio->1]
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Output[6] =

Notice that the graph intercepts the x axis at x =2, x = 3, and x = 4.

7.4 PROGRAM EIGENVEC — SOLVING EIGENVECTOR
BY GAUSSIAN ELIMINATION METHOD

The program EigenVec is designed to solve for the associated eigenvector { V} when
an eigenvalue of a given square matrix [A] is specified. Eigenvalue and eigenvector
problems are discussed in the programs CharacEq and EigenODE. Here, we
describe how the Gaussian Elimination method can be modified for finding the
eigenvector {V}. Since the eigenvector {V} satisfies the matrix equation:

([A]-A[1){V}={o} (1)

where [I] is the identity matrix of same order as [A]. Equation 1 is called homoge-
neous since the right-hand side is a null vector. This equation has nontrivial solution
only if the determinant of the coefficient matrix [A]-A[I] is equal to zero. In other
words, the linear algebraic equations represented by Equation 1 are not all indepen-
dent. The number of equations which are dependent on the other equations, is equal
to the multiplicity of the specified N. For example, if the matrix [A] is of order N
and if the multiplicity of N is M which means M characteristic roots are equal to A,
then there are M equations in Equation 1 are dependent on the other N-M equations.
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When Gaussian Elimination method is applied for solving {V} from Equation
1, the normalization of the last equation cannot be carried out if A has a multiplicity
equal to 1 even with the pivoting provision in the program. This is because one of
the N equation is dependent on the other N—1 equations. But, it suggests that we
may assign the last component of {V} to be equal to an arbitrary constant ¢ and
express the other components of {V} in terms of c. This concept can be extended
to the case when A has a multiplicity of M. Since only N-M equations of (1) are
independent, there are M independent solutions of {V}. To obtain the first solution,
we assign the last component of {V} a value ¢, and the other last M—1 components
of {V} equal to zero and then proceed to express the first N-M components of {V}
in terms of c,. To obtain the second solution, we assign the next to the last component
of {V} a value c, and the other last M—1 components of {V} equal to zero and
express the first N-M components of {V} in terms of c,, and so on. The M solution
of {V} can thus be expressed in terms of c; fori=1,2,...,.M.

The program EigenVec is developed from modifying the program Gauss by
following the above-explained procedure. This program requires the user to inter-
actively specify the order N of [A], the elements of [A], a specified value of \ and
its multiplicity M. The results produced by the program EigenVec are the M set of
eigenvectors { V}. Both FORTRAN and QuickBASIC versions of this programs are
listed below along with sample applications.

QuickBASIC VEersioN

' * Program EigenVec - Solving for eigenvector of matrix M of order N when an eigenvalue is
! specified, using Gaussian Elimination method.

CLEAR : CLS : KEY OFF

PRINT "Program EigenvVec - Solving for eigenvector of an Wth-order matrix [M]"

PRINT " when an eigenvalue is specified, using Gaussian Elimination"; : PRINT " method."

PRINT : INPUT "Enter the order (N) of the matrix [M] : ", N: DIM M(N,N) , V(N)

FOR I = 1 TO N: PRINT "Enter elements of [M], Row "; : PRINT USING "#### :"; I
PRINT " ©One at a time and press <Return> :":
FOR J = 1 TO N: INPUT ; M(I, J): NEXT J: PRINT © NEXT I

INPUT "Enter the eigenvalue (Lambda) : ", LAMBDA

INPUT "Is this a repeated eigenvalue? Enter Y/N : ", A$

IF AS$ = "Y" THEN INPUT "How many times does it repeat? ", NR: GOTO 240

NR = 1

240 FOR I = 1 TO N : M(I,I) = M(I, I) - LAMBDA: NEXT I
FOR K =1 TO N - NR: JJ K : K1 = K+ 1 : BIG = ABS(M(X, K)) 'Pivoting

FOR I = K1 TO N: T ABS(M(I, K)): IF BIG < T THEN BIG=T: JJ=I: NEXT I

IF JJ = K THEN 310

FOR J = 1 TO N: T = M(JJ, J): M(JJ, J) = M(K, J): M(K, J) = T: NEXT J
310 FOR J = K1 TO N: M(K, J) = M(K, J) / M(K, K): NEXT J 'Normalization

M(K,K)= 1

FOR I = 1 TO N : IF I = K THEN 360 'Elimination

FOR J = K1 TO N: M(I, J) = M(I,J)-M(K,J)*M(I,K): NEXT J: M(I,K)=0

360 NEXT I

NEXT K

PRINT : PRINT "Normalized Eigenvector(s)
FOR L=1 TO NR: PRINT: FOR LR=N-NR+1 TO N: V(LR)=0: NEXT LR: V(N-L+1)=1: SUM=0

FOR I=1 TO N-NR : V(I)=-M(I N-L+1) : SUM=SUM+V (I}"2: NEXT I
SUM=SUM+1: SQRSUM=SQR(SUM): FOR I=1 TO W: V(I)=V(I)/SQRSUM: PRINT V(I): NEXT I
NEXT L

END
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Sample Application

Program EigenVec - Solving for eigenvector of an Nth-order matrix [M]
when an eigenvalue is specified, using Gaussian Elimination method.

