Course Details

ELE315 - Electronics II

2023-2024 Spring term information
The course is not open this term
ELE315 - Electronics II
Program Theoretýcal hours Practical hours Local credit ECTS credit
Undergraduate 4 0 4 5
Obligation : Must
Prerequisite courses : ELE230
Concurrent courses : ELE313
Delivery modes : Face-to-Face
Learning and teaching strategies : Lecture, Question and Answer, Problem Solving, Other: This course must be taken together with ELE313 ELECTRONICS LABORATORY II.
Course objective : It is aimed to give the following topics to the students; a) Negative feedback analysis on amplifiers b) Analysis and design of differential amplifiers c) Internal structure of operational amplifiers d) Operational amplifier applications e) Analysis and design of power amplifiers f) Analysis of positive feedback, oscillators, and signal generators g) Digital logic circuits (BJT, CMOS etc.)
Learning outcomes : A student who completes the course successfully will Understand and identify the negative and positive feedback circuits, Analyse the differential and operational amplifier circuits and understand their applications, Design operational amplifier circuits according to the given specifications, Analyse and design the power amplifier circuits, Understand the oscillator and signal generator circuits, Understand digital logic circuits and basic digital logic circuit concepts.
Course content : Feedback concept and feedback amplifiers, Differential Amplifiers, Operational Amplifiers, Power amplifiers, Positive feedback, oscillators and signal generators, Digital logic circuits (BJT, CMOS etc.)
References : 1. B. Razavi, Fundamentals of Microelectronics, Wiley, 2021 (3rd Ed.); 2. A.S. Sedra, K.C. Smith, T.C. Carusone and V. Gaudet, Microelectronic Circuits, Oxford Uni. Press, 2019 (8th Ed.) 3. R. L. Boylestad and L. Nashelsky, Electronic Devices and Circuit Theory, Pearson, 2014, (11th ed.); 4. D. Neamen, Microelectronics Circuit Analysis and Design, McGraw-Hill, 2009 (4th Ed.)
Course Outline Weekly
Weeks Topics
1 Amplifier types and feedback concept
2 Analysis of feedback amplifiers
3 Analysis of feedback amplifiers
4 Differential amplifiers
5 Differential amplifiers and current mirrors
6 Internal structure of operational amplifiers (opamps)
7 Opamp analysis and applications
8 Power amplifiers
9 Positive feedback, oscillators and signal generators
10 Midterm Exam I
11 Basic digital circuit concepts (VTC curve, power dissipation, propagation delay etc.)
12 Digital logic circuits (BJT, CMOS etc.)
13 Advanced logic circuits (BJT, CMOS etc.)
14 Midterm Exam II
15 Preparation for Final exam
16 Final Exam
Assessment Methods
Course activities Number Percentage
Attendance 0 0
Laboratory 0 0
Application 0 0
Field activities 0 0
Specific practical training 0 0
Assignments 0 0
Presentation 0 0
Project 0 0
Seminar 0 0
Quiz 0 0
Midterms 2 50
Final exam 1 50
Total 100
Percentage of semester activities contributing grade success 50
Percentage of final exam contributing grade success 50
Total 100
Workload and ECTS Calculation
Course activities Number Duration (hours) Total workload
Course Duration 14 4 56
Laboratory 0 0 0
Application 0 0 0
Specific practical training 0 0 0
Field activities 0 0 0
Study Hours Out of Class (Preliminary work, reinforcement, etc.) 14 3 42
Presentation / Seminar Preparation 0 0 0
Project 0 0 0
Homework assignment 0 0 0
Quiz 0 0 0
Midterms (Study Duration) 2 15 30
Final Exam (Study duration) 1 15 15
Total workload 31 37 143
Matrix Of The Course Learning Outcomes Versus Program Outcomes
Key learning outcomes Contribution level
1 2 3 4 5
1. Possesses the theoretical and practical knowledge required in Electrical and Electronics Engineering discipline.
2. Utilizes his/her theoretical and practical knowledge in the fields of mathematics, science and electrical and electronics engineering towards finding engineering solutions.
3. Determines and defines a problem in electrical and electronics engineering, then models and solves it by applying the appropriate analytical or numerical methods.
4. Designs a system under realistic constraints using modern methods and tools.
5. Designs and performs an experiment, analyzes and interprets the results.
6. Possesses the necessary qualifications to carry out interdisciplinary work either individually or as a team member.
7. Accesses information, performs literature search, uses databases and other knowledge sources, follows developments in science and technology.
8. Performs project planning and time management, plans his/her career development.
9. Possesses an advanced level of expertise in computer hardware and software, is proficient in using information and communication technologies.
10. Is competent in oral or written communication; has advanced command of English.
11. Has an awareness of his/her professional, ethical and social responsibilities.
12. Has an awareness of the universal impacts and social consequences of engineering solutions and applications; is well-informed about modern-day problems.
13. Is innovative and inquisitive; has a high level of professional self-esteem.
1: Lowest, 2: Low, 3: Average, 4: High, 5: Highest
General Information | Course & Exam Schedules | Real-time Course & Classroom Status
Undergraduate Curriculum | Minor Program For Non-departmental Students | Open Courses, Sections and Supervisors | Weekly Course Schedule | Examination Schedules | Information for Registration | Prerequisite and Concurrent Courses | Legal Info and Documents for Internship | Academic Advisors for Undergraduate Program | Information for ELE 401-402 Graduation Project | Virtual Exhibitions of Graduation Projects | Erasmus+ Program | Program Educational Objectives & Student Outcomes | ECTS Course Catalog | HU Registrar's Office
Graduate Curriculum | Open Courses and Supervisors | Weekly Course Schedule | Final Examinations Schedule | Schedule of Graduate Thesis Defences and Seminars | Information for Registration | ECTS Course Catalog - Master's Degree | ECTS Course Catalog - PhD Degree | HU Graduate School of Science and Engineering