
MATLAB Tutorial – LINEAR REGRESSION 

   
ES 111 1/6 

LINEAR REGRESSION 
 
Many engineering programs require their students to complete a full semester course on 
calculus based statistics.  Many other programs do not require a statistics course, but 
expect students to pick up bits and pieces of statistics over several classes.  New Mexico 
Tech falls into the latter of these two scenarios.  A student will not be an expert at 
statistics after only a few of these courses that cover some statistics.  However, by the end 
of the curriculum, they should be competent in statistics such that they can pass the FE 
Exam. 
 
Linear regression is a topic usually well-covered in statistics courses that is very 
important to any engineer.  Linear regression is not a difficult task to carry out, but to 
understand and derive the equations used can be challenging.  The student in computer 
programming is expected to be capable of using the equations and hopefully will gain 
some understanding of the concepts used to derive the resulting equations. 
 
Linear regression is used often by engineers in two different scenarios.  A good portion of 
engineering labs, and science labs for that matter, is to carry out an experiment, collect 
data, and compare data to “theory”.  The “theory” is some equation that is supposed to 
describe what is happening during the experiment.  Statistics and linear regression are 
used to describe how well the experiment fits the data and if the fit is good, then the value 
of some physical constant can be implied.  If the fit is poor, which is usually the case to 
the chagrin of the student, the student will need to explain what went wrong, what 
assumption in the derivation of the “theory” was invalid, etc.  The second and equally 
common scenario occurs when an engineer is introduced to an older piece of equipment 
that needs to be calibrated.  Calibration of valves, ovens, furnaces, or similar equipment 
is quite common.  Often the equipment is too old to work with newer, high tech process 
control software, but the equipment still works and does the job sufficiently well that 
connection to expensive process control hardware and software is not worth the money. 
 
To better understand linear regression, the topic will be covered in the context of 
calibrating a furnace.  Ideally, a furnace used in a laboratory setting will have an input 
setting that is equal to a temperature and the output of the furnace is that the temperature 
inside is equal to the set-point.  It sounds simple enough, but it is not necessarily true.  In 
the days when process control software or hardware was expensive and bulky, furnaces 
were simply given a setting of percent on.  This percent is typically the percent of the 
maximum current or voltage supplied to the heating elements inside the furnace.  Since 
the set-point was adjusted by hand, the operator was the feedback loop to control the 
temperature.  He/she would pick a setting, see if the temperature was too high or too low.  
If it was too high, the setting would be decreased and if it was too low the setting would 
be increased.  The new setting would be put under the same scrutiny until a final 
temperature close to the desired temperature was achieved.  The difficulty in this 
technique lies in the fact that a furnace has a slow reaction time.  Heating is slow, but if 
you needed a higher temperature increasing the setting would increase the temperature in 
a repeatable fashion.  If you needed to lower the temperature, the furnace could be turned 
off and it would take forever.  The furnace had means of heating, but no means to cool, 
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so cooling took forever.  To avoid these problems of human process control, the furnace 
would be calibrated before use.  The calibration will yield a line that relates the setting 
and the temperature using an equation.  With the equation, the temperature can be 
calculated if you know the setting or if you have a desired temperature, the setting can be 
back calculated. 
 
The calibration would be performed by changing the input setting to 10%.  Then the 
temperature of the furnace would increase asymptotically to some final temperature, 
which corresponds to 10%.  It might take a while, but as long as the calibration is carried 
out only occasionally, it is not a big problem.  Then the operator would increase the 
setting to a new value and the temperature of that setting would be measured.  Several 
data points would be taken.  Normally a linear relationship would be assumed between 
the setting (S) and the output temperature (T) where m is the slope of the line and b is the 
y-intercept.   
 

ܶ ൌ ݉ כ ܵ ൅ ܾ 
 
For this case, the y-intercept should be close to the ambient temperature, since it 
represents the temperature in the furnace when the furnace is off.  A set of example data 
is given below: 
 
Setting (S) [%] 20 40 60 80 100 
Temp (T) [°C] 180 380 540 680 880 
 
The data are plotted below.  It should be obvious that a straight line, as opposed to a 
cubic, exponential, or some other line, will describe the relationship quite well. 
 

 
 
Now how does one find a calibration line that accurately describes the data?  One could 
simply draw a line through the data and assume that it describes the data accurately. 

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100 120

Te
m

p 
(C

)

Setting



MATLAB Tutorial – LINEAR REGRESSION 

   
ES 111 3/6 

 

 
 
This does not sound mathematical enough for our tastes as engineers, so we need to come 
up with a way to measure the error of our line.  One logical way to measure the error is to 
take the difference of each data point with the curve fit and add up all of these errors.  
These errors are shown on the plot above  If the error is too large, the slope and intercept 
could be changed.  An equation would look like: 
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The Greek letter sigma (Σ) sums up the differences between each data point and its 
corresponding value on the curve fit.  
 
