
MATLAB Tutorial – Roots of Equations

ES 111 1/13

FINDING ROOTS OF EQUATIONS

Root finding is a skill that is particularly well suited for computer programming. Unless
the roots of an equation are easy to find, iterative methods that can evaluate a function
hundreds, thousands, or millions of times will be required. Another was to say “root
finding” is to say “what value of x for a function will give an answer of zero”. Also, root
finding can be thought of as finding where two functions intersect.

As an example throughout the root finding tutorial, the following equation will be used:

ݕ ൌ ଷݔ െ ଶݔ3.5 ൅ ݔ2 ൌ 10

The question that will be answered is what value of x will yield a value of y equal to 10.
The equation above can be rewritten and a value of x that makes f(x) equal to zero will be
sought.

݂ሺݔሻ ൌ ଷݔ െ ଶݔ3.5 ൅ ݔ2 െ 10 ൌ 0

One way to find roots is to make plots. For the first equation, the intersection of y = 10
and y = x3 - 3.5x2 + 2x can be found:

Alternatively, the root can be found by finding where f(x) crosses the zero line.

-5

-3

-1

1

3

5

7

9

11

13

15

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

f(x
)

MATLAB Tutorial – Roots of Equations

ES 111 2/13

The problem with using plots is that MATLAB cannot look at the plot and point its finger
at the answer like a human would. If the user is going to base another subsequent
calculation on this root, a number value that MATLAB understands will be required to
move on instead of a plot that MATLAB has difficulty in translating.

There are two classes of root finding numerical methods that will be covered in this
tutorial. They are bracketing methods and open methods. In general, no one method is
guaranteed to find all of the roots of an equation. Often times multiple attempts with
multiple methods is needed to obtain the roots. Additionally, the exact root is rarely
found. Instead, the MATLAB user will allow for some error in the calculation and the
root will be found with that error in mind.

COMMON TROUBLE

There are several scenarios which can cause problems for root finding algorithms.

Multiple Roots

It can be difficult for most techniques to identify all roots of an equation. Most can be
modified to search for multiple roots but it is impossible to assure that all roots have been
found without doing infinite attempts. Luckily, there are usually physical limits in
engineering problems, which lead to only one root having physical significance. In
chemistry, a scenario can arise where the concentration of some species is the solution of
a quadratic equation. Usually, there will be a positive and negative root. The negative
root cannot be the correct answer, so the positive root is always chosen. In fact, it is
possible to avoid even looking for the negative root. Sometimes complex roots are found
for values that cannot be imaginary. In that case, the imaginary roots are left out.

-20

0

20

40

60

80

100

0 1 2 3 4 5 6

f(x
)

x

MATLAB Tutorial – Roots of Equations

ES 111 3/13

Close Roots

It is possible to have two roots that are so close together that the numerical method
cannot distinguish them. The error tolerance may be too large to find both roots.
Luckily, the user has kept the tolerance sufficiently small that it may not matter which of
the two roots is actually being found. Either one may be good enough or the fact that two
exist may not matter.

The plot below shows a line with two roots very close and on either side of 1.5.

Not Quite a Root

Some functions approach zero and get very close without actually reaching zero. If the
difference between the function and zero is smaller than the tolerance, then the numerical
method may incorrectly identify the minimum as a root.

The plot below shows a line that almost has a root at 1.5. It does not and a large error
tolerance would incorrectly identify 1.5 as a root.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

f(x
)

x

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

f(x
)

x

MATLAB Tutorial – Roots of Equations

ES 111 4/13

Double Roots

If an equation has a double root, many numerical methods have difficulty finding the
root. In this case, the sign of the value does not change before and after the root.

If for some reason any of these problems are suspected, one can plot the function to
assure that these phenomena do not exist or lower the error tolerance to a point that these
issues are not problems, but the algorithm does not take forever to solve.

BRACKETING METHODS

The first class of numerical methods is known as bracketing methods. They work by
choosing two values of x, in the above case, that bracket the root. Then different methods
are used to zero in on the actual root. Usually a tolerance is specified, so that the exact
root is not found. The value that is closer to the root than the tolerance is kept.

