
MATLAB Tutorial – LOOPING, IF STATEMENTS, & NESTING

ES 111 1/6

LOOPING
Looping or iterative functions are extremely useful in engineering problem solving. A
nice example is in solving an integral numerically. In carrying out a numerical
integration, we will try to approximate an analytical solution (one that solves the problem
by using limits going to zero or infinity) using a numerical approach that will have a
finite, though large number, of steps. Solving the integral by hand would include
thousands or millions of calculations. We can use loops in a function so that MATLAB
will solve the million calculations automatically with one command. Numerical
integration will be discussed at a later date. First we must get used to using these loops.

for Loops
The for loop will continue to do a specified calculation for a certain amount of time. The
general formula for a for loop is below:

 for ii=a:b:c
 {statements}
 end

This statement will be inserted somewhere in an m-file. This for loop will start at a,
execute the statements, which are some calculations. When it gets to the end statement, it
will add b to ii and then check to see if ii is less than or equal to c. If so, it will redo the
problem over and over again until ii is greater than c. At that point it will stop.

It is important to note that the index, ii, can have any name just like any other variable.
In programming circles, it is common to use i as an index. However, in MATLAB i is
already defined as the square root of negative one, i.e. an imaginary number.

An example of a for loop is doing element by element operations. Remember that
MATLAB by default will carry out vector/matrix operations. A 1 x 3 matrix can be
multiplied by a 3 x 1 matrix, but a 1 x 3 cannot be multiplied by a 1 x 3. The tutorial on
Vectors and Matrices covered this. In this example, an element by element squaring of a
vector will occur. Sure there are easier ways to do it, but this is a nice demonstration of
for loops. In pseudo-code the steps to square a three element vector, a, element by
element to obtain vector c are:
 1) define a

2) calculate a(1)^2 and call it c(1)
3) calculate a(2) ^2 and call it c(2)
4) calculate a(3) ^2 and call it c(3)

We will put the for loop in an m-file, so the first step will be an input to the m-file, then
we will use a for loop to calculate c and do steps 2-4. The m-file would look like:

 function [c]=ebyesquare(a)
 for ii = 1:3
 c(ii)=a(ii)^2;
 end

MATLAB Tutorial – LOOPING, IF STATEMENTS, & NESTING

ES 111 2/6

The function takes a as an input. Then it will calculate c(1), at the end it will go back to
calculate c(2), and then go back and calculate c(3) and stop. Notice that the increment
was not given in the line with the for statement. The default increment of 1 works for
this situation.

Now consider squaring a vector element by element of undetermined length. If the
vector had 100 elements the function above would stop at 3. The upper limit of the
index, ii, could be changed, but this is tedious. A built-in shortcut to MATLAB is the
length command.

length(a)

This command will give the largest dimension of a, which for a vector is the number of
elements. It is okay to use this shortcut in the course. It is a good one to memorize,
which will be easy after you use it many times. We could build a separate function that
finds the length of a vector, but MATLAB has built in protections to make it difficult
though definitely not impossible. It would actually require a for loop to do it.

Getting back to the problem at hand, we can use the length command to set the upper
limit of the iterations on the for loop. A new m-file would look like:

function [c]=ebyesquare(a)
len=length(a);

 for ii = 1:len
 c(ii)=a(ii)^2;
 end

That is a very simple example of a for loop. A problem will be given at the end to test
your abilities. First there is another type of loop to cover.

while Loops
while loops will carry out a set of commands as long as a certain condition is true. The
general form is:

 while {some condition}
 {statements}
 end

The conditional statements will compare things and as long as the statement is true, the
while loop will continue until it is not. Consider the previous problem of squaring a
vector element by element. A while loop to do so could look like:

 function [c]=ebyesquwhile(a)
 len=length(a);

MATLAB Tutorial – LOOPING, IF STATEMENTS, & NESTING

ES 111 3/6

 ii=1;
 while ii<=len
 c(ii)=a(ii)^2;
 ii=ii+1;
 end

For a while loop, the index was initialized before the while loop began. The loop
compares ii and len, finds that the statement is indeed true, so it calculates c and
increments the index by one. Adding the increment to the index is not automatic in a
while loop. It then returns to the while statement, compares ii and len, and continues as
long as the statement is true. When the statement is false, it stops. A complication of
while loops is that it is possible to write a program that never ends. For example, if you
omitted the line that adds one to the index, the loop will calculate c(1) an infinite number
of times. If you suspect that you have started an infinite loop hold down control and C
to stop a program that is being executed.