Enter the order (N) of the matrix [M] : 3
Enter elements of [M], Row 1 :

One at a time and press <Enter> :? 37 0?2 2
Enter elements of [M], Row 2

One at a time and press <Enter> :? 0? 5? 0
Enter elements of [M], Row 3

One at a time and press <Enter> :? 2? 0? 3
Enter eigenvalue (Lambda) : 1

Is this a repeated eigenvalue? Enter Y/N : N

Normalized Eigenvector(s) : (-.7071068 0 .70713968}

FORTRAN VERSION

c Program EigenVec - Solving for eigenvector of matrix M of order N
c when an eigenvalue is specified,
o) using Gaussian Elimination method.

DIMENSION M(50,50) ,V(50)
REAL LAMBDA,M
WRITE (*,2)

2 FORMAT(' Program EigenVec - Seolving for eigenvector of an',
* ' Nth-order matrix [M]'/' when an eigenvalue is',
* ' specified, using Gaussian Elimination method. ')
WRITE (*,4)

4 FORMAT(' Enter the order (N) of the matrix [M] : ',6IS)

READ (*,*) N
Do 8 I=1,N
WRITE (*,6) I
6 FORMAT(' Enter elements of [M], Row ',6I2)
8 READ (*,*) (M(I,J),J=1,N)
10 FORMAT(' Press <Return> after entering each number : ')
WRITE (*,12)
READ (*,* ) LAMBDA
12 FORMAT(' Enter the eigenvalue (Lambda) : ')
WRITE (*,14)
READ (*,* ) NR
14 FORMAT(' Enter the multiplicity of this eigenvalue : '}
Do 16 I=1,N
16 M(I,I)=M(I,I)-LAMBDA
LAST=N-NR
DO 31 K=1,LAST
JJI=K
K1=K+1
C Pivoting
BIG=ABS (M(K,K))
DO 18 I=K1,N
T=ABS (M(I,K))
IF (BIG.LT.T) GO TO 17
GO TO 18
17 BIG=T
JJI=T
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18 CONTINUE
IF (JJ.EQ.K) GO TO 20
DO 19 J=1,N

T=M(JJ,J)
M(JJ,J)=M(K, J)
19 M(K,J)=T
C Normalization
20 Do 21 J=K1,N
21 M(K,J)=M(K, J) /M{K,K)
M(K,K)=1

C Elimination
DO 29 I=1,N
IF (I.EQ.K) GO TO 29
Do 27 J=K1,N

27 M(I,J)=M(TI,J)-M(K,J)*M(I,6K)
M(I,K)=0
29 CONTINUE

31 CONTINUE
WRITE (*,35)
35 FORMAT(' Normalized Eigenvector(s) :')
DO 40 L=1,NR
NMNR=N-NR
WRITE (*,*)
N1=N-NR+1
DO 36 LR=N1,N
36 V(LR)=0
V(N-L+1)=1.
SUM=0
DO 38 I=1,NMNR
V{I)=-M(I,N-L+1)
38 SUM=SUM+V (I) **2
SUM=SUM+1
SQRSUM=SQRT ( SUM)
Do 39 I=1,N
V(I)=V(I)/SQRSUM
39 WRITE (*,41) V (I}
40 CONTINUE
41 FORMAT(E12.5)
END

Sample Application

Program EigenVec - Solving for eigenvector of an Nth-order matrix [M]
when an eigenvalue is specified, using Gaussian Elimination method.

Enter the order (N) of the matrix [M]
3

Enter elements of [M], Row 1
3,0,2

Enter elements of [M], Row 2
0,5,0

Enter elements of [M], Row 3
2,0,3

Enter eigenvalue (Lambda)

5

Enter the multiplicity of this eigenvalue
2
Normalized Eigenvector(s) {
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.70711E+00
.00000E+00
.70711E+00

.00000E+00
.10000E+01
.00000E+00

MATLAB APPLICATIONS

MATLAB has a file called eig.m which can be applied for finding the eigen-
values and normalized vectors of a specified square matrix. To do so, we first
interactively specify the elements of a matrix [A} and then ask for the eigenvalues
Lambda and normalized eigenvectors EigenVec by entering (such as for the sample
problem in the FORTRAN and QuickBASIC versions)

>> A = [3,0,2;0,5,0;2,03]; [EigenVec,Lambdal = eig(a)

It results in a display on the screen:

EigenVec =
0 0.7071 0.7071
1.0000 0 o}
0 -0.7071 0.7071
Lambda =
5 o 0
o} 1 0
o] o 5

Notice that the eigenvalues are listed in the diagonal of the matrix Lambda and
the corresponding normalized eigenvectors are listed in the matrix EigenVec as
columns. To list the eigenvalues in a vector Lambda, we could enter:

>> [Lambdal] = eig(a)

The resulting display is:

MATHEMATICA APPLICATIONS

Mathematica has functions Eigenvalues and Eigenvectors which can be
applied to find the eigenvalues and eigenvectors, respectively, for a specified matrix
as illustrated by the following example:
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In[1]: = a = {{3,0,2},{0,5,0},{2,0,3} }; MatrixForm{[a]

Out[1]//MatrixForm: =
30 2
0 50
2 0 3

In[2]: = Eigenvalues|[a]

Out[2]: =
{1,5,5}

In[3]: = Eigenvectors|a]

Out[3]: =
{-1,0,1},{1,0,1},{0,1,0}}

Notice that the computed eigenvectors are not normalized.