Incremental Search

An incremental search is carried out by evaluating the function at the lower bound, then
the function is evaluated at a value one step higher than the lower bound and then another
and then another, etc. At every calculation, the error between the function evaluation and
zero is calculated. The lowest error and corresponding x value are kept until the upper
bound has been reached. At this point, the x value with the lowest error can be kept and
reported as the root. Alternatively, this root can be compared to the allowed error
tolerance. If is too high, the incremental search can be carried out again with a smaller
step size. This procedure can be repeated until a root with an error that is less than the
tolerance is found.

The plot below shows how the incremental search would work. The lower bound is 2,
the upper bound is 5, and the step size is 0.5. The function is evaluated at xl, x1, …,xu.
The smallest error shown for x5 could be compared to a tolerance. If the error is too
large, then a smaller step size could be specified and the procedure repeated. If the error
is less than the tolerance, then x5 is the root.

-5

-4

-3

-2

-1

0

1

2

3

4

5

0 0.5 1 1.5 2 2.5 3

f(x
)

x

MATLAB Tutorial – Roots of Equations

ES 111 5/13

The computer code to carry this out is similar to the integration code considered in lab.
In general, incremental search is the least efficient method, but is guaranteed to find a
root. Modified properly it can identify multiple roots. It does have difficulty with not-
quite-a-roots and if the two roots are closer than the step size, it will have difficulty
finding close roots. Double roots are not a problem. Usually, the bracket can be chosen
to find only physically possible roots.

Bisection Method

The bisection method starts by picking an upper and lower bound that bracket the root.
An initial guess for the root (xmid1) is taken as the midpoint between the upper bound and
the lower bound. The function is evaluated at this point and the error is compared the
tolerance. If the error is too large, then either the upper bound (xu) or the lower bound
(xl) is reset to equal the midpoint. Then the midpoint of the new bracket (xmid2) is found
and the procedure is repeated until a root meets the error tolerance.

The not-so-obvious step is to determine which bound needs to be reset. The rule of
thumb is that if the function evaluated at the lower bound times the function evaluated at
the midpoint is less than zero, then the upper bound should be replaced by the midpoint.
If the product is greater than zero, then the lower bound should be replaced.

If ݂ሺݔ௟ሻ݂ሺݔ௠௜ௗሻ ൏ 0, then replace xu with xmid.

If ݂ሺݔ௟ሻ݂ሺݔ௠௜ௗሻ ൐ 0, then replace xl with xmid.

If the product is less than zero then xl and xmid are on opposite sides of the zero line, so
they must bracket the root. If the product is greater than zero, then they are on the same
side of the zero line, so they do not bracket the root.

-20

0

20

40

60

80

100

0 1 2 3 4 5 6

f(x
)

x

xl xux2 x3 x4 x5 x6

MATLAB Tutorial – Roots of Equations

ES 111 6/13

In the figure below, the midpoint of the upper and lower bound is xmid1. If the error is not
small enough, the lower bound is reset to xmid1. The new midpoint is xmid2. The error
actually increases, so the upper bound is reset to xmid2. The new midpoint, xmid3, is then
evaluated in f(x). This continues until one of the midpoints meets the tolerance and that
value is the root.

The major issue that this method has is that it cannot handle double roots at all. At a
double root, the sign of the function does not change, so the if statements above do not
work.

Pseudo code for Bisection

1) Input the upper bound, lower bound, and tolerance
2) Calculate the midpoint
3) Evaluate the function at the midpoint
4) Compare the value to the tolerance

a. If less than the tolerance, report as the root
b. If greater than the tolerance, reassign upper or lower bound

i. If f(mid)*f(low) < 0, upper bound is equal to midpoint
ii. If f(mid)*f(low)>0, lower bound is equal to midpoint

5) Repeat

MATLAB Code for Bisection

function [root]=bisection(funcname,xl,xu,tol)
fr=tol+1; % initializes the error for the while loop
while abs(fr)>tol % needs the absolute value of the error in case it is negative

r=(xu-xl)/2+xl;
[fr]=feval(funcname,r);
[fl]=feval(funcname,xl);

-20

0

20

40

60

80

100

0 1 2 3 4 5 6

f(x
)

x

xl xuxmid1 xmid3 xmid2

MATLAB Tutorial – Roots of Equations

ES 111 7/13

if fr*fl<0
 xu=r;

else
 xl=r;

end
end
root=r;

False Position Method

The false position is similar to bisection except in how it calculates the guess. Instead of
using the midpoint, false position calculates the equation of a line connecting the two
points on the function corresponding to the upper and lower bound. Wherever this line
intersects the origin is the guess for the root. The error of this root is calculated and if it
is not sufficiently close it will reset either the upper or lower bound in the exact same
fashion as the bisection method and repeat the procedure. The equation for the guess of
the root is give below:

௚௨௘௦௦ݔ ൌ ௨ݔ െ
݂ሺݔ௨ሻሺݔ௟ െ ௨ሻݔ
݂ሺݔ௟ሻ െ ݂ሺݔ௨ሻ

The false position method suffers from the same problems as the bisection method.
Usually, the false position method finds the answer faster, but there are some cases where
this is not true.

