ACADEMICS
Course Details
ELE780 - Radar Systems
2024-2025 Fall term information
The course is not open this term
ELE780 - Radar Systems
Program | Theoretıcal hours | Practical hours | Local credit | ECTS credit |
PhD | 3 | 0 | 3 | 10 |
Obligation | : | Elective |
Prerequisite courses | : | - |
Concurrent courses | : | - |
Delivery modes | : | Face-to-Face |
Learning and teaching strategies | : | Lecture, Question and Answer, Problem Solving |
Course objective | : | It is aimed to give the following topics to the students; Radar fundamentals, Radar transmitters, and antennas, Radar wave propagation, Radar Target Models; Radar Cross Section (RCS) and clutter, Radar Receiver, Indicators and Displays, Radar Detection and Matched Filter, Ambiguity Function, Fundamentals of Radar Waveform Analysis, Pulse Compression, Fundamentals of CW and Pulsed Radars, Target Tracking and SAR Radars, to form a solid coverage of elements of radar systems starting from radar signal generation to the most complicated radar signal processing in tracking and SAR radars so that the students can identify the significance of each radar component and processing stage in the context of a radar system. |
Learning outcomes | : | Understand the functions, application and hardware and software components of a radar system, Have a solid understanding of environmental components of a radar system, Identify the constraints in a radar system design, Choose the appropriate components, algorithms and modes of operation according to the constraints in a radar system design, Have the foundations to design a real life radar system. |
Course content | : | Radar fundamentals; Radar transmitters; Radar antennas; Radar wave propagation between transmitter and receiver units; Radar target models; RCS; Radar clutter; Radar receiver and detection; Indicators and displays; Matched Filter; Ambiguity Function; Radar waveform analysis and Pulse Compression; Fundamentals of CW and Pulsed Radars; Fundamentals of target tracking; Fundamentals of SAR Radars |
References | : | Mahafza, B.R., Radar System Analysis and Design Using MATLAB, Chapman &; Hall/CRC, 2000.; ; Eaves, J.L. and Reedy, E.K., Eds., Principles of Modern Radar, Van Nostrand Reindhold; Company, 1987.; ; Levanon, N., Radar Principles, John Wiley, 1988.; ; Skolnik, M.I., Introduction to Radar Systems, 2nd Ed, McGraw Hill, 1981.; ; Barton, D.K., Radar System Analysis, Prentice Hall, 1964.; ; Skolnik, M.I., Radar Handbook, 2nd Ed, McGraw Hill, 1990.; ; Nathanson, F.E., Radar Design Principles, McGraw Hill, 1969.; ; Long, M.W., Radar Reflectivity of Land and Sea, Artech House, 1983.; ; Internet Web Sites |
Weeks | Topics |
---|---|
1 | Radar Fundamentals: definition, brief history, functions of radar, types of radar, components of a radar system, examples of radar systems, radar range equation, basics of a radar waveform, range and range resolution, Doppler shift and frequency reso |
2 | Radar Transmitter Fundamentals, Power Oscillator ? Transmitter configuration, Master Oscillator ? Power Amplifier Transmitter configuration, Transmitter Parameters, Magnetron Oscillator, Klystron, Traveling Wave Tube Amplifiers (TWT) |
3 | Antenna Fundamentals, Frequency Chart, Maxwell?s Equations, Radiation Mechanism, Radiation Integrals and Auxiliary Potentials, Field Regions, Antenna Signal in Transmission, Radiation from Current Elements and Apertures, Important Antenna Parameters, |
4 | Propagation Path: Why Propagation?, Radar Signal in Propagation, Atmospheric Layers, Atmospheric Attenuation, Refraction and Effective Earth Model, Multipath, Reflection, Pattern Propagation Factor, Diffraction and Interference |
5 | Target: Target Signal, Radar Cross Section (RCS), Cross Sections and Scattering Amplitude, RCS of Complex Objects, Basic RCS Reduction Techniques, Point and Vertically Extensive Targets, Statistical Models / Swerling Models |
6 | Radar Clutter: General characteristics of clutter, models of clutter, examples of simulated clutter signals, techniques for clutter cancellation, Constant False Alarm Rate (CFAR) detector |
7 | Fundamentals of Radar Receiver, Noise, Receiver Types: Superregenerative receiver, Crystal video receiver, Tuned radio frequency receiver (TRF), Superheterodyne receiver, Mixers, |
8 | Midterm Exam |
9 | Radar Detection in Noise, Detector Laws, Detector characteristics, Pulse Integration, Probability of Detection, Probability of False Alarm |
10 | Matched Filter, Ambiguity Function, Examples of Ambiguity Function computation for various radar signals, example of locating a target in range-Doppler space |
11 | Radar Waveform Analysis, Pulse Compression, Time-Bandwidth product, analog pulse compression, digital pulse compression |
12 | Fundamentals of CW, FMCW, Pulsed Radars, comparison of CW and Pulsed Radars, Application examples |
13 | Fundamentals of Target Tracking Radars, Monopulse antenna systems, phased array systems, track-while-scan radars, application examples |
14 | Fundamentals of Synthetic Aperture Radar (SAR), different modes of operation, definition of range resolution, SAR data processing, imaging with SAR, application examples |
15 | Final exam |
16 | Final exam |
Course activities | Number | Percentage |
---|---|---|
Attendance | 0 | 0 |
Laboratory | 0 | 0 |
Application | 0 | 0 |
Field activities | 0 | 0 |
Specific practical training | 0 | 0 |
Assignments | 10 | 30 |
Presentation | 0 | 0 |
Project | 0 | 0 |
Seminar | 0 | 0 |
Quiz | 0 | 0 |
Midterms | 1 | 30 |
Final exam | 1 | 40 |
Total | 100 | |
Percentage of semester activities contributing grade success | 60 | |
Percentage of final exam contributing grade success | 40 | |
Total | 100 |
Course activities | Number | Duration (hours) | Total workload |
---|---|---|---|
Course Duration | 14 | 3 | 42 |
Laboratory | 0 | 0 | 0 |
Application | 0 | 0 | 0 |
Specific practical training | 0 | 0 | 0 |
Field activities | 0 | 0 | 0 |
Study Hours Out of Class (Preliminary work, reinforcement, etc.) | 14 | 9 | 126 |
Presentation / Seminar Preparation | 0 | 0 | 0 |
Project | 0 | 0 | 0 |
Homework assignment | 10 | 6 | 60 |
Quiz | 0 | 0 | 0 |
Midterms (Study duration) | 1 | 25 | 25 |
Final Exam (Study duration) | 1 | 43 | 43 |
Total workload | 40 | 86 | 296 |
Key learning outcomes | Contribution level | |||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
1. | Has highest level of knowledge in certain areas of Electrical and Electronics Engineering. | |||||
2. | Has knowledge, skills and and competence to develop novel approaches in science and technology. | |||||
3. | Follows the scientific literature, and the developments in his/her field, critically analyze, synthesize, interpret and apply them effectively in his/her research. | |||||
4. | Can independently carry out all stages of a novel research project. | |||||
5. | Designs, plans and manages novel research projects; can lead multidisiplinary projects. | |||||
6. | Contributes to the science and technology literature. | |||||
7. | Can present his/her ideas and works in written and oral forms effectively; in Turkish or English. | |||||
8. | Is aware of his/her social responsibilities, evaluates scientific and technological developments with impartiality and ethical responsibility and disseminates them. |
1: Lowest, 2: Low, 3: Average, 4: High, 5: Highest