The conditions are given below. The column of the left hand side is to compare two
values and those on the right hand side are to add multiple conditions:

<= less than or equal to & and
>= greater than or equal to ~ not
== equal to | or

 > greater than
 < less than
 ~= not equal to

EXAMPLE
Write an m-file that performs the element by element multiplication of two vectors of
unknown length, a and b, into a third vector, c. Carry out the function on the following
two vectors:

a = [1 2 3 4];
b = [5 8 2 5];

Start by writing the m-file with a and b as inputs and c as the output:

 function [c]=ebyemult(a,b)
 len=length(a);
 for ii=1:len
 c(ii)=a(ii)*b(ii);

end

You can then go to the command window to execute the function with the following
commands:

MATLAB Tutorial – LOOPING, IF STATEMENTS, & NESTING

ES 111 4/6

<<a=[1 2 3 4];
<<b=[5 8 2 5];
<<[c]=ebyemult(a,b);
<<c
c =
 5 16 6 20

A complication could arise if a and b are not of the same length. How would you fix it?
We will discuss this at a later date.

Now let’s solve with an m-file using a while loop:

 function [c]=ebyemultwhile(a,b)
 len=length(a);
 ii=1;
 while ii<=len
 c(ii)=a(ii)*b(ii);
 ii=ii+1;
 end

Then in the command window run the following commands:

<<a=[1 2 3 4];
<<b=[5 8 2 5];
<<[c]=ebyemultwhile(a,b);
<<c
c =
 5 16 6 20

DO IT YOURSELF

1) Write an m-file that calculates the factorial of a number. Try it once using a for
loop and a second time using a while loop.

2) Given the for loop below, what is a:
for ii=1:6
 a(ii)=ii^2-3;
end

ELSE IF STATEMENTS
else-if statements can be used to compare two numbers and give options depending on
whether or not certain conditions are met. The general form is:

 if {condition #1}
 {statement #1}
 elseif {condition #2}
 {statement #2}

MATLAB Tutorial – LOOPING, IF STATEMENTS, & NESTING

ES 111 5/6

 elseif {conditions #3}
 {statement #3}
 else
 {final statement}
 end

There are several important things to note. There may be many or no elseif statements,
i.e. an if and else without the elseif’s will work. The elseif command is one word. If you
write it as two words, it will create a nested if statement. The condition that leads to a
certain statement can actually be a set of multiple conditions. Finally, the else statement
does not require a condition. The else statement will include all other possibilities not
covered in the previous conditions. The else statement is also optional. However, if none
of the conditions in the if and elseif statements are met, no output will be returned with
the potential of causing errors.

NESTING
It is common to see if statements included in loops, so the following example will do so.
A good example is a discontinuous function. This sometimes occurs in chemical
reactions when a reaction is zero order. (Don’t worry about what a zero order reaction
is.) It leads to an equation for the concentration of a reactant that is disappearing, we will
call A, with respect to time of:

In this equation, CA is the concentration, CAo is the initial concentration, k is a rate
constant, and t is the time. If you were to plot this function, you would find that when kt
is greater than CAo the concentration goes negative. This clearly is not possible and is
obvious to you when you see it. However, to the computer it is not obvious, so you must
make sure it solves it correctly. This is done by adding the stipulation that the above
equation is only true when CAo is greater than or equal to kt. When CAo is less than or
equal to kt, CA is equal to zero. Here is how you would write the m-file, if CAo and the
final time were inputs:

function [CA]=zeroorder(CAo,t)
 k=5; % this is value of the rate constant for our particular reaction
 for tt=0:t
 if tt<=CAo/k
 CA(tt+1)=CAo-k*tt;
 else
 CA(tt+1)=0;
 end

end
time=0:t;

 plot(time,CA);

MATLAB Tutorial – LOOPING, IF STATEMENTS, & NESTING

ES 111 6/6

This m-file will plot the function correctly as evidenced by the generated plot. Try
running the program with CAo = 20 and t = 10. Notice how the index was changed in the
definition of CA to avoid referencing the 0th element. Also notice how the time had to be
redefined.

When loops and if statements are nested together, the inner most loop or if statement will
be computed to completion before returning to the next outer loop.

Another example of nesting is finding the maximum of a matrix. Since there are multiple
dimensions, multiple for loops must be used. The matrix we will look at is a series of
temperatures, where four temperatures were taken each day for three days. The rows are
the set of temperatures for a day and the columns are the four different times the
temperatures were taken:

>>A=[21 35 55 60;22 40 65 64; 20 50 60 61;];

Now an m-file can be written to find the maximum:

 function [Amax]=matrixmax(A)
 [m n]=size(A);
 Amax=-500;

for ii=1:m
 for jj=1:n
 if A(ii,jj)>Amax
 Amax=A(ii,jj);
 else
 Amax=Amax;
 end
 end
 end

This will find the maximum of the matrix. The size function finds the number of rows
and columns of the matrix and sets the number of rows to m and the number of columns
to n. It is analogous to the length command for vectors. The initial value of the
maximum temperature was set to -500, because it is impossible to have a lower
temperature in Fahrenheit. This could have been accomplished in other ways. Finally,
the ordering of the for loops is not important. You can start by analyzing row by row or
column by column. Both should give the same answer.

DO IT YOURSELF
By nesting for or while loops and if statements, write an m-file that takes n as an input
and gives an n x n identify matrix as an output. The identity matrix is a matrix with a
value of one when the number of the row is equal to the number of the column and a
value of zero at all other points in the matrix.