In the plot below, a line connects the function evaluated at the lower bound and the upper
bound. Where this line crosses the y-axis is the first guess, x1. If the error is not small
enough, a new line is drawn. The second line connects the function evaluated at xu and
the new xl, which was reset to x1. In the plot, four guesses are shown. In this example,
the lower bound was reset after each guess. That is not always the case; the upper bound
can also be reset.

-20

0

20

40

60

80

100

0 1 2 3 4 5 6

f(x
)

x

xl xux1 x2

x3

x4

MATLAB Tutorial – Roots of Equations

ES 111 8/13

OPEN METHODS

There are three open methods that will be discussed in this tutorial: fixed point iteration,
Newton-Raphson, and Secant method. The first one requires no understanding of
calculus. It is the easiest to implement, but has a low success rate for finding roots. The
Newton-Raphson method requires calculating the derivative of a function and using the
derivative to identify the next guess. The secant method is similar to Newton-Raphson,
but the slope is not calculated from the derivative.

The common theme to these methods is that they require only one initial guess. The
guess does not need to be near the root. If multiple roots exist only one will be found by
these methods unless multiple initial guesses are used. Newton-Raphson is the most
accepted of all of the methods covered in this tutorial, but it is not always perfect.

The major difference for the three methods is how they find the next guess starting from
the initial guess.

Fixed Point Iteration

Normally, in root finding, one is trying to find where a function, f(x), intersects the x-
axis. In fixed point iteration, x is added to both sides of the expression f(x) = 0 and the
intersection of x and f(x) + x is sought. It is definitely not an intuitive method, but if you
plug the initial guess into the right hand side of the equation below, the x calculated on
the left hand side becomes the new guess.

௜ାଵݔ ൌ ݂ሺݔ௜ሻ ൅ ௜ݔ

In this equation, xi is the ith guess and the next guess, xi+1, comes from evaluating the
right hand side of the equation. The right hand side is often called g(x) to make the
notation simpler.

The plots below show in a graphical fashion how this method works. First, evaluate g(x)
at x1, the initial guess. These are represented by solid vertical arrows. Then find where
this is equal to x. This step is represented by dashed horizontal arrows. Then use this
new x in g(x) and keep repeating until the root is found. Each subsequent guess is labeled
and indicated with a dotted line down to the x-axis. Two types of convergence exist The
first one below is known as a direct convergence where each guess gets closer and closer
to the root without passing it. In the second plot, spiral convergence occurs where each
subsequent guess overshoots the real root, but the method still zeros in on the actual root.

MATLAB Tutorial – Roots of Equations

ES 111 9/13

The final question to answer is: how does one know when to stop? The error tolerance as
described previously is perfectly okay to use. Another error that is measured is the
difference in each subsequent guess. If the difference between xi and xi+1 is small enough
then there is a good chance the root has been found. [Remember that the previously
described error is the difference between g(x) and x whereas the new definition is the
difference between xi and xi+1.]

The major weakness of fixed point iteration is that it will not find the root for all
equations. Two examples are given below where the solution diverges, which means that
it gets further and further away from the root as it iterates. In the first case, there is a
direct divergence and in the second case there is spiral divergence. It will do this until
the user hits control+C.

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10x1x2x3x4

g(x)

-2

-1

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2x1x3x2

x5
x4

g(x)

MATLAB Tutorial – Roots of Equations

ES 111 10/13

The major benefit of fixed point iteration is that it does not require knowledge of the
derivative. Unfortunately, for this method at least, this benefit is of little value if the
method diverges away from the actual root.