As another example, consider the matrix M generated in the program EigenODE
for the buckling problem when the number of stations is equal to 5. To obtain the
eigenvalues, the interactive application of Mathematica goes as:

In[4]: = Eigenvalues[M]

Out[4]: =
{134.354, 108., 72., 36., 9.64617}

Notice that the smallest eigenvalue is equal to 9.64617 which predicts the lowest
buckling load. Since the exact solution is 9.8696, this further indicates that by
continuously increasing the number of stations the smallest eigenvalue in magnitude
will eventually converge to the expected value.

PRINCIPAL STRESSES AND PLANES

As another example of solving the eigenvalues and eigenvectors, consider the
problem of determining the principal stresses at a point within a two-dimensional
body which is subjected to in-plane loadings. If the normal stresses (o, and 6,) and
shear stresses (7, = 7,,), Figure 5, at that point are known, it is a common practice
to graphically determine the principal stresses and principal planes, on which the
principal stresses act by use of Mohr’s circle.* But, here we demonstrate how the
principal stresses and principal planes can be solved as the eigenvalues and eigen-
vectors, respectively, of a matrix [A] constructed using the values of o,, o, and T,
as follows:

© 2001 by CRC Press LLC



Y
T
yx
PRSI
TXY
'rxy
'ryx*t"""‘
9y

FIGURE 5. If the normal stresses (o, and G,) and shear stresses (7, = 7,,), are known, it
is a common practice to graphically determine the principal stresses and principal planes, on
which the principal stresses act by use of Mohr’s circle.
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For the three-dimensional cases, the normal stresses o,, Oy and o,, and shear
stresses Ty, Ty,, and T, (T, = Ty, T,y = T,,, and T, = 7,,) are involved, Figure 6.
Again, the Mohr’s circle method can be applied to graphically solve for the principal
stresses and the principal planes, on which they act.® But, as an extension of Equation
2, these principal stresses and principal planes can be determined as the eigenvalues
and eigenvectors, respectively, of a matrix constructed using the values of the normal

and shear stresses as follows:

X Xy Xz
[Al=|t, o, T, 3)
sz sz Gz

Presented below are MATLAB solutions of two problems: (a) a two-dimensional
case of g, = 50, o, = -30, and Ty = Ty = —20, and (b) a three-dimensional case of

o,=25,0,=36,0,=49, 1, =1, =-12,71,=1, =8, and 7, =7, =-9, all in N/cm?.
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FIGURE 6. For the three-dimensional cases, the normal stresses o,, o, and o,, and shear

stresses T, T,,, and T, (T, = T, T,, = T,,, and 7T,, = 7,,) are involved.

yz?

>> A=[50,-20;-20,-30); format compact, [EigenV,Lambda]l=eig(A)

EigenV =
-0.9732 -0.2298
0.2298 -0.9732

Lambda =
54.7214 0
0 -34.7214
>> A=[25,-12,-9;-12,36,8;-9,8,49]; [EigenV,Lambda}
EigenV =

0.8623 0.3277 -0.3860
0.4921 -0.7218 0.4867
0.1192 0.6096 0.7837

Lambda =
16.9085 [} [o]
(o] 34.6906 [}
0 0 58.4009

Notice that for Problem (a), the result indicates that maximum principal stress
equal to 54.7214 N/cm? is on a plane having an outward normal vector whose
directional cosines are equal to —0.9732 and 0.2298. That is to say this principal
plane has an outward normal vector making an angle of 6,,, = 166.7° (cos8,,,, =
—0.9732 and cos[90°-0,,,,] = 0.2298) measured counterclockwise from the x-axis.
The minimum principal stress is found to be equal to —34.7217 N/cm? which is on
a plane having an outward normal vector whose directional cosines are equal to
—0.2298 and —0.9732, or at an angle equal to 6,,;, = —103.3° (cos6,,;, = 0.2298 and
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cos[90°- 0,;,] = —0.9732). The two principal planes are perpendicular to each other.
This can also be proven by taking the dot product of the two normalized eigenvectors:
(-0.97321 + 0.2298j)+(-0.2298i- 0.9732j) = 0.

Similar observation can be made from the results for Problem (b). The principal
stresses are equal to 16.9085, 34.6906, and 58.4009 N/cm? and they on the planes
having outward normal vectors n, = 0.8632i + 0.4921j + 0.1192k, n, = 0.3277i —
0.7218j + 0.6096k, and n, = —0.3860i + 0.4867j + 0