This is not an accepted method.  The reason it is not acceptable is that positive and 
negative errors can cancel out.  Take the example below of a randomly drawn curve fit 
line with a slope of 4 and a y-intercept of 290. 
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Setting 20 40 60 80 100  SUM 
Temp. 160 420 540 650 950   
Bad T Fit  370 450 530 610 690   
Error -210 -30 10 40 260  70 
Error^2 44100 900 100 1600 67600  114300
 
Clearly the line does not fit the data as well as the other randomly drawn line, but the 
total error is low.  The plot and the data show that the negative errors at the low settings 
cancel out the positive errors at the higher setting.  To fix this the absolute value of the 
difference can be taken before the summation or the error can be squared.  Squaring of 
the error is preferable to the absolute value for several reasons that are not important to 
this discussion.  The squared error is shown in the table and a large value of the 
summation is found.  It is important to keep in mind that squaring each error and then 
summing up the squared terms is different than summing all of the terms and squaring 
that sum.  An equation to describe the sum of the squared errors is given below: 
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In this equation, SSE is the sum of the squared errors, yi is the data point, and yi,cf is the 
value on the curve fit that corresponds to a data point.  The large greek letter sigma 
indicates that the error associated with each data point is being added into one sum. 
 
Now, a good understanding of how to evaluate a curve fit has been demonstrated.  The 
question remains, is there a way to find the best fit line for the data?  The answer is of 
course, but it takes knowledge of calculus so the full derivation will be abridged.  The 
student should be able to describe the steps without actually carrying them out.  The 
squared error can be expressed in terms of the independent variable, xi: 
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In this equation, the linear expression for the curve fit has been plugged in for yi,cf. 
 
To find the best fit line, the sum of the squared errors should be minimized.  In Calculus, 
students learn that the minimum or maximum of a function can be found by taking the 
derivative and setting it equal to zero.  In other words, the slope of a line at a maximum 
or minimum is zero.  This will be dealt with thoroughly in Calculus, so this description 
will be left as is.   For this problem, the derivative of SSE is taken with respect to m and a 
second time with respect to b.  This yields two equations and two unknowns, m and b.  
With proper rearrangement the final result is two equations: one for m and one for b that 
depend on sums of the data: 
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and 
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In these equations, n is the number of data points.  The summations of xi

2 and xiyi are 
found by squaring all of the elements of x and then adding them all up and by multiplying 
x and y element by element then summing them all up. 
 
For our problem of calibrating a furnace, the data table could be expanded to calculate all 
of these values: 
 
       SUM 
S (x) 20 40 60 80 100  300 
T (y) 160 420 540 650 950  2720 
S*T (x*y) 3200 16800 32400 52000 95000  199400 
S^2 (x*x) 400 1600 3600 6400 10000  22000 
 
 
The slope and y-intercept are found to be 9.05 and 1, respectively.  This line can then be 
plotted over the data to see what the best fit line looks like: 
 

 
 
 
CODING IN MATLAB 
 
Writing an m-file that takes data as an input and returns the slope and intercept of the best 
fit line is not an extremely difficult task.  Most of the calculations required to solve the 
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problem are summations of the elements of an array.  This has been covered in a much 
earlier section.  In fact, the average function written in an earlier tutorial can be modified 
to output the total and used over and over again in a linear regression m-file.  An 
extremely important thing to remember is that when you call an m-file in another m-file 
you do not need to use the same input and output names that are used in the original m-
file.  For example, in class, T was the input for our average function, but when the 
function was called in the command window, any variable name could have been used. 
 
 
 
LINEARIZATION 
 
Finally, it is quite common that x and y data are not linearly related.  It is still possible to 
calculate the sum of the squared errors, but it can be much more difficult.  Often, the 
relationship can be linearized.  This most often occurs in the matching theory to 
experiment scenario engineers see in laboratories.  Occasionally, in calibration a linear 
relationship may not be valid either.  To linearize, the expression relating x and y is 
manipulated algebraically to yield functions of x and y that are linearly related.  Then 
these functions of x and y, not the actual x and y data, are plugged into the equations for 
m and b.   
 
As an example, in chemistry the following relationship is common in lab experiments: 
 

ݕ ൌ  ௄௫݁ܣ
 
To linearize this equation the natural logarithm can be taken of both sides to give the 
following expression, which linearly relates a function of x and a function of y: 
 

݈݊ሺݕሻ ൌ ݈݊ሺ݁ܣ௄௫ሻ ൌ ݈݊ሺܣሻ ൅ ݈݊ሺ݁௄௫ሻ ൌ ݈݊ሺܣሻ ൅  ݔܭ
 
Now, the ln(y) will be linearly related to x, so in the equations for the slope and intercept 
the y data will not be used, but the ln(y) data will be used instead.  Also, the slope that is 
calculated will be equal to K, which is some physical constant.  The y-intercept is equal 
to the ln(A), not A itself.   
 
This type of relationship is found over and over in first order systems, for which all 
engineers are exposed to in many different contexts.  In general, linearization is easier 
said than done.  It requires trying different algebraic manipulations with the hope that the 
linear relationship will result.  If it does not, then another set of manipulations must be 
tried.   
 
The coverage of linearization in this tutorial is minimal and not intended to be 
comprehensive.  It is covered so the student has an idea of what to do if the data does not 
appear to be linear. 
 
 