Newton Raphson Method

The Newton Raphson (NR) Method uses the slope of the line, i.e. the derivative, at the
guess to find the next guess. This is depicted graphically below:

-5

0

5

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10x1 x2 x3

g(x)

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10x1x2 x3x4 x5

g(x)

MATLAB Tutorial – Roots of Equations

ES 111 11/13

The function and its derivative are evaluated at the initial guess. These values are
plugged into an equation for the next guess and then the pattern is repeated. The equation
for the next guess is give below:

௜ାଵݔ ൌ ௜ݔ െ
݂ሺݔ௜ሻ
݂ᇱሺݔ௜ሻ

The f’(x) indicates the first derivative of f(x). This equation is found by equating the
slope to the change in the y-axis divided by the change in the x-axis:

݂ᇱሺݔ௜ሻ ൌ
݂ሺݔ௜ሻ െ ݂ሺݔ௜ାଵሻ

௜ݔ െ ௜ାଵݔ
ൌ
݂ሺݔ௜ሻ െ 0
௜ݔ െ ௜ାଵݔ

ൌ
݂ሺݔ௜ሻ

௜ݔ െ ௜ାଵݔ

The function evaluated at xi+1 is equal to zero, so that term falls out. This equation can be
rearranged to solve for xi+1.

The NR Method does not have the convergence issues that fixed point iteration has.
However, there are certain circumstances where the convergence is slow. Generally
speaking these problems exist near local minima and maxima, i.e. where the slope of a
line is near zero. If the slope is exactly zero, then the equation to find xi+1 is undefined
and the problem cannot be solved.

In the NR method, the change in the guess is used as the error condition rather than the
difference between the function and zero. The reason is that it is possible for the error as
defined by the difference between the function and zero to shrink on some steps and then
increase on others. This can cause problems if the growing or shrinking of the error is a
stopping condition. However, whenever an open method is approaching a root, the
difference between each subsequent guess always decreases with each new guess. Below
is an example of a function that is slow to converge due to an initial guess near a local
minimum. In fact, if the exact point of the local minimum is the guess, the method will

-20

0

20

40

60

80

100

0 1 2 3 4 5 6

f(x
)

x

x1x2x3

MATLAB Tutorial – Roots of Equations

ES 111 12/13

not work, because the derivative is zero and the equation for the next guess will be
undefined. If the guess is close to the minimum, as shown below, the next guess will be
far from the root even though the initial guess was quite close.

Finally, the major limitation of the NR method is the requirement that the derivative must
be known. Even for students who have taken Calculus I, this can be a challenging
problem. Think about the bungee jumping equation. The final method will help out with
this problem.

Secant Method

The secant method is nearly the same as the NR method. The only difference is that the
slope is not calculated from the derivative. It is calculated by specifying some
incremental change in x that will be called del. The slope is then calculated by the
following equation:

݁݌݋݈ݏ ൌ
݂ሺݔ ൅ ݈݀݁ሻ െ ݂ሺݔሻ
ሺݔ ൅ ݈݀݁ሻ െ ݔ ൌ

݂ሺݔ ൅ ݈݀݁ሻ െ ݂ሺݔሻ
݈݀݁

This equation will replace the f’(x) used in the NR method. As del goes to zero, the
secant method approaches the NR method. It is shown graphically below. As long as del
is small enough, the secant method will look and act almost exactly like the NR method.

-10

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

MATLAB Tutorial – Roots of Equations

ES 111 13/13

The secant method suffers from most of the same problems as the NR method. However,
the analytical derivative does not need to be known and it does not usually lead to an
undefined next guess due to a zero derivative.

FINAL NOTE ON PROBLEMS WITH ROOT FINDING

Several examples of problems that exist in root finding have been described throughout
this tutorial, such as close roots, double roots, divergence, etc. A student who has
mastered the material in this tutorial, should have a decent idea of how to address many
of these issues. Due to a lack of time, only a few strategies will be discussed, but the
student should be aware that the problems exist and have a good idea of how they would
try to go about solving them.

DO IT YOURSELF

The student should be capable of writing code to use any of these methods to calculate
roots. Due to the parallels between root finding and numerical integration, few examples
of code have been given on purpose to force the student to try these on their own.

The student should also focus on using the feval function described in another tutorial, so
that these algorithms can be written without being specific to certain functions. In fact,
the function whose root is sought should be an input to the root finding m-file.

-20

0

20

40

60

80

100

0 1 2 3 4 5 6

f(x
)

x

x1x2

del

