Department of Electrical and Electronics Engineering

Course Details

ELE790 - Contemporary Cryptology

2022-2023 Fall term information
The course is not open this term
ELE790 - Contemporary Cryptology
 Program Theoretýcal hours Practical hours Local credit ECTS credit PhD 3 0 3 10
 Obligation : Elective Prerequisite courses : - Concurrent courses : - Delivery modes : Face-to-Face Learning and teaching strategies : Lecture, Question and Answer, Problem Solving Course objective : It is aimed to give the following topics to the students; Learning outcomes : Identifying and classifying cryptology problems, Review: ancient and contemporary cryptograpy algorithms, Review: conventional and modern algorithms, Usage: block cipher, stream cipher, messager security, network security, digital signature and related problems; applications techniques. A student completing the course successfully will Identifies and classifies cryptology algorithms, Addresses cryptology algorithms and problems; and designs algorithms, Selects and picks algorithms to solve cryptographic problems and can compare their advantages and disadvantages, L.O..4. Implements techniques and algorithms in projects, thesis and real life applications, L.O..5. Knows algorithms and follows related publications. Course content : History; Cryptography and algorithms, Review: Conventional algorithms, Review: Symmetric and Asymmetric algorithms, Usage: Cryptology algorithms, Adapting algorithms mentioned above to practical problems, Practical usage: Private and Public Key Algorithms. References : Stallings W, Cryptography and Network Security, Pearson ? Addison Wesley, 2006.
Course Outline Weekly
Weeks Topics
1 Cryptology, Definitions, Services, Mechanisms, Attacks
2 Symmetric Encryption, Terminology, Symmetric Methods and Models
3 Block and Stream Ciphering, DES, cryptanalysis attacks
4 Mathematical Concepts, Finite Fields
5 Modern Symmetric Encryption Methods, triple DES, Blowfish, RC5
6 Symmetric Encryption and Confidentiality, Link Enryption, End-to-End Encryption, Traffic Analysis, Key Distribution, Random Numbers
7 Number Theory, Review, Definitions, Concepts,
8 Key Management, Other Public Key Algorithms
9 Message Authentication and Hash Functions
10 Midterm
11 Hash Algorithms, MD5, SHA-1, RIPEMD-160
12 Digital Signature and Applications
13 Authentication Applications, Kerberos, X.509
14 Electronic Mail Security
15 Final Exam
16 Final Exam
Assessment Methods
Course activities Number Percentage
Attendance 0 0
Laboratory 0 0
Application 0 0
Field activities 0 0
Specific practical training 0 0
Assignments 13 20
Presentation 0 0
Project 0 0
Seminar 0 0
Quiz 0 0
Midterms 1 40
Final exam 1 40
Total 100
Percentage of semester activities contributing grade success 60
Percentage of final exam contributing grade success 40
Total 100
Course activities Number Duration (hours) Total workload
Course Duration 14 3 42
Laboratory 0 0 0
Application 0 0 0
Specific practical training 0 0 0
Field activities 0 0 0
Study Hours Out of Class (Preliminary work, reinforcement, etc.) 13 7 91
Presentation / Seminar Preparation 0 0 0
Project 0 0 0
Homework assignment 14 5 70
Quiz 0 0 0
Midterms (Study duration) 1 25 25
Final Exam (Study duration) 1 30 30